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Abstract. In a continuous setting, diffeomorphisms generated by sta-
tionary velocity fields (SVF) are invertible transformations with differen-
tiable inverses. However, due to the numerical integration of the velocity
field, inverse consistency is not achieved in practice. In SVF based im-
age registration, inverse consistency is therefore often enforced through
a penalty term. Existing penalty terms penalize the inverse consistency
error generated by the composition of the forward and backward trans-
formations. However, in such terms, a higher consistency requirement
pushes the transformation towards linearity due to the discretization in-
volved and fixed number of integration time-steps. In this paper, we
propose a method to both penalize inverse consistency error and to
adaptively set the number of integration time-steps required, so that the
predicted maximum inverse consistency error is bounded, taking into ac-
count discretization errors. This formulation allows more flexibility in the
transformation model to realize complex deformations while still achiev-
ing the desired level of inverse consistency. Using synthetic examples, we
show that the measured inverse consistency and the predicted inverse
consistency match. Also, the proposed method is able to achieve more
accurate image registration. On the MGH10 dataset, the Jaccard index
of the proposed method on inter-subject registration reaches the same
level as the registration scheme using a fixed-time step and the conven-
tional penalty term while using a lower number of integration time-steps,
thus saving on the computational time.

1 Introduction

Image registration plays a very important role in the field of medical research
and clinical applications. It has found utilities in both the longitudinal and cross-
sectional characterization of human anatomy. It is particularly useful because
it provides localized transformations that can be used to study deformation
at an organ level. For instance, image registration in the form of tensor-based
morphometry is used to measure atrophy in various brain regions which is then
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used to quantify diseases such as the Alzheimer’s disease. However, to effectively
use transformations from an image registration, they need to be free of any bias.
One common bias that has been found to have severe implications on bio-marker
quantification like longitudinal atrophy estimation, is the inverse consistency
error in transformations [1].

Ideally in image registration, the transformation between two images is ex-
pected to be invariant to the order of the choice of source and target. In practice
however, such a transformation is not possible due to several reasons such as
discrete image information, finite degrees of freedom, and discretization errors
due to numerical integration of flow fields. Therefore, inverse consistency is often
enforced as a penalty term. The existing inverse consistent methods, particularly
pertaining to diffeomorphic approaches, either look at the forward and backward
transformations simultaneously [2] or the velocity field by making an assump-
tion that the forward and backward velocity fields are exact negatives of each
other [3].

In a continuous setting, the path generated by a velocity field can be exactly
retraced. However, in a discrete setting, the path is approximated using a set
of piecewise linear steps. Most often retracing these steps will yield an inverse
inconsistent transformation. The fewer the time-steps, the higher is the inverse
consistency. Also, the higher the curvature of the path, the more steps are re-
quired to be close to being inverse consistent. Therefore, if one needs control
over the inverse consistency error, the effect of the discretization error needs to
be accounted for.

In this paper, we propose a method to both penalize and account for dis-
cretization errors. Instead of pushing the inverse consistency error to zero which
tends the transformation to linearity, we propose to bound the error by adjusting
the number of integration time-steps used to integrate the stationary velocity
field (SVF). This lends flexibility in the transformation model to reach more
complex deformations while still being reasonably inverse consistent. The main
contributions of the paper are as follows,

— We propose to penalize the inverse consistency error based only on the veloc-
ity fields. This is achieved using the Baker-Campbell-Hausdorff (BCH) [4]
expansion to formulate the theoretical inverse consistency in terms of the
velocity field.

— We propose to adjust the required number of integration time-steps prior to
each optimization iteration by predicting and thereby bounding the inverse
consistency error based on the properties of the velocity field.

Note that through out the paper, we use two sets of parameterizations of the
velocity field - one for the forward transformation and one for the backward.

2 Background and Outline

The most commonly used inverse consistency term follows a similar framework as
proposed by Christensen et al [2] with variations. The method in essence involves
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jointly estimating the forward and backward transformations while minimizing
the inverse consistency error. While the earlier approach [2] involved estimat-
ing both the transformations and its inverses, the current approaches [5], just
maintain two transformations and through the penalty term, push them to be
inverse consistent. In a different approach [6], the proposed model incorporated
stochastic errors in the inverse consistent constraints as a post-processing step.
Further in [7], the gradient descent updates of the forward and backward trans-
formations were symmetrized by estimating a linear Taylor series expansion of
the inverse consistency condition. Another class of inverse consistent registration
scheme warps the image to a mid point [8], median [9] or to a mean shape [10].
The popular logDemons approach on the other hand assumes the forward ve-
locity field is the negative of the backward velocity field to maintain inverse
consistency [3]. In the method we propose to adjust the number of integration
time steps during the registration optimization to bound the inverse consistency
error. And, in order to ensure the number of time-steps is in a reasonable range,
we also add a penalty term.

We begin with introducing the stationary velocity field based image registra-
tion method followed by presenting the Wendland kernel bundle framework used
as a transformation model. We will then discuss our contribution where the in-
verse consistency term and the predictive inverse consistency term are proposed.
We will then present some experiments on synthetic examples and also on the
publicly available MGH10 dataset.

3 Registration

Given a floating image S; and a reference image S; with a spatial domain
2 € R, image registration involves finding a transformation ¢ : 2 — 2 that
aligns these images. We maintain two warps ¢, @,: one for a forward transforma-
tion and the second for backward. The transformation is a result of minimizing
the dissimilarity between the images under certain constraints encoded in the
regularization term. A general cost function is of the form:

E(pf,pp) = arg élfli;lh Ep(Si1(¢f),S2) + Ep(Sa(ws), S1) + ArER, (¢f, ¢b)

+ MccErec; (0f, ¢o) + ARER, (w0, ¢f) (1)
+ Arcc Frcc, (96, 05 )-

where AR, A\icc are the user-specified constants, Fp is a dissimilarity measure
that allows comparison of the floating image to the reference image, Fy is a reg-
ularization term that encodes desired properties of ¢, and Eycc is an additional
penalty term to enforce inverse consistency which is the focus of this paper.
Normalized mutual information (NMI) [11] is used as the similarity measure in
this paper.

Let Diff(2) be the space containing the diffeomorphic transformation ¢ :
2 =02, ¢: 2 xR — (2 and finally, v : 2 — R? be the velocity field belonging
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to the tangent space of Diff({2) at identity Id. In SVFs, the governing differential
equation can be written as:

0o(x,t

000 _ (o(x.t)). o= 0lx.1) = Bxp(v), ®
@, i represent both forward and backward transformations. The final transfor-
mation is then defined as the Lie group exponential map Exp(v). This Lie group
exponential is realized as an Euler integration.

3.1 Wendland kernels

Instead of the usual approach of first choosing a operator and then constructing
a reproducing kernel Hilbert space (RKHS), the reproducing kernels with an
associated RKHS was directly chosen [12,13]. One example of such a reproduc-
ing kernel is the class of Wendland basis functions [14]. They are particularly
interesting because of their finite support and smoothness properties similar to
popularly used B-spline. In addition, they are norm-minimizing.

Wendland kernels are positive definite functions with positive Fourier trans-
forms. They are minimal degree polynomials on [0,1] and yield C%* (k is the
desired degree of smoothness) smooth radial basis functions on R%. We choose
the Wendland kernels ¢(r) = (1 — )4 and ¢(r) = (1 — r)4 (4r + 1) where (-)4
denotes semi-positive definiteness. The velocity field defined in (2) may now be
parameterized using Wendland kernels as follows,

v(x) = Zw(r(xz» X))pi- 3)

Note that r(x,y) = ”x_ay”2, where @ is a scaling parameter, p; € R? is the
coefficient attached with every kernel center x;, and IV is the number of kernels
having an influence on x. Due to the reproducing property of the kernel pa-
rameterizing the velocity fields, the regularization term Epg is chosen to be the

Hilbert norm on the velocity field given by ||v||3, = Do pl(r(xi,x;))p;-

3.2 Kernel bundle framework

The reasoning behind the need for a multi-scale representation of a deformation
has been well discussed in a previous work [15]. In short, the velocity fields are
linear sums of individual kernels at L levels. It is represented as,

N

V(%) = Y Y b (r(x",x))p] (4)

=1 1

v(x) =

1~
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The expression of the optimization to (1) in a kernel bundle framework can be
written as,

arg Ininvf1 Vb E(EXp(Vfl )7 EXp(Vbl ))7
arg minvf2 \Vby E(EXp(Vfl + Vf2)7 Exp(vln + Vo, ))7

argminy, v, E(Exp(Xr_, vy, ) Bxp(Xr_, vs,.))

We sequentially optimize for each space of the velocity fields. The kernels at
each level can be of any support. For instance, one can have infinitely supported
Gaussian kernels in a coarser registration scale and have compactly supported
kernels handle finer resolutions in the registration.

4 Inverse consistency

Usually, inverse consistency is addressed as a penalization of the offset generated
by a composition of the forward and backward transformations. If this offset is
pushed towards zero while having a fixed number of time-steps, the transfor-
mations tend towards linearity. In order to achieve larger deformations in finite
steps, one needs to allow some degree of inverse inconsistency due to the discrete
nature of the image registration problem. While the existing methods penalize
the error, in this paper we propose to both penalize the error and also adjust
the number of integration time-steps such that the inverse consistency error is
bounded. We will, through the relationship between Lie brackets and inverse
consistency, show that the proposed scheme allows for some inverse consistency
error in a symmetric fashion.

In the following section, we will address a number of inverse consistency
terms. For reading ease, we define the abbreviations early and as follows: I; is
the theoretical inverse consistency, I,, is the commonly used inverse consistency

term, Ip% is the inverse consistency error for the first composition of the Euler’s
integration of the velocity field and I,,4 is the predicted inverse consistency term.
We will use the subscripts f, b for forward and backward registration. In addition,
the formulation of the backward inverse consistency error will follow the forward
unless stated otherwise.

Theoretically, the forward inverse consistency term I;,, can be expressed as
a composition of the forward and backward exponentials,

I, = Exp(vi)Exp(vy) - x

where v, vy are the forward and backward velocity fields respectively. The BCH
formula is used to efficiently express this composition in terms of the velocity
fields as follows,

1
I, = Exp(vy + vy + i[vf’vb]) - X,

1 1
:Vf+Vb+§[Vfavb]+0(\lvf+Vb+§[vf,VbH|2)- (5)
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where [,] is the Lie bracket or the commutator that quantifies the amount of
change of v; in the direction of v. It is expressed as,

[Vf,Vb] = va Vi — VVf Vp

The second line in (5) follows from a linear approximation of the exponential.
The commonly used inverse consistency term may be defined as,

Iy = du(¢r(x)) —x. (6)

where ¢, and ¢ are the results of numerical integration of v, and vy, respec-
tively. This term may also be approximated in terms of the velocity field similar
to I;,. It was shown that the final inverse consistency can be expressed in terms
of the step-wise inverse consistency error [5] as follows; assuming n time-steps,
we get,

1

Iy, = n(lgy), (7)
= (6§ (67 () — %), (®)
1 1 1
=t V() vt Tvs(0) ), ©
= v1(0) + valx) + - V% vy () + Ol vl ). (10)

Note that (9) was obtained using the Taylor expansion of v,(x + Lv(x)).

In theory, I;, and I,, are equivalent as n — oo, however in practice they
are not since n is finite. This implies that the inverse consistency error term
we expect to minimize Iy, /I, is different than the inverse consistency error we
practically minimize I, /I,

In this work, we will propose a new way of handling inverse consistency.
What we propose is to use the I, for penalization and use a prediction term I,,q
to adjust the number of integration time-steps such that the inverse consistency
is bounded.

Given that we maintain two warps, the predicted inverse consistency error
term may be derived as follows,

Tpa = n(3 (6§ (6} (x)) —x + 6} (6§ (x)) —x) (1)

Using (9), we get,
Tpa = v5(0) 4+ %) + 5 V() vi(x) + 5 Vvs) vilx), (12
= v vt g (vpw) (13)

We use {} since it resembles an anti-commutator. It is sometimes used to con-
struct a Jordan algebra, but that is not our purpose. Since Ejcc, = HLﬁf||2 will
be penalized during registration, v; + v, will already be pushed towards zero.
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It is thus fair to discard that term in (13) for prediction purposes. We can then
derive the following formula to estimate the number of time steps required to
achieve a user-specified inverse consistency I,,q. as:

mae [[{v, i) |
= . 14

n will therefore give us the number of integration time-steps required to achieve
a maximum inverse consistency of I,q-

In summary, the proposed method involves using (5) as a penalty term and
(14) to predict the number integration time-steps required at each iteration of
the registration optimization but setting a user-defined value, I, -

Fig.1: a) Representation of the Lie Bracket; | = [vy, v;]; b) Representation of

1 1 1 1
Iy, and Ip;; er = Iy, ea = I,

The geometric interpretation of a Lie bracket may be seen in Figure 1la. What
it represents is that, there is no difference in starting at one point p, traveling
a time ¢ over the flow of vy and then a time ¢ over the flow of vy, or, instead,
traveling first ¢ over the flow of v, and then over the flow of v;. This is similar

to looking at the difference in the step-wise inverse consistency term (Ij) shown
in Figure 1b. We can see that, the Lie Bracket and inverse consistency errors
are related since both capture the second order information of the deformation.
The formal relation can be shown as follows,

1 = Tvs0 + (w0 + - Vv () (15)

Similarly,
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Now subtracting (15) and (16):

1 1 1 1
Iy =I5, = — (Vvevy(x) = Vveve(x)) = 5 [vy, vel. (17)

Using this equivalence, we can redefine our penalty term E;cc as follows:
1 2
Broe, = [lvy +vo+ 5lve volll%,
n? 1 L
= vy +vo + o U5y = L) (18)
and Ercc, follows the same formulation. Note that the representation of (18)
in terms of step-wise inverse consistency error is particularly useful because the

gradient of (18) with respect to the transformation parameters yields the terms
Vv and Vvy, which are required to compute the number of time-steps in (14).

5 Experiments and Results

In this section, we will conduct three experiments to evaluate the performance
of the proposed method against the fixed-time step with the conventional in-
verse consistency regularization method. For evaluation purposes, we will use
the following conventional definition of inverse consistency error term, i.e.,

k
ICC = Z (s (s (xi)) = xil> + llos(on(x)) = xilP). (19)

?r\'—‘

where ¢y, ¢y are the backward and forward transformations obtained from inte-
grating the velocity fields v, and v respectively and & is the number of voxels.

5.1 Prediction test

In the first of the synthetic experiments, we will compare the predicted inverse
consistency error (Ipq, (13)) by the proposed method and the measured inverse
consistency error (ICC, (19)). We perform this test since (13) is a key to com-
puting the number of integration time-steps. We pick a random scan from the

Mag of CC| Ipa(std) | ICC(std) [Max I,q|Max ICC
095 (055 (0.34)[0.53 (0.46)| 1.89 2.35
1.0 |0.55 (0.43)0.58 (0.60)| 3.68 4.86
2.5 0.63 (0.43)(0.59 (0.67)| 2.45 4.79
Table 1: Synthetic example results; Mag of CC: Std of Gaussian used to control
the magnitude of the control point coefficient (CC); Units in mm
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MGH10 dataset and deform it using a B-spline (control point spacing of 5 mm)
whose control coefficients are chosen randomly with a monotonic increase in
magnitude. The original images and the deformed images are registered using
the Wendland kernel bundle framework together with the common inverse con-
sistency error term (19) and a fixed time-step of 16. Once the optimum velocity
fields are estimated, the predicted inverse consistency error (I,q4, (13)) is com-
puted. This is compared to the measured inverse consistency error using (19).
As Table 1 illustrates, the mean and standard deviation of the inverse consis-
tency error predicted by the proposed method (13) matches that of the measured
inverse consistency error (19) indicating that (14) is a fair formulation for esti-
mating the required number of integration time-steps.

5.2 Registration on synthetic example

To test the registration proposed in this paper, we generated synthetic data
where the ground truth deformation is known. The synthetic data was generated
by deforming the faces of the cube (50° mm? placed in a 256% mm?® image) using
a Gaussian of standard deviation 0.07 (of the cube side length). The deformed
and undeformed cubes were registered using the proposed adaptive time-stepping
scheme and a conventional scheme with an inverse consistency error penalty
as (19) and a fixed number of time-steps of 16 . For both the schemes, the
regularization constant was set to 0.1 and two levels of the kernel bundle were
used. The first level was parameterized with a kernel of support 4 and the next
by a kernel of support 2. I,,,, was set to 1. We set A\g = 0.3 and A\;cc = 0.01.
Figure 2 illustrates the source and target images. Following this, the accuracy
of the overlap is assessed using the Jaccard index which is given by,

_IS(@)nT|
S(6) 0T

where S is the source segmentation, ¢ is the transformation and T is the target
segmentation. In addition to this, we measure ICC errors for both the methods
using (19). In Table 2, we see that the adaptive scheme showed a better mean
overlap (forward and backward) and a very similar inverse consistency error
when compared to the fixed-time stepping scheme. However, in the first level of
registration the adaptive scheme used only a maximum of 8 time-steps and in
the second level it used a maximum of 12 time-steps.

JI (20)

Method | JI | ICC(std) [Max ICC|Max. time steps

Adaptive| 0.96 |0.01 (0.14)] 0.90 8,12
Fixed 0.89 [0.01 (0.06) 2.30 16

Table 2: Adaptive scheme versus fixed time-step scheme. Max. time steps: Max-

imum number of time-steps on level 1 and 2 of the kernel bundle framework.
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Fig. 2: Target cube, deformed target cube

5.3 Application on MGH10

We perform an evaluation on the MGH10 dataset®. Here the ability to match a
set of manually segmented regions of interest via pair-wise registration is eval-
uated. Each scan is initially reformatted to isotropic voxels (voxel size 1 mm?
and dimensions of 256. The pair-wise images are linearly aligned using 9 DOF.
Both the images were mapped to the mid-point of the affine space using the
square root of the affine transformation. After the linear alignment, images are
non-linearly aligned using the presented registration scheme. Once the registra-
tions are performed, the manual labeled segmentation from the floating image
are warped to the reference image using a nearest neighbor interpolation. One

- h 2 1
o | -
! 1 1.5
0.42 ! |
1
0.4
0.5 .
0.38
| T —1
1 1 0
Adaptive Fixed Adaptive Fixed

Fig. 3: Box plot of the jaccard index and mean inverse consistency error.

subject is randomly chosen and the other subjects are registered to it. Three
levels are used in the kernel bundle. Each level is made of kernels of support 8,
4 and 2 respectively. NMI was used as a similarity measure with 64 bins for the
histogram. Images were smoothed with a Gaussian of 0.2 mm. The number of
time-steps for the fixed time-step registration scheme was set to 16. The desired
maximum inverse consistency error (I,,q.) was set to 1 voxel. We set Ag = 0.3
and A;cec = 0.1. The comparison is made based in Jaccard Index (20) and
ICC error (19). Table 3 indicates that both the methods achieve similar over-
laps and inverse consistency errors. However, the adaptive time-stepping scheme

4 www.mindboggle.info
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took fewer number of time-steps for integration. Figure 3 illustrates the overlaps
based on both the registration schemes and the mean inverse consistency error.

Method | JI | ICC(std) |[Max ICC|Max. time steps
Adaptive| 0.39 |0.16 (0.21)] 1.86 3,6,12

Fixed | 0.38 [1.65 (1.55)| 6.78 16
Table 3: Adaptive scheme versus fixed time-step scheme on MGH10 dataset;
Max: mean maximum error.

6 Discussion

In this paper, we presented a way of adjusting the time-steps required to integrate
a velocity field such that the maximum inverse consistency error is bounded. We
proposed a way to adaptively estimate the number of time-steps based on only
the velocity field i.e., without having to realize the entire deformation. We used
two terms to handle inverse consistency: one for penalization purposes and the
other for time-step prediction. Through the first synthetic experiment we showed
that the proposed prediction term produced good estimates of the actual inverse
consistency error. The second of the synthetic experiments showed that a higher
degree of match and a similar inverse consistency can be achieved using the
adaptive time-stepping scheme when compared to the fixed-time step version of
registration. On the MGH10 dataset, we showed that the proposed registration
scheme reaches the same accuracy as the fixed time-step registration scheme
with fewer number of time-steps and a similar inverse consistency.

In a recent version of logDemons [3], the zeroth order of BCH was used
to compose two velocity fields. However, in this work since we use Vvv, and
Vvyvy to set the number of time-steps, it makes sense to also take them into
account in the penalty term. By using the 1% order BCH term, we keep v; more
close to —v;, in regions where Vv;v, and/or Vvyvy are large. In that way we
limit the magnitude of {v,v}.

Two other ways of maintaining inverse consistency are: a) To use a higher
order integration scheme. Since higher order integration schemes can be com-
putationally expensive, we restricted our analyses to a forward Euler’s scheme.
b) By solving for the inverse transformation subject to the inverse consistent
condition. This can be computationally expensive since it involves solving a
high-dimensional linear system of equations and the transformations need to be
estimated sequentially.

The proposed method also saves on computational time since it only takes
a relevant number of steps based on the desired inverse consistency level and
the properties of the velocity field. This implies, the closer the transformation
is to being represented as a small deformation, the lower number of time-steps
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are taken. That is, a low Vv v, and/or Vv,v, implies a low n. This is usually
the case in the first few iterations of the optimization and the adaptive scheme
helps in reducing the computational time by only taking a relevant number of
time-steps.

7 Conclusion

In conclusion, we presented a method that lends more flexibility to the transfor-
mation model by adaptively setting the time-steps required to account for the
discretization error in the numerical integration scheme. The required number
of time-steps is chosen based on the properties of the velocity field prior to ev-
ery optimization iteration. We showed that the Lie brackets can be conveniently
represented in terms of the inverse consistency term. We showed that the pro-
posed registration scheme solves the intra-subject registration problem equally
well as the inverse consistent fixed time-step scheme by using a fewer number of
time-steps.
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