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Abstract. We present a novel shape representation that characterizes
the shape of a surface in terms of a coordinate system based on the eigen-
system of the anisotropic Laplace-Beltrami operator. In contrast to the
existing techniques, our representation can capture developable transfor-
mations and is therefore useful for analysis of cortical folding patterns.
This representation has desirable properties including stability, unique-
ness and invariance to scaling as well as isometric transformations. Addi-
tionally, the resulting shape space has a standard Euclidean metric sim-
plifying shape analysis. We also present an approach that provides a fast
and accurate computational method for solving the eigensystem using a
finite element formulation. We demonstrate the utility of this represen-
tation for two brain shape analysis applications: quantifying symmetries
in shape between the two cortical hemispheres and finding variance of
cortical surface shapes across populations.

1 Introduction

Quantification, matching and comparison of cortical shapes are challenging prob-
lems with wide utility [17,12]. Most of the traditional approaches for analyzing
brain shapes are deformation-based. Quantitative analysis of anatomical shape
differences is performed with these approaches by analyzing the deformation re-
quired to warp a subject brain to a template brain. For example, tensor-based
morphometry [8] analyzes local linear approximations (the deformation tensors)
of the deformation field. Alternate methods such as deformation-based mor-
phometry [1] and pattern-based morphometry [3] use different aspects of the
deformation field.

While quantification of shape differences by analysis of the deformation field
is a plausible approach, it suffers from a number of disadvantages. The results of
these methods depend to a large extent on the image registration method used.
Only regions where registration works well – typically subcortical structures –
tend to show high statistical power [8]. Using the deformation field as a shape
⋆ This work was supported by NIH grants P41 EB015922 and R01 NS074980.
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descriptor often magnifies the effects of registration errors. In addition, it is not
clear if the shape details are indeed encoded in the deformation tensor as this
tensor is a local linear approximation of the deformation field. This is especially
the case for large shape differences that require large deformations. Also, there
is no ground truth deformation for the purpose of aligning one brain to another;
in other words, registration may provide only one of multiple equally accurate
deformation fields from one brain image to another. Finally, the deformation
field does not define a shape space on the cortex in the sense that sulcal and
gyral shapes are not directly encoded in the deformation field.

Recent approaches for brain shape analysis are based on spectral geometry,
in which the shape of a manifold is characterized by the eigenspectrum of a
differential operator defined on the manifold. An invariant representation of a 2D
surface can be generated using the Global Point Signature (GPS) representation,
which is based on the eigensystem of the isotropic Laplace-Beltrami operator
defined on that surface [13,14]. Methods using GPS are not directly applicable

Fig. 1. Absolute value of mean and Gaussian curvature of a cortical surface.

to cortical shape analysis because the isotropic Laplace-Beltrami operator only
captures the intrinsic geometry of the surface. The majority of the curvature
information of the cortex is in the mean curvature, as seen in figure 1, which
is extrinsic to the surface. 3D shape descriptors such as spherical harmonics
[7] are not convenient for cortical shape analysis since such descriptors require
an impractically large number of basis functions and do not efficiently encode
shape information related to elastic deformations of shapes. This paper presents
an approach for shape analysis of 2D surface patches using an anisotropic version
of the Laplace-Beltrami operator as described in the next section.

2 Materials and Methods

2.1 AGPS Shape Representation

We assume as input an anatomically labeled cortical surface representation such
as obtained by BrainSuite [15,6]. Motivated by spectral theory [14,13,5], we
model a surface S representing a cortical region as an inhomogeneous vibrat-
ing membrane. Its harmonic behavior is thus governed by the 2D anisotropic
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Helmholtz equation where the mean curvature κ(s) is used to introduce anisotropy:{
∇ · κ(s)∇Φ(s) = λΦ(s)
∂Φ(s)

∂n |∂S = 0
, ∀s ∈ S, (1)

where ∇ denotes a gradient operator defined in the geometry of the surface,
Φ(s) represents an eigenfunction with eigenvalue λ, ∂S is the boundary of the
surface patch and n is the normal to the surface. We use the eigenfunctions and
eigenvalues to define the Anisotropic Global Point Signature (AGPS) embedding
of the surface S in the spectral domain by the map:

AGPS(s) =
(

1√
λ1

Φ1(s), 1√
λ2

Φ2(s), 1√
λ3

Φ3(s), . . .

)
, p ∈ S (2)

where Φ1, Φ2, . . . are eigenfunctions with corresponding eigenvalues λ1, λ2, . . .
arranged in ascending order. Thus, each point of the manifold is embedded into
an infinite-dimensional space. The importance of modeling anisotropy in the
representation is illustrated in figure 2. A developable transformation (bending)

Fig. 2. Introduction of an anisotropic term helps characterize developable transforma-
tions. Use of the isotropic Laplace-Beltrami operator does not find any shape differences
between the two elliptical patches as the transformation between the two is developable
(top right). Use of an anisotropic operator with a mean curvature anisotropy helps in
capturing the shape differences (bottom right). The resulting AGPS coordinates are
also shown in the bottom row.

applied to an elliptical surface does not affect the intrinsic geometry of the
surface and therefore the Gaussian curvature remains unchanged. However, the
extrinsic geometry is altered by this transformation resulting in changes in mean
curvature. It can be seen that the bending does not change the isotropic Laplace-
Beltrami eigenspectrum and therefore the shape change is not detected by GPS.
However, the anisotropy introduced via the mean curvature allows the AGPS to
successfully capture the change in the shape.
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The AGPS embedding presented in equation (2) has many favorable prop-
erties. First, its coordinates are isometry invariant as they depend only on the
derivatives and curvature, which in turn are dependent only on the shape. Sec-
ond, scaling the manifold by a factor α results only in scaling mean curvature
by 1/α. Therefore, we can obtain scale-invariance if desired by normalizing the
eigenvalues; however, for the specific application of cortical shape representation,
we do not want scale-invariance. Third, changes of the manifold’s shape result
in continuous changes in the spectrum so the representation is stable. Fourth,
in the embedding space, the inner product is given by the anisotropic Green’s
function due to the identity G(s1, s2) =

∑
k

Φk(s1)Φk(s2)
λk

, s1, s2 ∈ S [13]. As a
result, the AGPS representation encodes anisotropic diffusion distances [9] on
the surface. In addition, both local and global shape information is represented
in the embedding. Finally, in this infinite-dimensional shape space, the metric is
Euclidean, allowing standard ℓ2 space analysis.

This invariant spectral geometric representation of surfaces has interest-
ing physical interpretations. The surfaces can be modeled as vibrating mem-
branes and the vibrations are damped proportionally to the mean curvature
at each point. The anisotropic Laplace-Beltrami eigenspectrum corresponds to
the modes of vibrations of this membrane (Fig. 2 (bottom)). Thus the AGPS
representation encodes information about the modes of vibration of membranes
(surface patches) as the basis for shape modeling. The AGPS shape represen-
tation intuitively encodes curvature characteristic at and around the points on
the manifold. Perturbations at a point in a shape lead to local changes in cur-
vature around that point which are captured in higher-order AGPS coordinates.
On the other hand global shape changes lead to curvature changes everywhere
in the shape which are captured by lower-order AGPS coordinates. Due to this
association between AGPS coordinates and the spatial extent of shape changes,
AGPS-based comparisons provide a natural description of changes in shape at
different scales.

2.2 Numerical Implementation

To solve equation (1) we first compute the anisotropy term represented by mean
curvature using the method described in [10]. Next, we use a finite element
method (FEM) to discretize the anisotropic Helmholtz equation (1). We dis-
cretize the derivative operators using FEM directly in the geometry of the sur-
face mesh, and therefore we do not need to explicitly compute the Riemannian
metric coefficients as is often done if the surfaces are mapped to a plane or sphere
[17]. We choose linear FEMs for functions and Galerkin’s formulation [16] for
robustness to tessellation errors. Let Φ(s) =

∑
i ϕiei(s) be an eigenfunction and

N(s) =
∑

i ηiei(s) be a ‘test function’, each represented as weighted sums of
linear elements ei(s). The eigenvalue problem from equation (1) then becomes:



Cortical Shape Analysis using the Anisotropic Global Point Signature 121

Fig. 3. An AGPS example: (a) automatically generated parcellations of a cortical sur-
face; (b) first five color-coded AGPS coordinates of the left superior-frontal gyrus.

(∇ · κ(s)∇) Φ(s) =λΦ(s)

=⇒
ˆ

S

(∇ · κ(s)∇Φ(s)) N(s)ds =λ

ˆ
S

Φ(s)N(s)ds

=⇒ −
ˆ

S

κ(s)∇Φ(s)∇ηN(s)ds =λ

ˆ
S

Φ(s)N(s)ds

where the latter follows using integration by parts and Neumann boundary con-
ditions in equation (1). Substituting the FEM into this equation, we get:

−
∑

i

∑
j

ϕiηjκij

ˆ
∇ei(s)∇ej(s)ds =λ

∑
i

∑
j

ϕiηj

ˆ
ei(s)ej(s)ds

=⇒ KSΦ = − λMΦ (3)

where κij = κi+κj

2 is the average of curvatures calculated at points i and j, K is
a matrix with ith row and jth column given by κij , and Φ is a column vector with
ith entry given by ϕi. For a triangulated surface mesh with linear elements, the

element-wise matrix is given by Mel = Ael

12

 2 1 1
1 2 1
1 1 2

 and the element-wise stiff-

ness matrix is given by Sel = DxDx+DyDy where Dx and Dy are discretizations
of derivatives in the x and y directions, respectively. The mass and stiffness ma-
trices M and S are obtained from the corresponding element-wise matrices Mel

and Sel respectively by finite element matrix assembly procedures as described
in [16]. The matrix equation (3) is a generalized eigenvalue problem that can be
solved using standard methods such as the QZ method in the Matlab function
eigs. For this analysis, we chose to approximate the infinite-dimensional AGPS
by its first seven coordinates based on the spread of the eigenvalue spectrum. One
example of the computed AGPS coordinates for the surface patch representing
the left superior frontal gyrus is shown in figure 3.

2.3 Brain Shape Analysis using AGPS
In order to illustrate the potential of the proposed representation for cortical
shape analysis, we apply AGPS for two group studies of N = 24 subjects: (1)
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Fig. 4. Left-to-right hemisphere average shape difference, based on gyral AGPS. The
color-coded overlay shows the degree of symmetry (blue) and asymmetry (red).

asymmetry analysis and (2) variability analysis. For this purpose, we generated
the AGPS coordinates for each vertex using the method described in the previous
section. While it is possible to get a full description of shape change at different
scales by analyzing coordinate-wise AGPS differences, we summarize the shape
difference with ℓ2-norm since the shape space admits an Euclidean metric.

To map symmetry between the left and right hemispheres of subjects, we first
define AGPSL and AGPSR as the AGPS representations of left and right cortical
hemispheres of a subject and transfer them to the common atlas space for com-
parison. We register the atlas’s right hemisphere R to the atlas’s left hemisphere
L forming a correspondence denoted by Ψ : R → L. With this correspondence,
we can then compute mean AGPS distance between hemispheres at each vertex
s in the atlas’s right hemisphere by D (s) = ∥AGPSL(Ψ(s)) − AGPSR(s)∥2. To
find group asymmetry, we average D (s) over all the subjects.

Shape variability on the cortex can be found by estimating the population
variance of the AGPS coordinates. We compute the AGPS coordinates for each
subject in the native space and then transfer these coordinates to the standard
atlas space. We then estimate the population variance at each vertex s in the at-
las space by σ2(s) = 1

N

∑N
n=1

(
AGPSn (s) − 1

N

∑N
m=1 AGPSm (s)

)2
. Note that

we use the correspondence established using surface registration for comparing
the shapes in the atlas domain, but we do not use the deformation field as a
shape descriptor due to the reasons discussed in section 1.

3 Results

3.1 Asymmetry across hemispheres

After parcellation, the left and right hemispheres of a subject’s brain contain
homologous regions that may differ in shape. This hemispheric brain asymmetry
is possibly related to functional lateralization due to evolutionary, hereditary
and developmental factors [18]. In order to map cortical asymmetry, we use
the procedure described in section 2.3 with results shown in figure 4. The most
asymmetric regions are in the inferior sector of the pre- and post-central gyrus,
the mid portion of the middle temporal gyrus and posterior portion of the inferior
temporal gyrus, and, to a lesser extent in the mesial sector of the superior frontal
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Fig. 5. Population variance of cortical shape. The color-coded overlay is the variance
of the AGPS representation, plotted on an inflated representation of the cortex.

gyrus. One slightly surprising result is that there is minimal asymmetry at the
end of the Sylvian fissure and needs further investigation.

3.2 Variability in Shapes

In addition to analyzing shape variability between cortical hemispheres across
the subject population, we can analyze the variability in cortical shape over a
population. In figure 5 on the left (lateral aspect of the hemisphere) we see high
variability in the posterior sector of the middle and inferior temporal gyri and the
inferior parietal lobule hugging the posterior end of the Sylvian fissure, as well
as in the frontal operculum; on the right (mesial aspect of the hemisphere) the
areas of maximal variability are found in the pre-cuneus, the anterior sector of
the cingulate gyrus and in the anterior sector of the parahippocampal gyrus (site
of the maximal variance). Most of these regions are in the association cortex.

4 Discussion and Conclusion

This paper presents a new invariant shape representation, AGPS, that captures
differences in surface shapes due to developable transformations, a critical class
of transformations in the analysis of cortical folds. The shape space generated by
this representation is ℓ2, readily allowing the use of existing standard statistical
techniques for shape analysis. We illustrated the benefits of AGPS in quantifying
shape differences across hemispheres and shape variation across subjects.

The question of whether a surface is unique (within an isometry) given its
AGPS coordinates is related to the existence of Bonnet surfaces, i.e. surfaces that
are not completely defined by their metric and mean curvature [2]. However, it
is unlikely that cortical surfaces would suffer from such an ambiguity. Another
possible ambiguity is in the order of eigenfunctions of the anisotropic Laplace-
Beltrami operator in cases where there are repeated eigenvalues, which can occur
if there are certain symmetries in the shape. An algorithm for resolving this
ambiguity can be found in [4]. For the purpose of brain shape analysis, we did
not encounter any ambiguity possibly due to shapes not having axes of symmetry.

Many aspects of the preprocessing can affect the AGPS representations of
cortical regions, thus introducing sources of error in cortical shape analysis.
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More specifically, it is unclear whether different parcellation schemes can result
in different shape analysis results. We note that recent registration and labeling
methods can parcellate the brain with accuracy approaching manual labeling
[11]. In the future, we plan to explore the effect of parcellation decisions on
cortical shape analysis using AGPS.

The presented AGPS representation and analysis methods can be applied for
applications other than cortical shape analysis. AGPS representations can help in
various computer vision applications requiring shape analysis where the intrinsic
geometry does not fully capture the shape. In addition, this representation can
also be extended to 3 or more dimensions using approaches presented in this
paper for 2D surfaces and in previous work for 1D curves [5].
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