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2 Dept. Geometŕıa y Topoloǵıa, Facultad de Ciencias Matemáticas
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Abstract. The process of un-reduction, a sort of reversal of reduction
by the Lie group symmetries of a variational problem, is explored in
the setting of field theories. This process is applied to the problem of
curve matching in the plane, when the curves depend on more than
one independent variable. This situation occurs in a variety of instances
such as matching of surfaces or comparison of evolution between species.
A discussion of the appropriate Lagrangian involved in the variational
principle is given, as well as some initial numerical investigations.
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1 Introduction

The idea of un-reduction was introduced in [9] for the purpose of using reparametri-
sation by the action of the group G = Diff(S1) to improve resolution of selected
features in dynamics and optimal control problems, particularly in matching
closed planar curves, whose configuration space Q is the space of embeddings
Q = Emb(S1,R2), by redistributing grid points in S1 along the curve. The
un-reduction process used in [9] was based on reconstruction, the inverse of La-
grangian reduction by symmetry [13], which relates the solutions on TQ/G to
solutions on TQ. This version of the un-reduction process was applied in the
outer metric setting in [9, 8]. In this setting, the deformation of the shape of
a curve in Emb(S1,R2) was applied to the embedding space, R2, completely
independently of any reparametrisation of the embedded space, S1.

In contrast, the un-reduction technique introduced in [4] seeks a family of
equations, called the un-reduced equations, on TQ, whose solution projects onto
those of a set of Euler-Lagrange equations on T (Q/G). Thus, the un-reduction
process used in [4] is distinct from the reconstruction process used in [9, 8]. More-
over, the un-reduction approach introduced in [4] raised an important issue for
numerical applications in curve matching by optimal control, since it intertwined
the reduction and reconstruction processes. Namely, the geodesic distance be-
tween two curves should be independent of their parametrisations. In particular,
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the measure of the deformation of the shape of a curve should be independent
of its parametrisation.

Here we address this issue for curve matching from the viewpoint of a re-
formulation of the un-reduction scheme of [4], which gives a framework in the
setting of inner metric discussed in [3], in which the shape deformation is applied
to the embedded space, rather than the embedding space.

In the process of addressing this issue, we will also generalise the un-reduction
scheme by formulating it as a covariant space-time field theory. This generalisa-
tion gives us the freedom to introduce additional independent ‘time’ or ‘space’
variables for the purpose of coordinating comparisons among shapes. Introduc-
ing additional independent variables allows more flexibility in making shape
comparisons than, for instance, the time warp approach of [10], which does not
increase the number of independent variables. For example, one could imagine
making comparisons of cylindrical surfaces by assembling closed curves resolved
on two-dimensional slices. In this case, the additional space variable would be
transverse to the slices, and one would make comparisons of surfaces as single
entities, rather than comparing the evolution in time alone of each slice indepen-
dently. In addition, the covariant field theory generalisation of the un-reduction
framework in the inner metric setting could lead to a variety of other applica-
tions, a few of which are mentioned in Section 4.

This work may be summarized as an extension of [4] in the following three
directions:

(1) We promote the un-reduction formulation of [4] in classical mechanics to a
covariant field theory by following the same reasoning. Namely, we derive the
Lagrange-Poincaré reduction of the shape space (Section 3.1) and un-reduce
it by including an independent parametrisation (Section 3.2).

(2) Instead of the curvature weighted metric used in [4], we implement Sobolev
metrics, which avoid the issue of arbitrary small geodesic distances (Section
3.3).

(3) We finish by illustrating this approach and assessing its validity with a few
numerical experiments in the classical mechanical setting (Section 4.1).

A complete exposition of covariant un-reduction containing the proofs and ap-
plications in other areas, such as in theoretical physics, can be found in [1].

The main topic of the present paper is the first point listed above. We shall
focus our discussion on the covariant Lagrange-Poincaré (LP) reduction by sym-
metry in the context of curve matching. The symmetry will be G = Diff(S1), the
diffeomorphism group which acts on the configuration space of planar curves,
Q = Emb(S1,R2), as a reparametrisation of S1. LP reduction is a general
method to deal with noncanonical reductions, in which the configuration space
is not the symmetry group. LP reduction allows the explicit derivation of the dy-
namical equations on the quotient space, Q/G, which, in our case, is the space of
shapes, Emb(S1,R2)/Diff(S1). The field theoretic version of LP reduction that
we will use here was developed in [5, 11], based on the classical reduction theory
introduced in [7]. We will use a simplified version of this theory applied directly
to curve matching.
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The second improvement relative to [4] on the list above involves the Rie-
mannian metric used to derive the un-reduction equations. As recently pointed
out in [3, 2], use of Sobolev inner metrics avoids the problem of having arbitrar-
ily small geodesic distances between two curves. In addition, the un-reduction
equations take a simpler form with the Sobolev metric than with the curvature
weighted metrics used in [4].

Finally, we tested the un-reduction approach in a few numerical experi-
ments where we considered an initial value problem with reparametrisation.
Even though we simply chose the forward Euler method for this initial value
problem, without any further modifications, it still converged to the expected
solution. The success of these simple numerical simulations motivates us to go
further in future work to consider boundary value problems in the full field
theoretical framework as explained in Section 4.2.

2 The geometry of curve matching

We start by recalling some basic facts about the geometry of curve matching
that we will use throughout the text. We refer to earlier works such as [14, 3, 2,
4] for more details.

2.1 Reduction structure.

Let Q = Emb+(S1,R2) be the manifold of positive oriented embeddings from
S1 to R2. Elements in Q are maps c(θ) ∈ R2 for θ ∈ S1 and elements in the
tangent space TcQ are pairs (c, v) with c ∈ Emb+(S1,R2) and u ∈ C∞(S1,R2)
a parametrized vector field along the curve c, thus TQ = Q× C∞(S1,R2).

We then consider the group G = Diff+(S1) of orientation preserving diffeo-
morphisms of S1 and its Lie algebra g = X(S1). The group G acts on the right
in Emb+(S1,R2) as reparametrisation of curves c and the reduced space is the
space of shapes in R2

Σ :=
Q

G
=

Emb+(S1,R2)

Diff+(S1)
. (1)

The reduction of the phase space TQ by the group of symmetry G is a compli-
cated space but can be decomposed via the introduction of a principal connection
A : TQ→ g as follows

TQ

G

A−−−−−→ TΣ ⊕ g̃ = T

(
Q

G

)
⊕ Q× g

G
. (2)

The space TΣ is then the tangent space to the space of shapes, and the adjoint
bundle g̃ will encode the parametrisation velocity of the curve. This space seems
rather abstract but it corresponds to having a Lie algebra attached to each point
of the base space Σ, which means that for each shape we have the freedom to
attach an arbitrary parametrisation velocity. The construction of the connection
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is straightforward for curve matching. Namely, given the velocity u ∈ TcQ, we
consider its tangent and normal decomposition,

u(θ) = v(θ)t(θ) + h(θ)n(θ) , (3)

where (t,n) is the orthonormal Frenet frame along c and v(θ), h(θ) ∈ X(S1) are
scalar functions along the curve, parametrised by θ ∈ S1. We clearly have that
v(θ)t(θ) is a vector tangent to the orbits of G = Diff+(S1). This decomposi-
tion defines the principal connection A : TQ → g, which, when applied to u,
gives A(u) = v, the reparametrisation velocity. The horizontal part of u is then
h(θ)n(θ) and we have a decomposition TQ = HQ⊕ V Q. We will also need the
curvature of A, defined as B := dAA = dA+ [A,A], but its exact form will not
be needed here. In fact, we shall skip any technical details which are not directly
useful for the present work, and refer the interested reader to [7, 5, 11] for the
full discussion of this construction.

2.2 Field theoretical structure.

We can now extend this reduction structure by promoting the classical system
to a covariant field theory, see [6, 11]. In order to do this, we consider an open
domain N ⊂ R × R endowed with the Euclidean metric, the associated coor-
dinates (t, x) and a volume form v = dtdx. For simplicity we only consider a
two dimensional space-time manifold N , but more dimensions can be added in a
straightforward way. The tangent space TQ is then promoted to the jet bundle
in order to capture the space-time direction used to compute a tangent vector.
In this simple setting, the jet bundle has a simple geometric meaning, given by
J1(N,Q) ' T ∗N ⊗ TQ and a generic element will be written

j1c = ct(θ)(t, x)dt+ cx(θ)(t, x)dx, (4)

that is, ct, cx ∈ TQ are the derivatives of a map c : N → Q along t and x
respectively. The generalisation of the time derivative is the divergence operator,
given in this simple case by div j1c = d

dtct + d
dxcx.

2.3 Riemannian metrics

The choice of a convenient Riemannian metric on Q which is invariant with
respect to the action of G is an interesting topic. See, for example, [2] and [3]
and the references therein for more discussion. In our case, invariance under
reparametrisation is achieved by considering arclength integrations and deriva-
tives ds = |cθ|dθ and Dθ = 1

|cθ|∂θ. However, the main difficulty lies in the

geometrical properties of the metric, as we deal with an infinite dimensional
space. The natural L2 metric

gL2(u, v) =

∫
S1

〈u(θ), v(θ)〉ds, (5)
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with u, v ∈ TcQ such that 〈·, ·〉 is a dot product in R2, is not very useful as it can
lead to arbitrarily small geodesic distances in both Q and Q/G, see [14]. The
problem can be overcome in the shape space Q/G by the metric

gκ(u, v) =

∫
S1

(1 +Aκ(θ)2)〈u(θ), v(θ)〉ds, (6)

where A > 0 and κ denotes the Frenet curvature of the curve c, defined as

κ := (DθDθc) · J(Dθc) = Dθt · n . (7)

In fact, the weighted metric in (6) can still have arbitrarily small geodesic dis-
tance in Q along the fibres of the fibration Q → Q/G. A metric with a well
defined Riemannian distance in both Q and Q/G may be obtained by adding
higher order derivatives of u and v in a Sobolev-type expression as

gH1(u, v) =

∫
S1

(
〈u(θ), v(θ)〉+A2〈Dθu(θ), Dθv(θ)〉

)
ds . (8)

We can collect these three cases (as well as others, see [2]) by using

gP(u, v) =

∫
S1

〈u(θ),Pv(θ)〉, (9)

for a convenient choice of a G-invariant self-adjoint pseudo-differential operator
P which can depend on the curve and its derivatives. In particular, the operator
for (6) is P = 1 + Aκ2 and for (8) we have P = 1 − A2D2

θ . One additional
advantage of the operator associated to (8) is that it does not depend on the
curve, whereas the operator for (6) depends on the curvature of the curve where
it is evaluated. This represents a great simplification in the expression of the
un-reduced equations.

3 Reduction and un-reduction

We are now ready to perform reduction by symmetry from the space of embed-
dings to the shape space using the covariant Lagrange-Poincaré reduction.

3.1 Lagrange-Poincaré reduction

Let’s begin by recalling the original problem of curve matching. The matching
problem is a boundary value problem in Σ = Q/G with Lagrangian l : TΣ → R.
Hamilton’s principle states that the Euler-Lagrange equations associated with
this Lagrangian yield the solution which minimises the action functional given
by l. In practice, the matching problem is solved by using a shooting method for
determining the initial momentum such that the curve at the final time matches
the target curve within some specified tolerance. Instead, we will start in the
larger space Q, where the numerical experiments can be done easily and, as a
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first step, reduce this system such that we recover the Euler-Lagrange equations
on Σ.

We project the variational principle defined for L from J1(N,Q) to its quo-
tient J1(N,Q)/G = J1(N,Σ) ⊕ (T ∗N⊗ g̃), where g̃ = (Q×g)/G, as in equation
(2). Critical solutions are maps σ : N → T ∗N ⊗ g̃ which, moreover, project to
maps ρ : N → Σ = Q/G as ρ = πg̃ ◦ σ according to the diagram

T ∗N ⊗ g̃
σ

↗ ↓πg̃

N
ρ−→ Σ

(10)

where πg̃ : T ∗N ⊗ g̃ → Σ is the projection of the adjoint bundle neglecting
the T ∗N factor. The free variations of the initial problem provide a family of
constrained variations that define a new type of variational equations, called
Lagrange-Poincaré equations, [5], [11]. The next theorem gives the Lagrange-
Poincaré reduction which includes forces F : T ∗N ⊗ TQ → TQ. Before stating
this theorem without proof, we will make another important assumption which is
satisfied by most of the Lagrangians used in curve matching. Namely, we assume
our Lagrangian decomposes as a sum of two Lagrangians taking values from the
vertical and horizontal space that will be denoted L = Lh +Lv and ` = `h + `v.

Theorem 1 (Covariant Lagrange-Poincaré reduction with forces). Given
a map c : N → Q, let σ : N → T ∗N ⊗ g̃ be defined as

σ(x)(ω) = [s(x),A(Ts · (ω))]G , (11)

with ω ∈ TxN, x ∈ N and where [·]G stands for the quotient by G; ρ : N → Σ,
ρ(x) = [s(x)]G = πg̃ ◦ σ. With the previous definitions, the following points are
equivalent

(1) s is a critical mapping of the variational principle

δ

∫
N

L(s, j1s)v +

∫
N

〈F (s, j1s), δs〉v = 0 (12)

with free variations δs.
(2) The Euler-Lagrange form of L satisfies the relation

EL(Lv)(j2s) = F,

where EL is the Euler-Lagrange operator acting on the second jet bundle
(second order field theoretical tangent space), which gives the usual Euler-
Lagrange equations.

(3) σ : N → T ∗N⊗ g̃ is a critical mapping of the variational principle

δ

∫
N

`(j1ρ, σ)v +

∫
N

〈fh(j1ρ, σ), δρ〉v +

∫
N

〈fv(j1ρ, σ), η〉v = 0,

for variations of the form δσ = ∇η− [σ, η] +B(δρ, Tρ) ∈ g̃, where δρ ∈ TρΣ
is a free variation of ρ and η is a free section of g̃→ Σ.
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(4) σ satisfies the Lagrange-Poincaré equations, written if L and ` decomposes
according to the vertical/horizontal decomposition

div

(
δ`h

δj1ρ

)
− δ`h

δρ
= fh +

δ`v

δρ
−
〈
δ`v

δσ
,B(Tρ, ·)

〉
,

div
δ`v

δσ
+ ad∗σ

δ`v

δσ
= fv.

 (13)

One recognises left hand side of the first equation in (13) as an Euler-Lagrange
equation and the second one as an Euler-Poincaré equation. The right hand side
of both equations are either forces, or coupling with between them. The solu-
tion σ of the Euler-Poincaré equation in (13) will influence the Euler-Lagrange
equation via the term involving the curvature of the connection A. An addi-
tional coupling arises because σ is in the adjoint bundle and therefore depends
implicitly on the base curve in Q.

3.2 Un-reduction

The particular form of the equations in (13), based on the decomposition of the
Lagrangian and the inclusion of the force term will allow us to decouple these
equations in the sense that the right hand side of the EL equation will vanish;
so the feedback of the EP equation to the EL equation will disappear. Before
stating the un-reduction theorem we must recall that the canonical momentum
map J : T ∗Q→ g∗ for the natural lift action of G on T ∗Q, is defined by

〈J(αq), ξ〉g×g∗ = 〈αq, ξQ〉TQ×TQ∗ ,

where αq ∈ T ∗Q, ξ ∈ g, and ξQ ∈ TQ is the infinitesimal transformation of
the action of G on Q at the point q ∈ Q. The map J extends to a map J :
TN ⊗ T ∗Q→ TN ⊗ g∗, trivially in the factor TN .

We can finally state the covariant un-reduction theorem. We refer to [1] for
the proof and more details about this theorem.

Theorem 2. We consider a G-equivariant force F : J1(N,Q)→ T ∗Q such that
F v = pv ◦ F is arbitrary and Fh = ph ◦ F is given by the condition

fh = −∇`
v

δρ
+

〈
δ`v

δσ
,B(Tρ, ·)

〉
, (14)

for its projection fh : J1(N,Σ) × (T ∗N ⊗ g̃) → T ∗Σ. Then, the variational
equations of the problem defined by L and F read

EL(Lh)(j2s) = 0

A∗div

(
J

(
δLv

δj1s

))
= F v(j1s),

 (15)

where A∗ : g∗ → V ∗Q is the dual of the connection form. Finally, critical so-
lutions s : N → Q of (15) project to critical solutions ρ = [s]G of the Euler-
Lagrange equations EL(l)(j2ρ) = 0.
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Remark 1. For N = R, v = dt, that is, in the case of classical mechanics, we
have div = d/dt and we recover the results and equations of [4].

The first equation in (15) is the usual Euler-Lagrange equation for the horizontal
Lagrangian Lh, needed for solving the matching problem. Regarding the interpre-
tation of the second equation, the definition of J above shows that J(δLv/δj1s)
is a covariant momentum map, so that div J(δLv/δj1s) is the expression of a
conservation law with respect to the group of symmetries. If one set F v = 0, the
conservation law is complete. However, sometimes it may be interesting to keep
this vertical force, as it might be used to externally control the dynamics along
the vertical space; that is, the reparametrisation.

3.3 Un-reduction with Sobolev metric

We consider the Diff+(S1)-invariant Lagrangian L : J1(N,Q) ' T ∗N⊗TQ→ R
which can be decomposed as L = Lh + Lv with respect to the connection A as

Lh(j1c) =
1

2

∫
S1

(htPht + hxPhx) ds, Lv(j1c) =
1

2

∫
S1

(vtPvt + vxPvx) ds,

where
ct = vtt + htn and cx = vxt + hxn.

The un-reduction equations (15) are then computed in Proposition 1 below in
the case when P is independent of the curve, that is, Sobolev metrics.

Proposition 1. The un-reduced equations (15) for the bi-dimensional problem
of planar simple curves defined by the Lagrangian defined above and the metric
(9) with P being the Sobolev operator, read

∂xPhx + ∂tPht = Dθ(hxPvx + htPvt)− κH
∂xPvx + ∂tPvt = F v

(16)

for any choice of vertical force F v, where

H =
1

2
(hxPhx + htPht) . (17)

In (16), the function H is the shape kinetic energy density and κ is the Frenet
curvature of the curve c, defined in (7). This term can be interpreted as a penalty
term in deforming curved regions. The sign of this term would depend on the
concavity or convexity of the curve at this point, and thus this force would try to
prevent the curve to be deformed too fast in these regions. Equation (16) shows
that the dynamics in (x, t) is governed by the coupling between ht and vt required
for the shape deformation to be independent of the reparametrisation. In fact, it
also contains a derivative with respect to θ and vertical vectors. This is the only
term which couples with the vertical equation, and it also gives the corrections
necessary for the curve deformation to be independent of the reparametrisation.
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Remark 2. In the classical mechanics setting, the un-reduction equations with
Sobolev metric would be very similar to (16), but without the x-dependent terms.
They will be the equations used for the numerics in section 4.1. Owing to the
simplicity of the Sobolev metric compared to the curvature weighted metric, the
derivation of this equation is directly done from the un-reduction equations, not
from the variational principle, as in [4]. We refer to [1] for the details of this
calculation.

4 Applications

Before discussing the possible applications of the covariant un-reduction scheme
in curve matching, we shall present a short numerical study of the un-reduction
in classical mechanics using the Sobolev metric H1.

4.1 Numerical validation

In order to test and illustrate the un-reduction scheme, we performed a few
simple numerical experiments. We restricted ourselves to the classical case, al-
ready done theoretically in [4], but with the H1 norm instead of the curvature
weighted norm. The only effect of the Sobolev norm that which interested us is
that it regularises the curve deformation and prevents large bending of the curve,
smaller that the scale given by A. A deeper analysis of the effect of the Sobolev
norm in the matching process is not the aim of this paper but is important for
applications. Our main goal here was to check the decoupling between the shape
and the reparametrisation dynamics for a simple initial value problem.

Our numerical scheme used the Euler explicit scheme in time and 2nd order
centred finite difference approximation for Dθ in order to have a symmetric
space discretisation in θ ↔ −θ. The application of the Sobolev operator P =
1 − A2D2

θ was done in Fourier space with A = 0.3. Our initial condition was
a circle and the initial horizontal velocity was a bump function, so the curve
deformed as in Fig. 1. The curve was discretised with 100 points and we used
a set of time steps (dt = 0.04, 0.02, 0.01, 0.001) to study the convergence of the
scheme, and especially the decoupling between the reparametrisation and the
shape deformation. In order to do this, we ran two initial value problems where
one of them also had a vertical initial velocity, taken to be constant such that
the parametrisation would rotate during the evolution of the curve. We then
computed the distance between the two curves using the methods of currents
[12] at each time to make a parametrisation-free comparison of the shapes of the
curve. The results are displayed in Fig. 1 together with the distance between the
curves as a function of time. Even with the simple numerics we used (the Euler
scheme and finite difference), the un-reduction feature was verified. The example
we studied is simple and did not require high resolutions and robustness tests
as for more realistic shapes. Further numerical studies using the un-reduction
scheme would thus include improvements of the current implementation and
a shooting method in order to solve the correct matching, or boundary value
problem.
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Fig. 1. This figure illustrates the effect of the time step of S1-reparameterisation on the
quality of the deformation of a curve using the explicit Euler scheme in the un-reduction
approach. The blue curve has horizontal initial velocity ht for shape deformation, while
the green curve has an additional constant vertical initial velocity vt, for reparameter-
isation. The blue and green dots begin at the same initial point, but then the green
one shifts along the green curve as the reparameterisation proceeds. The black dashed
curve is the initial condition of the simulation. Upon decreasing the time steps, the
coupling between the vertical and horizontal dynamics decreases and the quality of the
deformation improves, even when using an explicit Euler scheme. On the bottom right
panel, we plotted the distance between the two curves, as a function different time
resolutions. The distance is computed by the method of currents, which is independent
of the parametrisation.
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4.2 Covariant matching

In the simplest case of field theory treated here, namely a two dimensional space-
time, two main applications for boundary value problems (BVP) present them-
selves for further discussion. Besides BVPs, initial value problems (IVP) could
also be considered, but IVP are not of great interest for curve matching. We will
thus forego discussing them here, although a possible application would be to
predict the evolution of a particular model, knowing that it should “roughly”
follow a generic model. In this case, the initial value problem must have carefully
chosen initial values, a subject which is out of the scope of this work. The two
applications for BVP that we will discuss are the following:

(1) Matching between cylindrical surfaces, and
(2) Spatio-temporal analysis.

Case (1) In the first case, a set of slices along a cylindrical surface ( a typical
example would be a bone) are given, where x is the parameter along the main
axis of the surface. For the sake of simplicity, we will just consider two slices,
but more could be added without to much trouble. The first step would be to
generate the initial and final conditions, namely use un-reduction for the IVP to
interpolate between the two curves and generate the initial and final surfaces.
Once this is done, covariant un-reduction could be applied using a shooting
method in time, such that the solution is a critical point of the action functional∫
L(c, ct, cx)dtdx. In our simple case, where the Lagrangian is purely quadratic,

the solution would be a harmonic map, or a minimal surface, and would then
require more advanced mathematics, beyond the present discussion. This model
would compute the distance between two surfaces, taking into account that the
interpolation between the slices in space should be imposed simultaneously with
the matching in time. The resulting distance will be different than a naive model,
which would compute the matching in time, slice by slice. For an illustration
of matching slice by slice, we refer to the last example in [8] where a surface
representing a nasal cavity is reconstructed out of a set of slices. The step done
there corresponds to the generation of initial and final surfaces, whereas covariant
un-reduction would compute the distance between these two surfaces, during the
temporal deformation of the entire nasal cavity.

Case (2) Spatio-temporal analysis has recently been reviewed in [10], from
yet another viewpoint. Indeed, the matching in space done in [10] does not de-
pend on a space parameter, but is instantaneous, namely given by a single map
between the two curves. They also included a “time warp” which account for
the change of pace of the evolution of the two models to be compared. In our
case, the spatial variable comes into play on the same footing as time, and, thus,
brings more flexibility into the comparison. Again, the theory of harmonic maps
could help in understanding the properties of the solutions, and it is possible
that the time warp reparameterisation could be recovered as well.

We finally want to mention the freedom to choose the vertical force in the
un-reduction equations. This force could be used to control the parametrisation
during the matching. Different types of forces could be considered, such as a
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force which would optimally redistribute the parametrisation in different regions
of the curve, such that the number of points for discretising the curve could be
reduced. Another force could be used to match the paramerisation of the target
curve, such that the computationally more expensive method of currents could
be avoided.
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