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Abstract. A method of building a point distribution model for multiple anatom-

ical landmarks from training datasets with various different imaging ranges is 

presented.  To cope with the missing data problem caused by partial imaging 

ranges of training datasets, the MissGLasso algorithm is applied to build the 

model.  The joint probability distribution of logarithmic distances between all 

landmark pairs is approximated as a sparse Gaussian graphical model which has 

a sparse precision matrix calculated by the graphical lasso method.  Additional-

ly, EM algorithm is also utilized to apply graphical lasso to training sample vec-

tors which include many missing values.  To evaluate models built by the pro-

posed method, the models were embedded into multiple-landmark detection 

systems and the detection sensitivities were compared between models trained 

with partial and entire imaging range datasets.  The overall sensitivities of 

landmark detection using these two models were 72.78 and 75.02%, respective-

ly.  Because the detection sensitivity for most of the landmarks differs little be-

tween the two models, it can be concluded that the MissGLasso algorithm could 

effectively handle missing values in training landmark distribution models. 
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1 Introduction 

The automatic detection of anatomical landmark positions often plays a key role in 

various medical image analyses, such as organ segmentation, interindividual or inter-

modality image registration or computer-aided lesion detection.  Various point distri-

bution models (PDMs) of the spatial distribution of multiple anatomical landmarks 

have been used to detect a series of landmarks [1][2][3].  For example, in [1] Seifert 

et al. used predefined spatial constraints between specific pairs of landmarks in de-

tecting 19 body trunk landmarks.  In [2], Potesil et al. proposed the pictorial structure 
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model in which a graph structure connects 22 landmarks from cervical to pelvic struc-

tures.  Although the graph structure itself is arbitrarily predefined, the spatial con-

straint between two connected landmarks is learned from training datasets.  On the 

other hand, in [3] Hanaoka et al. built a statistical PDM on 173 landmark positions 

and applied it to a landmark detection task.  Their target imaging range was neck-to-

pelvis and the head was not included.  In all these methods, PDMs play an important 

role by providing prior knowledge on the human body structure.  Therefore, it is sug-

gested that the quality of PDM will strongly affect the overall performance of land-

mark detection applications. 

Theoretically, a landmark-based PDM for the whole human body can be built in 

the same manner as the methods mentioned above.  Such a whole body PDM will be 

more versatile than partial-body PDMs, that is, it can be applied to a wider range of 

medical image processing and to various organs.  However, to the best of our 

knowledge, no research on building a PDM for the whole body by means of statistical 

modeling has been reported.  It is considered that the main reason for this is the diffi-

culty of preparing a sufficient amount of whole-body training datasets.  Medical im-

age examinations, such as computed tomography (CT) or magnetic resonance imag-

ing (MRI), are rarely performed for the whole body because of limited imaging ma-

chine resources or excess radiation exposure.  If only partial-body datasets with vari-

ous imaging ranges (e.g. chest only, abdomen only, etc.) are available as training 

datasets, the usual statistical model estimation methods will not be applicable.  In-

stead, an alternative method that can handle missing values in the training datasets 

will be required.  One of the aims of this study is to overcome this problem by apply-

ing an EM-algorithm-based missing value imputation method [4] in estimating the 

statistical landmark distribution model. 

The other aim of this study is to apply the sparse Gaussian graphical model [5] to 

landmark distribution modeling.  In particular, we focused on estimating the precision 

matrix (inverse covariance matrix) on the interlandmark distances between landmark 

pairs as a sparse matrix.  We chose the interlandmark distances as the model varia-

bles, instead of the landmark coordinates themselves, because of their desirable fea-

tures such as spatial rotation invariance and robustness to local deformations.  Gener-

ally speaking, it can be expected that a certain distribution can be statistically mod-

eled better with a sparse precision matrix if most of the variable pairs are conditional-

ly independent.   This is not the case for the interlandmark distances, however, be-

cause most of the distances have strong positive correlations with each other owing to 

the scale factor.  A large person has larger interlandmark distances, and vice versa.  

Nevertheless, we found that the distances become much less correlated after the scale 

factor is normalized appropriately.  Thus, we assumed that the precision matrix can be 

estimated as a sparse matrix if the effect of the scale factor is removed in advance.  

On the basis of this assumption, we developed a novel method to estimate the sparse 

precision matrix while handling the scale factor separately.   

For these two purposes, we propose a method for building a sparse Gaussian 

graphical model of interlandmark distances from training datasets with insufficient 

imaging ranges.  The method is based on the MissGLasso method, proposed by 

Städler et al. [4], which consists of two algorithms: (1) an expectation-maximization 
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(EM) algorithm to handle missing data and (2) the graphical lasso method [5] for 

estimating the precision matrix with l1 norm regularization.  We modified the original 

MissGLasso method so that both the scale factor and the scale-normalized interland-

mark logarithmic distance set can be modeled simultaneously.  The proposed method 

was evaluated with 78 chest-to-pelvis CT volume datasets.  For comparison, two 

models were built: (1) a statistical landmark distribution model built with intentional-

ly cropped training volumes and (2) a model built with the whole imaging ranges.  

Then, the landmark detection performances using these models were compared to 

evaluate the applicability of the proposed method to partial volume training datasets. 

2 Methods 

2.1 Landmark distribution model based on interlandmark distances 

In this study, the spatial landmark distribution is modeled as a joint probability 

function whose variables are the interlandmark logarithmic distances between all 

landmark pairs.  Here, the reason why logarithmic distances are used is that it enables 

the proposed algorithm to handle the scale factor as a linear factor.  Additionally, 

since the domain of log-distances is not restricted to positive but can have negative 

values, they may be more suitable to be modeled with Gaussian distribution. 

Suppose that the number of landmarks is   and that their coordinates are      
{         }.  Then, the logarithmic distances are defined as         |     |    

     .  Let the concatenated vector of all      be   (                    )
 
.  

Suppose that the mean vector of   is estimated as   ̅and the precision matrix is esti-

mated as   , then the probability function  ( )  for any landmark position set 

  {  } can be estimated as a multidimensional Gaussian distribution as follows: 

  ( )  √  
  
 √| |     { 

 

 
(   )̅

 
 (   )̅}. (1) 

where        is the dimension number of  . Therefore, only the mean vector   ̅and 

precision matrix   must be determined to define a landmark distribution model.    ̅

and   can be estimated from manually input ground-truth landmark positions in the 

training datasets.  The main topic of this study is how to adequately estimate    ̅and   

where the number of training datasets   is far less than the model dimension     and 

many missing values are included. 

Note that the distribution (1) is translation- and rotation-invariant because only the 

interlandmark distances are considered.  Moreover, the logarithmic distance vector   

is altered linearly by a scale transformation; that is, when a scale transformation with 

scale factor   is applied to the landmark position set (i.e.,           ), the vector 

  will be translated as           .  This is a simple translation parallel to the 

vector   (     ) . 
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2.2 Graphical lasso with scale factor normalization 

Graphical lasso [5] is a method of estimating a sparse precision matrix   from a 

given sample covariance matrix   by maximizing the l1 norm-penalized log likelihood 

as follows: 

              (  )   ‖ ‖ . (2) 

Here,   is a parameter that controls the sparsity of  . 

The sample covariance matrix   can be calculated from the set of the vector   in 

the given training datasets.  However, as described above, S is not suitable for the 

graphical lasso estimation because of the scale factor.  To overcome this problem,   is 

divided into two: the covariance matrix of the scale-normalized log-distances      
and the variance of the scale factor  .  After this division,      is processed by the 

graphical lasso method to estimate the precision matrix. 

The division of S is performed as follows.  Firstly, the scale factor of a given vec-

tor   is defined as      ( )  (   )̅  (
 

 
  ).  Here,  ̅ is the sample mean of   

and      ( ) is the average of   elements of the mean-subtracted vector (   )̅. 

The variance of the scale factors is calculated as the variance of all      ( ) from the 

datasets.  Secondly, the scale-normalized log-distance is defined as         ̅  

     ( )  (
 

 
  ).  Then the covariance matrix      is calculated from all      ex-

tracted from training datasets.   

The precision matrix of     , namely     , is estimated using the graphical lasso 

algorithm by maximizing (2) with the given     .  Note that   (the precision matrix 

of  ) can be estimated from      as follows:  Assuming that the scale factor      ( ) 
and the normalized distance vector      are statistically independent, a simple addi-

tion rule of covariance matrices         
         is satisfied.  (      corre-

sponds to the covariance matrix of the scale factor.)  Then, from the Sherman-

Morrison formula,  

   (    
        )         (     

      )⁄        
      (3) 

is satisfied.  Note that using this equation, the probability calculation in Eq. (1) can be 

speeded up by taking advantage of high sparsity of the matrix     . 
A modification was introduced to the original graphical lasso method in this study.  

It is to change the   -norm-penalizing weights for each variable according to its stand-

ard deviation.  In graphical lasso it is possible to change the sparsity control factor   

for each element of   [5].  This is performed by modifying Eq. (2) as follows: 

              (  )  ‖   ‖  (4) 

where   {   } with        , and * indicates component-wise multiplication.  On 

this basis, we determined the element-wise   -norm-penalizing weight as follows: 

        (  )   (  ) (5) 
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 ( )  {
                

                         
 

where    is the standard deviation of the i-th element of  , and            is a parame-

ter to be determined in advance.  The motivation for introducing this weight is to 

avoid the excessive effect of variables with very large variances.  We found that this 

weight modification is very useful for improving the result. 

2.3 EM algorithm and MissGLasso 

Most of the methods of estimating the distribution from given sample data require 

that no values are missing from the given sample.  However, this is not the case when 

the imaging range is limited and some landmarks are out of range.  One element in   

(i.e., one interlandmark distance) will be “missed” if either of the two landmarks is 

out of the imaging range.  Therefore, a significant number of elements in   from a 

partial volume training dataset may be missed.  One frequently used solution for such 

a “missing value” problem is to apply the EM algorithm.  In this study we utilized the 

MissGLasso method, which is a fusion of the EM algorithm and the graphical lasso 

method. 

Details of the MissGLasso method are available in [4].  In brief, the model parame-

ter      is iteratively updated in MissGLasso by alternately applying E and M steps. 

(Fig. 1, left)  In the E step, the covariance matrix and mean vector are estimated from 

both the observed (nonmissed) values and recently estimated     .  Using the updated 

covariance matrix and mean vector, the precision matrix      is estimated and updat-

ed in the following M step.  In MissGLasso, the M step is virtually the graphical lasso 

method itself.  In this study, we iterated the EM algorithm 10 times to find an optimal 

     from partial volume training datasets.  

     

Fig. 1. Outline of proposed method.  (Left) MissGLasso-based model estimation.  (Right) 

Landmark detection system used in evaluation. 
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2.4 Evaluation 

The positions of a total of 138 (64 chest, 37 abdominal, 37 pelvic) landmarks in the 

human torso were modeled and detected in this study.  We compared the landmark 

detection performances using two different models.  The GLasso model was trained 

with ground truth landmark positions from full-range (chest-to-pelvis) CT volumes.  

On the other hand, the MissGLasso model was trained with not all the ground truth 

positions.  Instead, the pelvic landmarks were removed from half of the training da-

tasets and the chest landmarks were removed from the other half.  Thus, these two 

halves simulate chest-to-abdomen and abdomen-to-pelvis imaging ranges, respective-

ly. 

 

 

Fig. 2. Result of landmark detection performance.  (Top)  Sensitivities for thoracic landmarks.  

(Bottom, from the left) Sensitivities for abdominal and pelvic landmarks.  All landmarks are 

sorted by the sensitivities using the GLasso model. 

A total 87 of CT datasets of healthy or diseased human torsos without an intrave-

nous contrast agent were used in the evaluation.  The model training was performed 

with 4-fold cross-validation; 87 datasets were divided into 4 groups, and the datasets 

in each group were tested with a model that was trained using the other 3 groups.  For 

MissGLasso models, these training datasets were merged and divided again into 

chest-to-abdomen and abdomen-to-pelvis imaging range simulation subgroups.  The 

values of   and            were determined empirically as 0.75 and 0.2, respectively. 
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To evaluate the suitability of the estimated models, a multiple-landmark detection 

method proposed in [3] (Fig. 1, right) was applied to the test datasets and the detec-

tion performances using GLasso and MissGLasso models were compared.  The out-

line of the landmark detection method used is as follows.  Firstly, each of the target 

landmarks is detected independently by a landmark-specific detector that is composed 

of an appearance-model-based initial detector and a classifier ensemble.  Each detec-

tor searches possible landmark positions within the given CT volume and then outputs 

a number of candidate points (100 candidates in this study).  Then, the following 

combinatory optimization algorithm chooses the most suitable combination of all 

landmark positions from the lists of candidates.  In the latter phase, a landmark distri-

bution model [Eq. (1)] is used as prior knowledge to seek the best combination.  The 

optimization problem is formulated by maximum a posteriori (MAP) estimation and 

is solved by Gibbs sampling and simulated annealing methods.  Each detection result 

was evaluated as successful if the detected point was within 2 cm from the manually 

input ground truth point. 

Both the model estimation and landmark detection system were implemented on 

and experimented with a computer with Intel Xeon E5-2640 CPU×2, 64 GB RAM 

and nVidia Tesla K20m GPGPU.  It took approximately 2 h to estimate one 

MissGLasso model and 30 min for one landmark detection task. 

 

  

Fig. 3. An example of landmark detection result.  (Left) a frontal view. (Right) a left anterior 

oblique view.  Green and red pins represent successfully and wrongly detected landmarks, 

respectively.  The pin heads represent the detected positions, whereas the pin tails are the true 

landmark positions.  Most of wrongly detected landmarks were those defined on soft-tissue 

structures. 
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3 Results 

The overall result is shown in Fig. 2.  The averages and standard deviations of sen-

sitivities were 75.02% ± 0.17 and 72.78% ± 0.17 with GLasso and MissGLasso, re-

spectively.  Within the detection failures of both results (24.98% and 27.22%, respec-

tively), 9.92% were due to the detection phase (i.e., no true position was outputted by 

the detector as a candidate).  Thus, the failures due to the combinatory optimization 

phase using the models were roughly estimated as 15.06% and 17.30%, respectively. 

Because the detection sensitivities for most of the landmarks differ little between 

GLasso and MissGLasso, it can be concluded that the MissGLasso algorithm could 

effectively handle missing values in the training datasets.  The detection performance 

was similar even for landmarks with very poor sensitivity. 

A performance comparison with a related study recently reported by Liu et al. [8] 

was performed on 5 landmarks (all landmarks shared by their study and ours). The 

mean errors of our MissGLasso setting were 4.4, 8.4, 7.8, 10.8, 40.6 (mm) for trachea 

bifurcation, left and right lung tops, liver top and bottom, respectively. In Liu et al., 

the corresponding errors were 2.5, 2.6, 3.2, 2.5 and 6.4 (mm), respectively. Though 

our result showed less accuracy than [8], we believe that our results for 4 landmarks, 

aside from the bottom of the liver, are not so poor if ambiguities of landmark posi-

tions are taken into account. Moreover, it may be improved by any appropriate post-

process (e.g., [7]). 

4 Discussion 

A method of estimating a landmark point distribution model from training datasets 

with various partial imaging ranges was presented.  The deterioration of the landmark 

detection performance was minimal using the model estimated with only chest-to-

abdomen and abdomen-to-pelvis image datasets.  Therefore, it was suggested that the 

proposed method can be a key technique for building landmark distribution models 

with a wider range, or ultimately, a whole body landmark PDM. 

Application of our method to build a whole-body PDM is not limited to landmark 

detection. Possible applications include estimation or imputation of structures unseen 

in a given image (due to imaging range or nature of the modality). For example, the 

model may estimate the body height from the landmark positions of the pelvis only. 

The main motivation of introducing sparsity in this study is to handle the High-

Dimensional Low Sample Size (HDLSS) problem better. Regularization is a critical 

issue for HDLSS. L1-norm regularization is a state-of-the-art method and its superior-

ity against classical L2-norm  regularization has been suggested by many studies [9]. 

Our precision matrices were very sparse, having approx. 0.1% of non-zero elements. 

This study has several limitations.  Firstly, the proposed method was not compared 

with other precision matrix estimation methods such as Tikhonov regularization.  

However, the landmark detection system evaluates the distribution probability (Eq. 

(1)) about 15 million times per detection task under our current implementation and 

experimental conditions.  The speed of this calculation completely depends upon the 
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sparsity of the precision matrix in this study.  Thus it is expected that landmark detec-

tion with a dense precision matrix is virtually impossible.  Although in [6] Hanaoka et 

al. proposed an effective way of calculating Eq. (1) without explicitly considering the 

entire precision matrix, it instead depends on explicit training sample vectors and 

cannot be applied to a problem with missing values. 

Secondly, the detection sensitivity is not sufficient for some landmarks.  For exam-

ple, the sensitivities of 42 landmarks out of 158 were less than 70% with the criterion 

of 2 cm from the ground truth.  Improvement of the detection performance is an issue 

in the future.  Possible solutions include the landmark position fine-tuning algorithm 

proposed by Nemoto et al [7] or parameter tuning for each landmark detector [2]. 

As a future work, we are planning to apply the proposed method to building a mul-

timodality landmark PDM.  For example, suppose that you have a number of CT da-

tasets with manually input landmark positions, and you also have other MRI datasets 

with landmark positions input.  If the two datasets share some of the landmarks, the 

proposed method can build a combined landmark distribution model from both da-

tasets.  Such a combined model will be useful in various ways.  For instance, using a 

CT-MRI combined model, the position of a certain landmark that is only visible in 

MRI can be estimated in any given CT images.  Our final goal is to represent all 

landmark positions in the whole body and in any medical images in a single landmark 

distribution model. 
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