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Abstract. This paper addresses the generalization of Principal Com-
ponent Analysis (PCA) to Riemannian manifolds. Current methods like
Principal Geodesic Analysis (PGA) and Geodesic PCA (GPCA) min-
imize the distance to a ”Geodesic subspace”. This allows to build se-
quences of nested subspaces which are consistent with a forward compo-
nent analysis approach. However, these methods cannot easily be adapted
to a backward analysis and alck symmetric in the parametrization of the
subspaces. We propose in [10] a new and more general type of family of
subspaces in manifolds, barycentric subspaces, which are implicitly de-
fined as the locus of points which are weighted means of k + 1 reference
points. Depending on the generalization of the mean that we use, we
obtain the Fréchet / Karcher / Exponential barycentric subspaces (FBS
/ KBS / EBS). The completion of the last one is called the affine span.
These definitions were shown to define locally submanifolds of dimension
k.
In this paper, we investigate barycentric subspaces in one of the simplest
manifold: the sphere. We show that the affine span is a great subsphere
in generic conditions, i.e. also a geodesic subspace. This coincidence of
spaces is due to the very high symmetry of the sphere. For second order
jets, we show that we obtain subspheres of different radii as in the case of
principal nested spheres (PNS) analysis. Among the points of the affine
span, determining which ones belong to the Karcher barycentric sub-
spaces (KBS) turns out to be a surprisingly difficult problem. Practical
experiments show that the KBS covers in general only a small portion
of the subsphere containing the reference points. This suggests that the
affine span might be a much more interesting definition to work with for
subspace definition purposes. We finally discuss the use to these barycen-
tric subspaces to generalize PCA on manifolds, a procedure that we name
Barycentric Subpsace Analysis (BSA). Like PGA, barycentric subspaces
allow the construction of a forward nested sequence of subspaces which
contains the Fréchet mean. However, the definition also allows the con-
struction of backward nested sequence which may not contain the mean.

1 Introduction

In a Euclidean space, the principal k-dimensional affine subspace of the Principal
Component Analysis (PCA) procedure is equivalently defined by minimizing the
variance of the residuals (the projection of the data point to the subspace) or by
maximizing the explained variance within that affine subspace. This is due to
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Pythagoras’ theorem, which does not hold in more general manifolds. A second
important observation is that principal components or different orders are nested,
which allows to build forward and backward estimation methods by iteratively
adding or removing principal components.

Generalizing PCA to manifolds first requires to define the equivalent of affine
subspaces in manifolds. For the zero-dimensional subspace, intrinsic generaliza-
tion of the mean on manifolds naturally comes into mind: the Fréchet mean
is the set of global minima of the variance, as defined by Fréchet in general
metric spaces [3]. The set of local minima of the variance was named Karcher
mean by W.S Kendall [8] after the work of Karcher et al. [6] on Riemannian
centers of mass (see [7] for a discussion of the naming and earlier works). The
one-dimensional component is then quite naturally a geodesic which should pass
through the mean point. Higher-order components are more difficult to define.
The simplest generalization is tangent PCA (tPCA), which amounts to unfold
the whole distribution in the tangent space at the mean, and to compute the
principal components of the covariance matrix in the tangent space. The method
is thus based on the maximization of the explained variance. tPCA was used im-
plicitly or explicitly in a lot of statistical works on shape spaces and Riemannian
manifolds because it is simple and efficient. However, if tPCA is good for an-
alyzing data which are sufficiently centered around a central value (unimodal
or Gaussian-like data), it is often not sufficient for multimodal or large support
distributions (e.g. uniform on close compact subspaces).

Instead of an analysis of the covariance matrix, Fletcher et al. [2] proposed
to rely on the least square distance to subspaces which are totally geodesic at
a point. These Geodesic Subspaces (GS) are spanned by the geodesics going
through a point with tangent vector restricted to belong to a linear subspace
of the tangent space. The procedure was coined Principal Geodesic Analysis
(PGA). However, the least-square procedure was computationally expensive, so
that it was approximated in practice with tPCA. A complete implementation of
the original PGA procedure was only provided recently by Sommer et al. [14].
PGA is intrinsic and allows to build a flag (sequences of embedded subspaces)
of principal geodesic subspaces which is consistent with a forward component
analysis approach: we build iteratively the components from dimension 0 (the
mean point), dimension 1 (a geodesic) and higher dimensions by iteratively se-
lecting the direction in the tangent space at the mean that optimally reduce the
square distance of data point to the geodesic subspace. In this procedure, the
mean always belong to geodesic subspaces even when they are not part of the
support of the distribution.

To alleviate this problem, Huckemann et al. [12] proposed to relax the fact
that the base-point of the geodesic subspace has to be the Fréchet mean: they
start at the first order component directly with the geodesic that best fits the
data, which is not necessarily going through the mean. The second principal
geodesic is chosen orthogonally to the first one, and higher order components
are added orthogonally at the crossing point of the first two components. The
method was named Geodesic PCA (GPCA). Further relaxing the assumption
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that second and higher order components should cross at a single point, Sommers
[13] proposed to parallel transport the second direction along the first principal
geodesic to define the second coordinates, and iteratively define higher order
coordinates through horizontal development along the previous modes.

All the cited methods are intrinsically forward methods that build succes-
sively larger and larger approximation spaces. A notable exception is the con-
cept of Principal Nested Spheres (PNS), proposed by Jung, et al. [4] as a general
framework for non-geodesic decomposition of high-dimensional spheres or high-
dimensional planar landmarks shape spaces. Here, subsphere can be viewed as a
slicing of a higher dimensional sphere by an affine hyperplane. In this process, the
nested subsphere is not of radius one, unless the hyperplane is passing through
the origin. The backward analysis approach, determining a decreasing family of
subspace, has been recently generalized to more general manifold with the help
of a nested sequence of relations [1]. However, up to know, such a sequence of
relationships was only known for spheres or Euclidean spaces.

In [10], we proposed to replace geodesic subspaces with a new and more
general type of family of subspaces in manifolds: barycentric subspaces (BS).
They are implicitly defined as the locus of points which are weighted means of
k + 1 reference points. Depending on the generalization of the mean that we
use on manifolds, Fréchet mean, Karcher mean or exponential barycenter, we
obtain the Fréchet / Karcher / Exponential barycentric subspaces (FBS / KBS
/ EBS). These definition were shown to be included into each other. Here we
call affine span the metric completion of the largest barycentric subspace. In
generic conditions, barycentric subspaces are stratified spaces that are locally
submanifolds of dimension k. Their singular set of dimension k − l corresponds
to the case where l of the reference point belongs to the barycentric subspace
defined by the k − l other reference points. In non-generic conditions, points
may coalesce along certain directions, defining non local jets instead of a regular
k + 1-tuple. Geodesic subspaces (in a restricted sense), which are defined by k
tangent vectors at a point, correspond to the limit of the affine span when the
k-tuple converges towards that jet.

In this paper, we derive the equations of barycentric subspaces in one of the
simplest manifold: the sphere. We show that the affine span of k + 1 different
reference points on the n-dimensional sphere is the k-dimensional great sub-
sphere that contains the reference points. In fact, any k + 1-tuple of points of
a great k-dimensional subsphere generates the same affine span, which is also a
geodesic subspace. This coincidence of spaces is due to the very high symmetry
of the sphere. For second order jets, we show that we obtain subspheres of dif-
ferent radii as used in PNS. Among the points of the affine span, determining
which ones belong to the Karcher barycentric subspaces (KBS) turns out to be
a surprisingly difficult problem. Practical experiments show that the index of
the variance at critical points can be arbitrary, thus subdividing the affine span
into many regions. As a result, the KBS covers in general only a small portion
of the subsphere containing the reference points. This suggests that the affine
span might be a much more interesting definition for subspace definition pur-
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poses. Finally, we discuss the use to these barycentric subspaces to generalize
PCA on manifolds, a procedure that we name Barycentric Subspace Analysis
(BSA). Barycentric subspaces can be naturally nested, by defining an ordering
of the reference points. Like for PGA, this allows the construction of a forward
nested sequence of subspaces which contains the Fréchet mean. However, BSA
also allows the construction of backward nested sequence which may not contain
the mean.

2 Introduction

In this section, we recall the main notations and results from of [10]. We con-
sider an embedding Riemannian manifold M of dimension n. The Riemannian
metric is denoted 〈 . | . 〉x on each tangent space TxM of the manifold. The ex-
pression of the the underlying norm in a chart is ‖v‖2x = vT G(x) v = vivjgij(x)
using Einstein notations for tensor contractions. We assume the manifold to be
geodesically complete (no boundary nor any singular point that we can reach in
a finite time). As an important consequence, the Hopf-Rinow-De Rham theorem
states that there always exists at least one minimizing geodesic between any two
points of the manifold.

We denote by expx(v) the exponential map at point x which associate to each
tangent vector v ∈ TxM the point of M reached by the geodesic starting at x
with this tangent vector after a unit time. This map is a local diffeomorphism
from 0 ∈ TxM to M, and we denote −→xy = logx(y) its inverse: it may be defined
as the smallest vector of TxM that allows to shoot a geodesic from x to y.
When the tangent space is provided with an orthonormal basis, the Riemannian
exponential and logarithmic maps provide a normal coordinate systems at x. A
set of normal coordinate systems at each point of the manifold realize an atlas
which allows to work very easily on the manifold. The implementation of exp and
log maps is the basis of programming on Riemannian manifolds, and most the
geometric operations needed for statistics or image processing can be rephrased
based on them [9, 11].

2.1 (k + 1)-pointed Riemannian manifold

Let {x0, . . . xk} ∈ Mk+1 be a set of k + 1 distinct points in the Riemannian
manifold M and C(x0, . . . xk) = ∪ki=0C(xi) be the union of the cut loci of these
points. We call (k + 1)-pointed manifold M∗(x0, . . . xk) =M/C(x0, . . . xk) the
submanifold of the non-cut points of the points.

Since the cut locus of each point is closed and has null measure,M∗(x0, . . . xk)
is open and dense in M. Thus, it is a submanifold of M (not necessarily con-
nected). On this submanifold M∗(x0, . . . xk), the distance to the points xi and
the Riemannian log function −→xxi = logx(xi) are smooth.
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2.2 Weighted moments of a (k + 1)-pointed manifold

Let (λ0, . . . λk) ∈ Rk+1 be weights such that
∑
i λi 6= 0. We call such weights

barycentric coordinates. They are elements of projective space Pk minus the
orthogonal of the line element 1 = (1 : 1 : . . . 1): P∗k = {(λ0 : . . . : λk) ∈
Rk+1 such that

∑
i λi 6= 0}. Standard charts of this space are given either by

the intersection of the line elements with the ”upper” unit sphere Sk of Rk+1

with north pole 1/
√
k (unit weights) or by the k-plane of Rk+1 passing through

the point 1/k and orthogonal to this vector. We call normalized weights λi =

λi/(
∑k
j=0 λj) this last projection.

Given barycentric coordinates λ ∈ P∗k , we can consider the distribution (or
0-current) µ(x) =

∑
i λiδxi

(x) onM. As it is not normalized and weights can be
negative, it is generally not a probability distribution. To define the the weighted
n-order moment of that distribution, we have to restrict to the (k + 1)-pointed
Riemannian manifold M∗(x0, . . . xk) because the Riemannian log and distance
functions are not defined (resp. smooth) at the cut-locus of the points {xi}:

Mn(x, λ) =
∑
i

λi
−→xxi ⊗−→xxi . . .⊗−→xxi︸ ︷︷ ︸

n times

(1)

The 0-th order moment (the mass) M0(λ) =
∑
i λi = 1Tλ is constant. All

other moment are homogeneous of degree 1 in λ and can be normalized by
dividing by the mass M0(λ). The first order moment M1(x, λ) =

∑
i λi
−→xxi is

a smooth vector field on the manifold M∗(x0, . . . xk). The second and higher
order moments are smooth (n, 0) tensor fields that will be used through their
contraction with the Riemannian curvature tensor.

2.3 Barycentric subspaces of k + 1 points

Let (M, dist) be a metric space and (x0, . . . xk) ∈Mk be k+1 distinct reference
points. The (normalized) weighted variance at point x with weight λ ∈ P∗k
is: σ2(x, λ) = 1

2

∑k
i=0 λi dist2(x, xi) = 1

2

∑k
i=0 λi dist2(x, xi)/(

∑k
j=0 λj). The

Fréchet barycentric subspace is the locus of weighted Fréchet means of these
points, i.e. the set of absolute minima of the weighted variance:

FBS(x0, . . . xk) = {arg min
x∈M

σ2(x, λ), λ ∈ P∗k}.

The Karcher barycentric subspace KBS(x0, . . . xk) is defined similarly with
local minima instead of global ones.

A point x ∈ M∗(x0, . . . xk) is a weighted exponential barycenters of the
reference points if we can find barycentric coordinates λ ∈ P∗k such that

M1(x, λ) =
∑k
i=0 λi

−→xxi = 0. (2)

The Exponential barycentric subspace EBS(x0, . . . xk) is the set of weighted
exponential barycenters of the reference points in M∗(x0, . . . xk):

EBS(x0, . . . xk) = {x ∈M∗(x0, . . . xk)|∃λ ∈ P∗k : M1(x, λ) = 0}.
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This definition is only valid on M∗(x0, . . . xk) and may hide some discon-
tinuities or continuity on the union of the cut locus of the reference points. In
order to ensure the completeness of the subspace and potentially reconnect com-
ponents, we define consider the closure of this set: we call affine span of the
points (x0, . . . xk) ∈Mk the closure of the EBS in M:

Aff(x0, . . . xk) = EBS(x0, . . . xk).

Because we assumed that M is geodesically complete, this is equivalent to the
metric completion of the EBS.

Outside the cut locus of the reference points, which is of null measure, the
gradient of the squared distance d2xi

(x) = dist2(x, xi) is well defined and is equal
to ∇d2xi

(x) = −2 logx(xi). Thus, one recognizes that Eq.(2) defines nothing else

than the critical points of the variance σ2(x, λ) = 1
2

∑
i λi dist2(x, xi). The local

minima of the variance which are potnetially located on the cut-locus of the
reference points are not part of the EBS but they are recovered in the affine
span thanks to the metric completion. FBS and KBS are thus included in the
affine span, and the affine span is the largest of the barycentric subspaces.

2.4 SVD Characterization of the EBS

Let us consider field of n×(k+1) matrices Z(x) = [−−→xx0, . . .−−→xxk] onM∗(x0, . . . xk).
We can rewrite Eq.(2) in matrix form: M1(x, λ) = Z(x)λ = 0. Thus, we see
that the EBS is controled by the kernel of the matrix field Z(x). Let now
Z(x) = U(x).S(x).V (x)T be a singular decomposition with singular values sorted
in decreasing order. The barycentric subspace EBS(x0, . . . xk) is the zero level-
set of the k + 1 singular value sk+1(x) and the subspace of valid barycentric
weights is spanned by the right singular vectors corresponding to the l vanishing
singular values: Span(vk−l, . . . vk) (it is empty if l = 0).

2.5 Karcher barycentric subspace and positive span

A critical point of the variance x ∈ EBS(x0, . . . xk) is said non-degenerated

(resp. positive) if the Hessian matrix H(x, λ) = −
∑k
i=0 λiDx logx(xi) is invert-

ible (resp. positive definite) for all λ in the right singular space of the zero singular
value of Z(x). The set of degenerate (resp. non-degenerate or positive) expo-
nential barycenter is called the degenerate EBS and denoted EBS0(x0, . . . , xk)
(resp. non-degenerate EBS∗(x0, . . . , xk) or positive EBS+(x0, . . . xk)). In Eu-
clidean spaces, all the points are positive and non-degenerated. However, in Rie-
mannian manifolds, we generally have degenerated points and non-degenerated
points which are non-positive, as we will see with with the example of spheres.
Thus, we can conclude that the KBS is the positive EBS plus potentially some
degenerate points of the affine span and some points of the cut locus of the
reference points.
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2.6 Geodesic subspaces as limit case of the affine span

The usual definition of the geodesic subspaces GS(Wx) = {expx (w) , w ∈Wx} is
too large in certain cases to be useful (e.g. in torus). We call restricted geodesic
submanifold GS∗(Wx) = {expx (w) , w ∈Wx∩D(x)} its restriction to the points
that are reached without going through the cut locus of x. This is a well defined
submanifold of M whose points are described by homogeneous coordinates at
infinity (or on the equator of 1/

√
k depending of the chart we chose for P∗k ) of the

affine span Aff(x, x1, . . . xk) when the points xi = expx(ηwi) are converging to x
at first order along the tangent vectors wi defining the k-dimensional subspace
Wx ⊂ TxM.

3 Example on spheres

Let us consider the unit sphere as our base manifold. We represent points of
M = Sn as unit vectors in Rn+1. The tangent space at x is naturally represented
by the linear space of vectors orthogonal to x: TxSn = {v ∈ Rn+1, vTx = 0}.
The natural Riemannian metric on the unit sphere is inherited from the Eu-
clidean metric of the embedding space Rn+1. With these conventions, the Rie-
mannian distance is the arc-length d(x, y) = arccos(xTy). Let us denote f(θ) =
1/sinc(θ) = θ/sin(θ). The spherical exp and log maps are

expx(v) = cos(‖v‖)x+
sin(‖v‖)
‖v‖

v = cos(‖v‖)x+ sinc(‖v‖)v

logx(y) =
θ

sin(θ)
(y − cos(θ)x) = f(θ) (y − cos(θ)x) with θ = arccos(xTy).

Notice that f(θ) is a smooth function from ]− π;π[ to R that is always greater
than one and is locally quadratic at zero: f(θ) = 1 + θ2/6 +O(θ4).

Let us pick k+1 points on the sphere that we put in a matrix X = [x0; . . . xk].
In the sequel, we use the same notation for the matrix and the set of points.
The cut locus of xi is its antipodal point −xi so that M∗(X) = Sn/ −X. Let
us denote θi = arccos(xT

i x). The log at a point x is −→xxi = ( Id− xxT)f(θi)xi, so
that the first weighted moment is

M1(x, λ) = ( Id− xxT)
∑
i

λif(θi)xi = ( Id− xxT)XF (X,x)λ

where F (X,x) = Diag(f(θi)) is a diagonal matrix with entries that are always
greater than one for x ∈M∗(X). Thus the matrix Z(x) = ( Id− xxT)XF (X,x)
has the same kernel as the matrix Z̃(x) = ( Id − xxT)X. This corresponds to a
renormalized λ̃ = F (X,x)λ of the weights which is linear in λ but non-linear in
x and X through the function F (X,x). The solutions of the equation Z̃(x)λ̃ = 0
under the constraint ‖x‖ = 1 are given by (xTXλ̃)x = Xλ̃ or more explicitly
x = ±Xλ̃/‖Xλ̃‖. This means that the point x ∈ M∗(X) has to belong to the
Euclidean span of the reference vectors. Conversely, any unit vector x = Xλ̃ of
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the Euclidean span ofX verifies Z̃(x)λ̃ = 0. Thus, the unit vectors x = ±Xλ̃/‖λ̃‖
have barycentric coordinates λ = F (X,x)(-1)λ̃ if x is not at the cut locus of the
reference points. This shows that

Aff(X) = Span{x0, . . . xk} ∩ Sn. (3)

Following the same principle, we can orthogonalize the reference points xi:
let us denote by X = USV T a singular value decomposition of the matrix of
reference vectors. All the singular values si are positive since the vectors xi
are assumed to be linearly independent. Thus, Z(x) has the same kernel as
Y (x) = ( Id − xxT)U . This shows that the exponential barycentric subspace
generated by the original and orthogonalized points is the same, except at the
cut locus of all these points which however belongs to the closure: the affine
span. Thus, for spherical data as for Euclidean data, the affine span only depend
on the reference points through the point of the Grassmanian that they define.

When the reference points xi are not linearly independent, the matrix X
has l ≥ 1 vanishing singular values. A singular value decomposition X = USV T

shows that the value of λ̃ (and thus of λ) is in that case unconstrained in the
vector space generated by the right singular vectors vk−l, . . . vk associated to
the l vanishing singular values sk−l, . . . sk. Thus, the space of admissible weights
at each point of the EBS is of dimension l, and the affine span itself is still
the subsphere generated the Euclidean span of the reference points (minus their
cut-locus), which is of dimension k − l.

In conclusion, the affine span Aff(X) of k + 1 different reference unit points
X = [x0; . . . xk] on the n-dimensional sphere Sn provided with the canonical Eu-
clidean metric of the embedding space Rn+1 is the great subsphere of dimension
rank(X)− 1 that contains the reference points.

3.1 Reference points coalescing at order 1

Assume now all the reference points coalesce to a single point xi = expx0
(εwi)

along the tangent vectors wi which are satisfying xT
0wi = 0 (to belong to the

tangent space at x0) and
∑
i wi = 0. This amounts to say that we are following

the curve Xε = X0 + εW in the space of barycentric subspaces, with XT
0W = 0

and WXT
0 = 0, where here X0 = x01

T.
As previously, the points of the EBS of Xε are solution of the equation

Z(x)λ = 0 and since Z(x) has the same kernel as the matrix Z ′(x) = ( Id −
xxT)Xε, x is solution if we can find some αε and λ such that αεx = Xελ.
The additional constraint ‖x‖2 = 1 tells us that α2

ε = ‖Xελ‖2, which gives
x = Xελ/αε when we take the positive root and reintegrate the sign into λ.

In our case, thanks to the orthogonality of X0 and W , we have

αε = ‖X0λ+ εWλ‖ =
√
‖X0λ‖2 + ε2‖Wλ‖2,

Assuming that ‖X0λ‖ 6= 0 (which is in particular the case when X0 = x01
T

since 1Tλ is assumed not to vanish), we have α−1ε = 1
‖X0λ‖ −

ε2

2
‖Wλ‖2
‖X0λ‖3 +O(ε4),
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so that finally

x =

(
1− ε2

2

‖Wλ‖2

‖X0λ‖2
+O(ε4)

)(
X0λ

‖X0λ‖
+ ε

Wλ

‖X0λ‖

)
=

X0λ

‖X0λ‖
+W

ελ

‖X0λ‖
+O(ε2)

Thus, we see that the space Aff(x) is the intersection of the sphere with the
Euclidean hyperplane generated by X0 and W , which is once again the geodesic
subspace GS(X0,W ).

3.2 Coalescence at order 2 and link with principal nested spheres

Principal nested spheres were proposed by Jung, Dryden and Marron as a general
framework for non-geodesic decomposition of high-dimensional spheres or high-
dimensional planar landmarks shape spaces [5, 4]. A subsphere An−1 of Sn is
defined as the set of points which are at a fixed distance θ ∈ (0, π/2] of a point
x ∈ Sn: An−1(x, θ) = {y ∈ Sn / d(x, y) = θ}. The subsphere An−1(x, θ) can
be viewed as a slicing of Sn by the n-dimensional affine hyperplane P (x, θ) =
{y ∈ Rn+1 / yTx = cos(θ)}. Notice that the coordinates (x, cos(θ)) of the affine
hyperplane parametrize all the possible subspheres of dimension n − 1. In this
process, the nested subsphere is not of radius one, unless one takes θ = π/2, in
which case the hyperplane is passing through the origin.

In order to figure out how nested subspheres and barycentric subspaces are
related, we consider the top circle of radius r ∈ [0; 1] around the axis e3 on the
3-sphere implicitly described by the equation xTe3 =

√
1− r2. The computa-

tions would be exactly the same for the bottom circle xTe3 = −
√

1− r2. The
explicit equation of our circle is: x(ψ) = r cos(ψ)e1 + r sin(ψ)e2 +

√
1− r2e3. We

consider the three points on this cicle at angle ψ = 0, ψ = ε and ψ = −ε: X =
[x(0), x(ε), x(−ε)]. The spherical affine span consists of the points x = Xλ/‖Xλ‖
for λ ∈ S3, with:

Xλ = r (λ0 + cos(ε)(λ1 + λ2)) e1 + r(λ1 − λ2) sin(ε)e2 +
√

1− r2(λ0 + λ1 + λ2)e3

= (λ0 + λ1 + λ2)
(
re1 +

√
1− r2e3

)
+ εr(λ1 − λ2)e2 −

rε2

2
(λ1 + λ2)e1 +O(ε3).

Using new coordinates s = (λ0 + λ1 + λ2), u = (λ1 − λ2)ε/s and v = (λ1 +
λ2)ε2/(2s), we get the equation

X
λ

s
= r(1− v)e1 + rue2 +

√
1− r2e3 +O(ε3).

Thus, the equation x = Xλ can only describe the hyperplane xTe3 =
√

1− r2
when ε goes to zero (up to a scaling factor s that we can freely choose to be
1 thanks to the homogeneous coordinates), and its intersection with the sphere
can only describe a circle of radius r.

Iterating the process, one can generalize the above construction to subspheres
of arbitrary dimensions. Thus, we see that Nested Spheres as a limit case of the
affine span when the k reference points tend to a 2-jet. It would be interesting
to determine which types of subspaces could be obtained by such limits for more
general non-local and higher order jets.
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4 Barycentric subspace analysis

We turn in this section to the generalization of principal component analysis
itself. PCA can be viewed as the search for a sequence of nested linear spaces that
best approximate the data at each level, for instance by minimizing the variance
of the residues. In a Euclidean space, this process boils down to an independent
optimization of orthogonal subspaces at each level of approximation, thanks to
the Pythagorean theorem. This allows to build each subspace of the sequence
by adding (resp. subtracting) the optimal one-dimensional subspace iteratively
in a forward (resp. backward) analysis. Of course, this property does not scale
up to manifolds, for which subspaces have no reason to be orthogonal (even this
notion is not well defined).

4.1 Flags of barycentric subspaces in manifolds

Nestedness of approximation spaces has been argued to be one of the most impor-
tant characteristics for generalizing PCA to more general spaces [1]. Barycentric
submanifolds can easily be nested, for instance by adding or removing one or sev-
eral points at a time, which corresponds to put the barycentric weight of this (or
these) point(s) to zero. One obtains in that case a family of embedded subman-
ifolds which we call a flag because this generalizes flags of vector spaces. Indeed
a flag of a vector space V is a filtration of subspaces (an increasing sequence of
subspaces, where ”increasing” means each subspace is a proper subspace of the
next): {0} = V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vk = V . Denoting by di = dim(Vi) the
dimension of the subspaces, we have 0 = d0 < d1 < d2 < · · · < dk = n, where n
is the dimension of V. Hence, we must have k ≤ n. A flag is called a complete
flag if di = i, otherwise it is called a partial flag.

With barycentric subspaces of an n-dimensional manifoldM, an ordering of
n + 1 distinct points x0, . . . xn defines a complete flag of barycentric subspaces
in the sense that: BS(x0) = {x0} ⊂ · · ·BS(x0, x1, xk) · · · ⊂ BS(x0, . . . xn).

Grouping points together in the addition/removal process generates a partial
flag of barycentric subspaces. Among the barycentric subspaces, the affine span
seems to be the most interesting definition to use because the affine span of
n+ 1 distinct points covers the full manifold: Aff(x0, . . . xn) =M while we only
generate a submanifold with the Fréchet or Karcher barycentric subspaces, as
we have seen with the example of spheres.

4.2 Forward and backward barycentric subspaces analysis

In the classical PCA, the flag of linear subspaces can be built in a forward
way, by computing the best 0-th order approximation (the mean), then the best
first order approximation (the first mode), etc. It can also be built backward, by
removing the direction with the minimal residue from the current affine subspace.
In a manifold, we can use similar forward and backward analysis, but they have
no reason to give the same result.



81

With a forward analysis, we compute iteratively the flag of affine spans by
adding one point at a time and keeping the previous ones fixed. Thus, we begin
by computing the optimal barycentric subspace of dimension 0: Aff(x0) = {x0}.
Since there is only one weight and it should be unit, the optimal point x0 found
by minimizing the unexplained variance is a Karcher mean. Adding one more
point amounts to compute the geodesic passing through the mean that best
approximate the data. Adding a second points now differ from PGA, unless the
three points coalesce to a single one. The procedure is continued point by point,
which mean that the Fréchet mean always belong to the barycentric subspace.
In practice, the forward analysis should be stopped when the variance of the
residues reaches the noise level of the data, hopefully with k much lower than
the dimension n of the embedding manifold, which allows to have an efficient
dimension reduction.

The backward analysis consists in iteratively removing one dimension, thus
one point in our case. One theoretically should start with a full set of points
x0, . . . xn which generates the full manifold and chose which one to remove.
However, as all the sets of n + 1 distinct points generate the full manifold,
the optimization really begin with the set of n points x0, . . . xn−1. Actually this
should normally be the only time when we perform an optimization for the point
positions, since one should afterward only test for which of the n points we should
remove, and this optimization is particularly ill-posed and inefficient in very large
dimensional spaces! In order to get around this problem, we propose to run a non-
nested forward analysis until we reach the noise level of the data for a dimension
k � n. Since the goal is only to characterize the optimal k-dimensional subspace,
we may optimize the point positions at each step to better fit the data. Then,
a backward sweep at the end only reorders the points if necessary by iteratively
selecting the one that least increase the unexplained variance. With this process,
there is no reason why the Fréchet mean should belong to the reference points
(and even to any of the barycentric subspaces). For instance, if we have clusters
of points, one expects the reference points to localize within these clusters rather
than at the Fréchet mean.

5 Discussion

We have first investigated in the paper barycentric subspaces in spheres and
shown that they encompass both principal geodesic subspaces and nested sub-
spheres as limit cases. It would be interesting to see if we can obtain other types
of subspaces with higher order and non-local jets.

The second study point of this paper concerns the generalization of PCA
to manifolds using Barycentric Subspace Analysis (BSA). We showed that an
ordering of the reference points naturally defines a flag of nested barycentric
subspaces. We proposed a first optimization procedure, but the lack of symmetry
between the forward and the backward estimations calls for a proper global
criterion to be optimized by all k-tuple for k = 0 . . . n together and not just a
greedy approach as done by the classical forward and backward approaches.
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Other potential practical issues include the fact that the optimization on k-
tuple might have multiple solutions, as in the case of spheres. Here, we need to
find a suitable quotient space similar to the quotient definition of Grassmanians.
The optimization might also converge towards a non-local jet instead on a k-
tuple, and good renormalization techniques need to be designed to guaranty the
numerical stability.
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