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Abstract. In this paper, we address the issue of designing a theoreti-
cally well-motivated registration model capable of handling large defor-
mations. Motivated by the fine properties of the Saint Venant-Kirchhoff
material, we propose a variational model combining a measure of dissi-
milarity and a regularizer based on the stored energy of such a material.
We prove the existence of generalized solutions of this problem. We then
describe and analyze a numerical method of resolution based on the intro-
duction of an associated decoupled problem under inequality constraint
in which an auxiliary variable simulates the Jacobian matrix of the de-
formation field. A theoretical result is established and we investigate the
efficiency of the proposed matching model for the registration of mouse
brain gene expression data to a neuroanatomical mouse atlas.
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1 Introduction

Given two images called Template and Reference, registration consists in de-
termining an optimal diffeomorphic transformation φ such that the deformed
Template image is aligned with the Reference. This technique has gained much
interest in clinical studies among others, when comparing an image to a database
or for volumetric purposes. For images of the same modality, the goal of registra-
tion is to correlate the geometrical features and the intensity level distribution of
the Reference and those of the Template. When the images have been acquired
through different mecanisms and have different modalities, registration aims to
correlate both images while preserving the modality of the Template image.
There are forward and backward registrations. In this work, we adopt the Eule-
rian framework to find a backward transformation Φ such that the grid points y
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in the deformed Template originate from non-grid points x = Φ(y).
For an overview of existing parametric and non-parametric registration methods
(including landmarks, L2 similarity, linear elasticity, linear diffusion, splines, vis-
cous fluid model, etc.), we refer the reader to [17]. In the case of non-parametric
methods (our framework), the transformation is not restricted to a paramete-
rizable set and the problem is phrased in terms of minimization of functional
(with unknown the deformation vector field φ) including a distance measure
criterion and a smoother on the deformation vector field φ. Physical arguments
often motivate the way the smoother is devised. Classical regularizers such as
linear elasticity (see [4]) are not suitable for problems involving large deforma-
tions since assuming small strains and the validity of Hooke’s law. The scope of
the proposed work is thus to devise a theoretically well-motivated registration
model in a variational formulation, authorizing large and smooth deformations,
while keeping the deformation map topology-preserving.
For problems involving large deformations but by a different approach from
ours, we refer the reader to [5] in which Christensen et al. propose a viscous
fluid model (not in a variational form). The objects to be matched are viewed
as fluids evolving in accordance with the fluid dynamic Navier-Stokes equations.
More precisely, given the force field f , the deforming image is considered to be
embedded in a viscous fluid whose motion is governed by Navier-Stokes equations
for conservation of momentum:

µ△v(x, t) + (ν + µ)∇ (∇ · v(x, t)) = f(x, u(x, t)), (1)

v(x, t) = ∂tu(x, t) +∇u(x, t) · v(x, t). (2)

Equation (2), defining material derivative of the displacement field u, nonline-
arly relates the velocity v and the displacement vector field. Constants µ and ν
are viscosity coefficients of the fluid. One drawback of this method is the com-
putational cost. Numerically, the image-derived force field f(x, u(x, t)) is first
computed at time t. Fixing the force field f , linear equation (1) is solved for
v(x, t) numerically using the successive over-relaxation scheme. Then an explicit
Euler scheme is used to advance u in time. These elements motivated us to pro-
pose an alternative framework requiring faster implementation.
We now depict the mathematical setting. Let us emphasize that the focus of
the paper is on the mathematical presentation and well-posedness of a nonlinear
elasticity-based registration model. Hence, the computational results are cur-
rently restricted to mouse brain gene expression data. Later work may go to a
larger range of medical images with comparisons to reference methods.
Let Ω be a connected bounded open subset of R2 with Lipschitz boundary ∂Ω
representing the reference configuration. Let us denote by R : Ω̄ → R the Re-
ference image and by T : Ω̄ → R the Template image. It is assumed that T
and R are both defined on the open and bounded domain Ω in the plane, a
rectangle in general. Also, for theoretical and numerical purposes, we assume
that T is compactly supported on Ω to ensure that T ◦ φ is always defined and
we assume that T is Lipschitz continuous with Lipschitz constant K > 0. Also,
R is supposed to be sufficiently smooth.
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Let φ : Ω̄ → R2 be the deformation of the reference configuration. A deforma-
tion is a smooth enough mapping that is orientation-preserving and injective,
except possibly on ∂Ω. We also denote by u the associated displacement such
that φ = Id + u. The deformation gradient is ∇φ = I2 +∇u, Ω̄ → M2(R), the
set M2(R) being the set of all real square matrices of order 2. Thus the idea is to
find a smooth deformation field φ such that the deformed Template matches the
Reference. The model is phrased as a functional minimization problem whose
unknown is φ. It combines a distance measure criterion chosen to be the L2-
norm of the difference between the deformed Template and the Reference, and
a smoother on the deformation field. An alternative to intensity-based measures
would consist in using information-theoretic-based matching measures such as
mutual information (see [17]), suitable when dealing with images of different
modalities or in comparing, for instance, the normalized gradient fields of both
images (see [8] and [11]).
The proposed matching criterion is complemented by a regularizer on the defor-
mation field φ. To allow large deformations, we introduce a nonlinear-elasticity-
based smoother, the theory of linear elasticity being unsuitable in this case since
assuming small strains and the validity of Hooke’s law. We propose to view
the shapes to be warped as isotropic, homogeneous, hyperelastic materials and
more precisely as Saint Venant-Kirchhoff materials. Note that rubber, filled elas-
tomers, biological tissues are often modeled within the hyperelastic framework,
which motivates our modelling.
For the sake of completeness, we would like to refer the reader to previous works
related to registration based on nonlinear elasticity principles. In [8], Droske and
Rumpf address the issue of non-rigid registration of multi-modal image data.
The matching criterion includes first order derivatives of the deformation and is
complemented by a nonlinear elastic regularization based on a polyconvex stored
energy function, which is different from our proposed approach. We also mention
the combined segmentation/registration model introduced by Le Guyader and
Vese ([12]) in which the shapes to be matched are viewed as Ciarlet-Geymonat
materials, the works [2] and [16] for a variational registration method for large
deformations (Large Deformation Diffeomorphic Metric Mapping - LDDMM),
and refer to [20] for a much related work that also uses nonlinear elasticity reg-
ularization but implemented by the finite element method.

Before depicting the mathematical material, we review some fundamental
concepts and notations (see [6] for further details). We recall that the right
Cauchy-Green strain tensor is defined by C = ∇φT∇φ = FTF ∈ S2 with
S2 =

{
A ∈ M2(R), A = AT

}
, set of all real symmetric matrices of order 2.

Physically, the right Cauchy-Green tensor can be interpreted as a quantifier
of the square of local change in distances due to deformation. The Green- Saint

Venant strain tensor is defined by E =
1

2

(
∇u+∇uT +∇uT∇u

)
. Associated

with a given deformation φ, it is a measure of the deviation between φ and a
rigid deformation. We also need the following notations: A : B = trATB the
matrix inner product in R2 and ||A|| =

√
A : A, matrix norm in R2 (Frobenius
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norm). The stored energy of an isotropic, homogeneous, hyperelastic material,
if the reference configuration is a natural state, is of the form:

W (F ) = Ŵ (E) =
λ

2
(trE)

2
+ µ trE2 + o

(
||E||2

)
, FTF = I + 2E. (3)

The stored energy function of a Saint Venant-Kirchhoff material is defined by

WSVK(F ) = Ŵ (E) =
λ

2
(trE)

2
+ µ trE2. The Saint Venant-Kirchhoff material

is thus the simplest one that agrees with expansion (3). Moreover, as suggested
in [12] or [14], from a numerical viewpoint, this modelling can generate high-
magnitude deformations. These two arguments motivate the choice of the model
we propose. At last, to ensure that the distribution of the deformation Jacobian
determinants does not exhibit too large contractions or too large expansions,
we propose to complement the model by a term controlling that the Jacobian
determinant remains close to 1. In definitive, we propose to consider the following
minimization problem:

inf

{
I(φ) =

∫
Ω

f(x, φ(x),∇φ(x)) dx : φ ∈ Id +W 1,4
0 (Ω,R2)

}
, with (4)

f(x, φ, ξ) =
ν

2
(T (φ)−R)

2
+WSVK(ξ)+µ (detξ − 1)

2
=

ν

2
(T (φ)−R)

2
+W (ξ).

Also, φ ∈ Id + W 1,4
0 (Ω,R2) means that φ = Id on ∂Ω and φ ∈ W 1,4(Ω,R2).

W 1,4(Ω,R2) denotes the Sobolev space of functions φ ∈ L4(Ω,R2) with distri-
butional derivatives up to order 1 which also belong to L4(Ω). (We justify later
that W 1,4(Ω,R2) is a suitable functional space for the considered problem).

2 Theoretical Results

2.1 Introduction of the Relaxed Problem

Function f in (4) fails to be quasiconvex, which raises a drawback of theoretical
nature since we cannot obtain the weak lower semi-continuity of the functional.
The idea is thus to replace problem (4) by the so-called associated relaxed pro-
blem (QP ) formulated in terms of the quasiconvex envelope of f . Even though
the original f is not quasiconvex and therefore in general the infimum of (4) is not
attained, one has inf (4)= inf (QP ) and with some extra coercivity condition,
the infimum of (QP ) is reached. To the best of our knowledge, this technique of
relaxation has never been used in the context of image registration before.
In the sequel, we start by establishing the explicit expression of the quasiconvex
envelope of f and derive the associated relaxed problem.

Proposition 1. The relaxed problem associated to (4) is defined by:

inf

{
Ī(φ) =

∫
Ω

Qf(x, φ(x),∇φ(x)) dx : φ ∈ Id+W 1,4
0 (Ω,R2)

}
, (5)
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with Qf given by: Qf(x, φ, ξ) =


ν

2
(T (φ)−R)

2
+W (ξ) if ||ξ||2 ≥ 2

λ+ µ

λ+ 2µ
,

ν

2
(T (φ)−R)

2
+ Ψ(det ξ) if ||ξ||2 < 2

λ+ µ

λ+ 2µ
,

and Ψ the convex mapping such that Ψ : t 7→ −µ

2
t2 + µ (t− 1)

2
+

µ(λ+ µ)

2(λ+ 2µ)
.

Proof. By definition (see Chapter 9, p. 432 of [7]), for almost every x ∈ Ω and
for every (φ, ξ) ∈ R2 × R4, the quasiconvex envelope of f with respect to the
last variable is defined by:

Qf(x, φ, ξ) = inf

{
1

meas(D)

∫
D

f(x, φ, ξ +∇Φ(y)) dy : Φ ∈ W 1,∞
0 (D,R2)

}
,

D ⊂ R2 being a bounded open set. Consequently, in our case, Qf(x, φ, ξ) =
ν

2
(T (φ)−R)

2
+QW (ξ).

After some intermediate computations, one hasW (ξ) = β
(
||ξ||2 − α

)2
+Ψ(det ξ)

with α = 2
λ+ µ

λ+ 2µ
and β =

λ+ 2µ

8
. From Theorem 3.1, p. 35 of [3], the result is

straightforward. This judicious rewriting of W (ξ) allows to see that W 1,4(Ω,R2)
is a suitable functional space for φ: from generalized Hölder’s inequality, if φ ∈
W 1,4(Ω,R2), then det∇φ ∈ L2(Ω).

It now remains to be proved that the infimum of (QP ) is attained and that if φ̄
is a solution of (5), then there exists a minimizing sequence {φν} of (4) such that
φν weakly converges to φ̄ and I(φν) → Ī(φ̄). The solutions of (5) are considered
as generalized solutions of (4), in the sense of weak convergence.

2.2 Existence of Minimizers for the Relaxed Problem and
Relaxation Theorem

We now state the main theoretical result.

Theorem 1. The infimum of (5) is attained. Let then φ̄ ∈ W 1,4(Ω,R2) be a
minimizer of the relaxed problem (5). Then there exists a sequence {φν}∞ν=1 ⊂
φ̄ +W 1,4

0 (Ω,R2) such that φν → φ̄ in L4(Ω,R2) as ν → ∞ and I(φν) → Ī(φ̄)
as ν → ∞. Moreover, the following holds: φν ⇀ φ̄ in W 1,4(Ω,R2) as ν → ∞.

Proof. The proof of existence of minimizers of (5) is based on Theorem 8.29,
p. 404, Chapter 8 of [7] (theorem due to Acerbi-Fusco [1] and Marcellini [15])
and rests upon the derivation of the following coerciveness and continuity double
inequality:

C3 ||ξ||4 − C4 ≤ Qf(x, φ, ξ) ≤
(
β +

µ

2

)
||ξ||4 + 4K2||φ||2 + C2,

with C3 a positive constant and with C2 and C4 two non-negative constants.
The proof of the second part of the theorem is based on Theorem 9.8, p. 432,
Chapter 9 of [7].
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We now propose a numerical method for the resolution of the relaxed problem.
It is motivated by a related prior work by Negrón Marrero ([18]).

3 A Numerical Method of Resolution

3.1 Description and Analysis of the Proposed Numerical Method

In [18], Negrón Marrero describes and analyzes a numerical method that detects
singular minimizers and avoids the Lavrentiev phenomenon for three dimen-
sional problems in nonlinear elasticity. This method consists in decoupling the
function φ from its gradient and in formulating a related decoupled problem
under inequality constraint. In the same spirit, we introduce an auxiliary varia-
ble V simulating the Jacobian deformation field ∇φ (-the underlying idea being
to remove the nonlinearity in the derivatives of the deformation-) and derive a
functional minimization problem phrased in terms of the two variables φ and V .
Nevertheless, our approach is different from the one in [18] in several points: in
[18], the author focuses on the decoupled discretized problem (discretized with
the finite element method - the paper provides neither numerical applications,
nor details of the implementation) for which the existence of minimizers is gua-
ranteed, while we consider the continuous problem. Also, the author assumes that
the finite element approximations satisfy some convergence hypotheses. More-
over, in our case, less regularity is required for the formulation of the inequality
constraint (see in particular the remark in the proof of Theorem 2).
The decoupled problem is thus defined by means of the following functional:

Ī(φ, V ) =
ν

2

∫
Ω

(T (φ(x))−R(x))
2
dx+

∫
Ω

W(V ) dx, (6)

with 
W(V ) = W (V ) if ||V ||2 ≥ α = 2

λ+ µ

λ+ 2µ
and

W(V ) = Ψ(detV ) si ||V ||2 < α = 2
λ+ µ

λ+ 2µ
.

Let us now denote by Ŵ the functional space defined by Ŵ = Id+W 1,2
0 (Ω,R2)

and by χ̂, χ̂ =
{
V ∈ L4(Ω,M2), detV ∈ L2(Ω)

}
. The decoupled problem con-

sists in minimizing (6) on Ŵ × χ̂ under the constraint ||∇φ − V ||2L2(Ω,M2)
≤ ε,

with ε > 0 and ε ∈]0, ε0], ε0 > 0 fixed. The idea is of course to let ε go to 0.
Then the following theorem holds.

Theorem 2. Let (εj) be a sequence such that lim
j→+∞

εj = 0. Let also (φk(εj), Vk(εj))

be a minimizing sequence of the decoupled problem under inequality constraint
defined with ε = εj. Then there exist a subsequence denoted by(
φN(εΨ◦g(j))(εΨ◦g(j)), VN(εΨ◦g(j))(εΨ◦g(j))

)
of (φk(εj), Vk(εj)) and a minimizer φ̄

of Ī(φ) (φ̄ ∈ Id+W 1,4
0 (Ω,R2)) such that:

lim
j→+∞

Ī
(
φN(εΨ◦g(j))(εΨ◦g(j)), VN(εΨ◦g(j))(εΨ◦g(j))

)
= Ī(φ̄).
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Proof. The proof is rather long so we only give the broad lines for the sake of
conciseness. Let ε > 0 be given, ε ∈]0, ε0], ε0 > 0 fixed. There exists φ̂ε ∈ W =
Id +W 1,4

0 (Ω,R2) such that:

inf
(φ,V )∈Ŵ×χ̂

Ī(φ, V ) ≤ Ī(φ̂ε,∇φ̂ε) = Ī(φ̂ε) < inf
φ∈W

Ī(φ) + ε ≤ inf
φ∈W

Ī(φ) + ε0.

since W 1,4(Ω,R2) ⊂ W 1,2(Ω,R2). Consequently,

inf
(φ,V )∈Ŵ×χ̂

Ī(φ, V ) ≤ inf
φ∈W

Ī(φ) + ε.

The second part of the proof consists in taking a sequence (εj) such that lim
j→+∞

εj =

0. We then consider a minimizing sequence denoted by (φk(εj), Vk(εj)) for the
decoupled problem with ε = εj . We prove that there exists N(εj) ∈ N such that

Ī
(
φN(εj)(εj), VN(εj)(εj)

)
≤ inf

φ∈W
Ī(φ) + 2εj ≤ inf

φ∈W
Ī(φ) + 2ε0 < +∞.

Using compactness arguments (among which Rellich-Kondrachov compact em-
bedding theorem) and Theorem 1.14 from [7] (that states that if uν ⇀ u in
W 1,2(Ω,R2) then det∇uν ⇀ det∇u in the sense of distributions), we demon-

strate the existence of a subsequence
(
φN(εΨ◦g(j))(εΨ◦g(j)), VN(εΨ◦g(j))(εΨ◦g(j))

)
such that:

inf
φ∈W

Ī(φ) ≤ Ī(φ̄) = Ī(φ̄,∇φ̄) ≤ lim inf
j→+∞

Ī
(
φN(εΨ◦g(j))(εΨ◦g(j)), VN(εΨ◦g(j))(εΨ◦g(j))

)
.

We remark that we gain some regularity: indeed, φN(εΨ◦g(j))(εΨ◦g(j)) is only

W 1,2(Ω,R2) owing to the definition of the inequality constraint but when pas-
sing to the limit when j → +∞, we prove that φN(εΨ◦g(j))(εΨ◦g(j)) ⇀ φ̄ in

W 1,2(Ω,R2) with φ̄ ∈ W 1,4(Ω,R2).

Inspired by this theoretical result, we now turn to the discretization of the con-
sidered problem.

3.2 Numerical Scheme

The algorithm requires the evaluation of the Template T at φ(x). We thus as-
sume that T is a smooth mapping that has been obtained by interpolating the
image data provided on the grid. As an additional convention, T is supposed to
vanish outside the domain, i.e., T (x) = 0 if x /∈ Ω. As suggested by Modersitzki
in [17], Chapter 3, subsection 3.6.1, for the interpolation stage we apply a mul-
tiscale interpolation technique which includes a weighting parameter controlling
smoothness versus data proximity. Also, for the sake of optimization, a multi-
level representation of the data is adopted (see Chapter 3, section 3.7 of [17]).
We now focus on the discretization of the problem. In this purpose, we denote
by Hϵ the regularized one-dimensional Heaviside function defined by Hϵ : z 7→
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1
2

(
1 + 2

πArctan z
ϵ

)
.

As seen in subsection 3.1, we overcome the difficulty of minimizing the original
relaxed functional (5) by introducing an auxiliary variable V mimicking ∇φ.
The nonlinear-elasticity-based regularizer is thus applied to V and no longer to
∇φ. We thus propose to minimize:

inf
φ,V

J̄ϵ(φ, V ) +
α′

2

∫
Ω

||V −∇φ||2 dx , with (7)

J̄ϵ(φ, V ) =
ν

2

∫
Ω

(T (φ)−R)
2
dx+

∫
Ω

W (V )Hϵ

(
||V ||2 − 2

λ+ µ

λ+ 2µ

)
dx

+

∫
Ω

Ψ(detV )Hϵ

(
2
λ+ µ

λ+ 2µ
− ||V ||2

)
dx, (8)

where α′ is a positive constant, big enough to ensure that V and ∇φ are suffi-
ciently close in the sense of the L2-norm.

The system of optimality conditions is obtained. Numerically, the Euler-
Lagrange equations in φ and V are solved using a gradient descent method,
parameterizing the descent direction by an artificial time t ≥ 0. Systems of 2 and
4 equations are obtained (solved by implicit and semi-implicit finite difference
schemes - in particular, the unconditional stability of the numerical scheme in φ
for fixed V is ensured), equipped with the boundary conditions φ = Id on ∂Ω.

3.3 Numerical Simulations and Discussion

We conclude the paper by presenting some medical illustrations on real data.
The method is proposed for mapping a 2D slice of mouse brain gene expression
data (template T ) to its corresponding 2D slice of the mouse brain atlas in order
to facilitate the integration of anatomic, genetic and physiologic observations
from multiple subjects in a common space. Since genetic mutations and knock-
out strains of mice provide critical models for a variety of human diseases, such
linkage between genetic information and anatomical structure is important. The
data are provided by the Center for Computational Biology, UCLA. The mouse
atlas acquired from the LONI database was pre-segmented. The gene expression
data were segmented manually to facilitate data processing in other applications.
Some studies have developed algorithms for automatically segmenting the brain
area of gene expression data. The non-brain regions have been removed to pro-
duce better matching.
The deformation must remain physically and mechanically meaningful, and re-
flect material properties: self-penetration of the matter (indicating that the
transformation is not injective) should be prohibited. In the studied functional,
there is no term preventing the Jacobian determinant from tending to 0+. An
alternative to the straight penalization of the Jacobian determinant is proposed
in [5]. Their fluid model is complemented by a regridding technique ensuring po-
sitivity of the Jacobian determinant. We also refer the reader to [13]: the given
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topology-preserving model is motivated by a mathematical characterization of
topology preservation for a deformation field mapping two subsets of Z2. Note
that in the present work, we did not need to resort to such methods.

The model has been tested on 4 pairs, all of size 200× 200 pixels (Figs. 1, 2)
(except the second one of size 220 × 200). For the first two tests, the data are
artificially obtained from the real data used later, which enables us to compare
the results of the proposed method with some of those presented in [14]. The
application related to Pair 1 (Fig. 1, first row) is similar to the one performed in
[14]. As suggested in [14], classical non-parametric methods such as elastic reg-
istration, linear diffusion registration, biharmonic-regularizer-based registration
(see [17] for further details) fail to correctly correlate the two images, some arti-
facts being visible on the deformed Template (under the left ear for the observer,
where the deformations are the largest). Our method qualitatively performs as
the one in [14] and produces a smooth deformation field, but unlike the one
in [14], is theoretically well-motivated. Also, the algorithm has been optimized;
first, by capitalizing on LAPACK and Basic Linear Algebra Subprogram (BLAS)
routines. Second, by parallelizing the code (we focused on the OpenMP Appli-
cation Program Interface). For all the applications, the ranges of the parameters
are the same (see sub-captions of Figs. 1, 2). Parameter ν balancing the fidelity
term is between 1.4 and 2, the Lamé coefficient λ is set to 10 (it has no physical
meaning but is related to Poisson’s ratio, measure of Poisson’s effect which can
be regarded as the ability of a material compressed in one direction to expand in
the other (two) direction(s) - this choice of λ is not physically inconsistent), while
the coefficient µ is between 3000 and 5000. Parameter α′ is always set to 60000.
This choice gives satisfactory results. For the two remaining pairs (Figs. 2), al-
though the Template and the Reference are of different modalities, we still use
the standard L2 distance as measure for simplicity of calculation. The algorithm
produces a smooth deformation between the gene and the atlas data with a
regular distribution of the Jacobian determinants, without requiring regridding
steps. Also, contrary to [12] in which the deformation is mainly present near the
boundaries of the brain region, here the deformation is present both near the
boundary and inside the brain region. If we keep comparing our results with the
ones obtained by Le Guyader and Vese in [12], for Pair 2, 4 regridding steps
were necessary and the range of the Jacobian determinants was [0.005, 28.94] (in
[12]). For Pair 4, 3 regridding steps were necessary and the range of the Jacobian
determinants was [0.008, 10.2]. The range of the Jacobian determinants is also
larger in [14] for the same applications. In our proposed method, the Jacobian
determinant thus remains closer to 1. Nevertheless, this constraint can be weak-
ened by downplaying the role of parameter µ. The proposed model thus easily
handles large deformations without requiring prohibitive computational times.
In our future studies, we will examine the registration accuracy of the model
when ground truth is known and will adapt it to the 3D case.
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(a) Pair 1: ν = 2, λ = 10, µ = 3000, α′ = 60000, min det∇φ = 0.09, max det∇φ = 2.47,
execution time: 1.8 s. From left to right, top to bottom: Reference R; Template T
(mouse atlas and gene expression data); deformed Template; distortion map drawing
the vectors from the grid points from the Reference image to non grid points after
registration every 7 rows and columns; deformed grid.

(b) Pair 2: ν = 1.8, λ = 10, µ = 4000, α′ = 60000, min det∇φ = 0.02, max det∇φ =
2.21, execution time: 8.4 s. From left to right, top to bottom: Reference R; Template T
(mouse atlas and gene expression data); deformed Template; distortion map drawing
the vectors from the grid points from the Reference image to non grid points after
registration every 7 rows and columns; deformed grid.

Fig. 1: From top to bottom: Pair 1 till Pair 2.
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(a) Pair 3: ν = 2, λ = 10, µ = 3000, α′ = 60000, min det∇φ = 0.008, max det∇φ =
1.96, execution time: 1.9 s. From left to right, top to bottom: Reference R; Template T
(mouse atlas and gene expression data); deformed Template; distortion map drawing
the vectors from the grid points from the Reference image to non grid points after
registration every 7 rows and columns; deformed grid.

(b) Pair 4: ν = 1.4, λ = 10, µ = 5000, α′ = 60000, min det∇φ = 0.02, max det∇φ =
1.56, execution time: 9.5 s. From left to right, top to bottom: Reference R; Template T
(mouse atlas and gene expression data); deformed Template; distortion map drawing
the vectors from the grid points from the Reference image to non grid points after
registration every 7 rows and columns; deformed grid.

Fig. 2: From top to bottom: Pair 3 till Pair 4.
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