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Abstract. Tensor-based morphometry (TBM) studies encode the anatom-
ical information in spatial deformations, which are locally characterized
by Jacobian matrices. Current methods perform statistical analysis on
incomplete features of the Jacobian matrices, such as their determinants
or the Cauchy-Green deformation tensor. In this work we propose the
use of a right-invariant Riemannian distance on GL`

pnq, providing more
information about the local deformation than previous approaches.

1 Introduction

Tensor-based morphometry (TBM) is a methodology to analyze anatomical in-
formation encoded by the spatial transformations that map a reference template
to a set of images. The spatial mappings are estimated by means of non-rigid
registration. Afterwards, voxel-wise statistical analysis is performed on the spa-
tial derivatives of the deformations (Jacobian matrices, hereinafter denoted by
Jpxq for each location x of the template domain).

The simplest and still most widely used approach for TBM is based on the
Jacobian determinant. This feature has two main advantages. Firstly, it has an
intuitive interpretation because it represents the local volume change. Secondly,
standard univariate statistical analysis can be easily performed on Jacobian de-
terminants (or their logarithms) [1, 2]. The main limitation of the Jacobian deter-
minant is that it only provides a coarse description of the deformation, because
it only quanti�es local volume change. To overcome this limitation, a multivari-
ate TBM has been proposed based on the Cauchy-Green deformation tensor,
C “ JTJ which provides more complete description of the local deformation.

Most of the available statistical tools are well de�ned for Euclidean data.
However, so far there are no many statistical tools for manifold-valued data,

‹‹ Data used in preparation of this article were obtained from the Alzheimer's Disease
Neuroimaging Initiative (ADNI) database (adni.loni.ucla.edu). As such, the inves-
tigators within the ADNI contributed to the design and implementation of ADNI
and/or provided data but did not participate in analysis or writing of this report. A
complete listing of ADNI investigators can be found at: http://adni.loni.ucla.
edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
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such as Cauchy-Green deformation tensors or Jacobian matrices. Statistics on
Lie groups were analyzed in [3, 4] de�ning principal geodesic analysis. Analysis
of di�usion tensor images (DTI) promoted the development of statistical tools
on symmetric positive de�nite (SPD) tensors [5�8]. Some recent works deal with
principal geodesics analysis using both, intrinsic statistics and the tangent plane
approximation [9] and regression on manifold data [10�12]. A multivariate ex-
tension of the Hotelling's T2 test has been proposed for analyzing longitudinal
data [13].

In these previous works the de�nition of an appropriate distance between
manifold elements plays an important role. The statistical tools for TBM stud-
ies use Jacobian matrices as input data which belong to the general linear group
GL`pnq. A contribution of this work is the use of distances between Jacobian ma-
trices for TBM studies. A further requirement for a TBM study is that statistical
results should be independent of the template choice. Under a transitive non-
rigid registration process, we will show that the use of right-invariant distances
provides a su�cient condition for holding the template invariance requirement.

The aim of this paper is twofold. Firstly, to introduce a distance between Ja-
cobian matrices for TBM studies. This is formulated as a right-invariant Rieman-
nian distance on GL`pnq. The second aim is to illustrate results on a synthetic
spatial deformation study and a MRI brain image study using three di�erent
right-invariant distances: dDET which is a distance based on Jacobian deter-
minants; dAFF which is based on Cauchy-Green deformation tensors; and dRI
which is a Riemannian metric on GL`pnq. Voxel-wise hypothesis testing is per-
formed by means of the Cramér test [14, 15] for several reasons: it is computed
from the set of distances between observations solely and it can be used for both
univariate and multivariate data.

2 Background on univariate/multivariate TBM

Let Φ “ pφ1, φ2, ¨ ¨ ¨ , φnqT : Ω Ñ Υ be an invertible, orientation preserving and
di�erentiable spatial mapping (a di�eomorphism), where Ω and Υ are simply
connected subsets of Rn. Up to �rst order Φpx`dxq “ Φpxq`Jpxqdx`Opdx2q,
where J is a �eld of linear transformations belonging to GL`pnq (J : Ω Ñ

GL`pnq). Every element Jpxq is an n̂ n matrix with positive determinant.
The set of these matrices together with the matrix-matrix multiplication is a
matrix group and therefore a Lie group [16]. The n2 elements of the matrix
Jpxq “ pDΦq|x are the spatial derivatives of the deformation, such that the ele-
ment Ji,jpxq “ Bjφ

i
ˇ

ˇ

x
, i.e. the derivative of the i-th component of Φ along the

j-th coordinate.

Let T and A be two images representing similar contents. Registration of T
and A is formulated as �nding the spatial transformation Φ : dompTq Ñ dompAq
such that Φ ‹ T „ A, where ‹ denotes the action on the image pΦ ‹ Tqpxq “
TpΦ´1

pxqq, and p¨ „ ¨q refers to an equivalence relation de�ned typically by a
matching energy. Once the matching is found, both, the target image A and the
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deformed image Φ ‹ T look spatially similar and a correspondence is obtained
between all points of the domains dompTq and dompAq.

In order to asses statistical di�erences between two groups of images A “

tAau and B “ tAbu at each location a hypothesis test is performed on the
corresponding Jacobian matrices. Just to �x notation, let Φµ be the mapping
registering the template T to the image Aµ such that Φµ ‹T „ Aµ, and let Jµpxq
be its corresponding Jacobian matrix at the point x P dompTq. From now on,
the subindexes a or a1 run over the elements of the set A, b or b1 runs over the
set B, and, in general, indexes µ and ν run over any instance.

In order to perform statistics on Jacobian matrices an appropiate distance
function dp¨, ¨q : GL`pnq ˆGL`pnq Ñ R` must be employed.

2.1 Invariance with respect to the template

The template de�ne the anatomical coordinates where to perform the statistical
analysis. It is desired and expected that the methodology provides mainly the
same result for any template choice allowing to make general statements about
the anatomical location of the �ndings. Let T and W be two possible templates.
Let Ψ be the mapping relating W and T such that, Ψ ‹W „ T. Every point
y P dompWq is in correspondence with a point x “ Ψpyq P dompTq. Let Φ̃µ be
the spatial deformation to register W to Aµ. In this work it is assumed that the

registration process is transitive [17, 18] and therefore Φ̃µ “ Φµ ˝ Ψ . Although
this assumption is rarely achieved by current registration methods it is a key
ingredient to describe the �ndings in anatomical coordinates irrespectively of
the selected template.

The Jacobian matrix �eld derived from Φ̃µ is given by J̃µpyq “ JµpΨpyqqPpyq,
where Ppyq “ pDΨq|y. For a statistic based on distances, a su�cient condition
to achieve template invariance is to use a distance which ful�lls

dpJ̃µpyq, J̃νpyqq “ dpJµpxqPpyq,JνpxqPpyqq “ dpJµpxq,Jνpxqq

which is accomplished by a right-invariant distance, i.e.

dpJµP,JνPq “ dpJµ,Jνq (1)

for any Jµ,Jν ,P P GL
`
pnq.

2.2 Jacobian determinant

The most widely used tests to assess group di�erences are based on the determi-
nant of Jacobian matrices. These determinants belong to the group of positive
numbers under multiplication. This is a Lie group and an invariant distance is

dDET pJµ,Jνq “ | logpdetpJµqq ´ logpdetpJνqq| . (2)

The determinant of a Jacobian matrix can only quantify local volume changes.
Note that dDET does not satisfy the coincidence axiom which can be seen by the
fact that dDET pJ,LJq “ dDET pJ,JLq “ 0 for any matrix L with detpLq “ 1.
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2.3 Deformation tensor

In the area of continuum mechanics a commonly used feature to measure a local
deformation at the point x is the called Cauchy-Green deformation tensor [19]
Cpxq “ JT pxqJpxq. The tensor C is a symmetric positive de�nite (SPD) matrix
and it is related to the amount of anisotropic deformation up to a rotation. Under
a change of template, Jacobian matrices transform as J ÞÑ JP and therefore
Cauchy-Green deformation tensors transform as C ÞÑ PTCP.

In [5, 6] a distance between SPD matrices was proposed1: dSPDpCµ,Cνq “
›

›

›
logm

`

pCµq
´1{2pCνqpCµq

´1{2
˘

›

›

›

F

and for for any P with positive determinant

satis�es dSPDpCµ,Cνq “ dSPDpP
TCµP,P

TCνPq. The distance dSPD de�nes
a distance between Jacobian matrices

dAFF pJµ,Jνq “
›

›

›
logm

´

pJTµJµq
´1{2pJTν JνqpJ

T
µJµq

´1{2
¯
›

›

›

F

(3)

satisfying dAFF pJµ,Jνq “ dAFF pJµP,JνPq and therefore ful�lls the template
invariance requirement.

Likewise dDET , the distance dAFF does not satisfy the coincidence axiom,
speci�cally dAFF pJ,RJq “ 0 for any rotation R.

3 A metric on GL`pnq
The two previous distances ful�ll the template invariance requirement. How-
ever they do not satisfy the coincidence axiom and accordingly some di�erences
may not be measured. To overcome this drawback a right-invariant Riemannian
metric on the space of Jacobian matrices is presented below.

3.1 Invariant Riemannian distances on Lie groups

Let M be a di�erentiable manifold and TzM its tangent space at the element
z PM. A Riemannian metric pM, xu, vyzq onM is a smooth assignment of inner
products to every tangent space where z P M and u, v P TzM [20]. Using this
assignment, the length of a curve segment γ : rt0, t1s Ă RÑM is de�ned as

Lengthpγ; t0, t1q “

ż t1

t0

x 9γpsq, 9γpsqy
1{2
γpsq

ds .

A geodesic segment between two elements z and w belonging to M is an arc-
length parameterized curve segment which locally minimizes the length. The
Riemannian distance between z and w is the length of the shortest geodesic
segment connecting both elements.

Geodesics can be uniquely described by an initial point and an initial veloc-
ity. This description is related to the Riemannian exponential function Expzpvq

1 logmp¨q denotes the matrix logarithm (the inverse of the matrix exponential, denoted
as expmp¨q) and }¨}

F
is the Frobenius norm.
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where v P TzM [21]. The curve generated by Expzptvq is a geodesic and the

length of the segment from t “ 0 to t “ 1 is equal to xv, vy
1{2
z .

The set GL`pnq of all n̂ n matrices with positive determinant can be en-
dowed with a di�erentiable manifold structure [16]. Furthermore, it has a Lie
group structure (de�ned by the matrix-matrix product) and their elements,
curves, tangent spaces and velocities can be translated by its group action [22].

A right-invariant metric is a Riemannian metric which naturally arises in Lie
groups. Under this metric geodesics and distances remain invariant under right-
translations. The metric can be de�ned as an inner product at a single tangent
space (usually at TIM, called the group algebra) and propagated from right to
the whole group

xu, vyz “ xTzRyu, TzRyvyzy ,

where TzRy is the tangent lift of the Ry operator and right-translates a veloc-
ity from TzM to TzyM. Additionally the following invariance property of the
Riemannian exponential function holds:

Expzpvq “ ExpIpTzRz´1vqz . (4)

For a matrix group the tangent lift of the right translation takes the form
TRzv ÞÑ VZ, where V and Z are a matrix representation of v and z.

3.2 Riemannian right-invariant distance on GL`pnq

A closed form solution for the invariant Riemannian exponential on GL`pnq
for the case where xU1,U2yI “ tracepUT

1 U2q, being U1 and U2 elements of
TIGL

`
pnq, was given in2 [23]:

ExpQpVq “ ExpIpUqQ

“ expm
`

U´UT
˘

expm
`

UT
˘

Q , (5)

where V P TQGL
`
pnq and U “ VQ´1 P TIGL

`
pnq.

From the right-invariant Riemannian metric on GL`pnq the following dis-
tance is induced:

dRIpJµ,Jνq “ xU
˚,U˚y

1{2
Jµ

,

where U˚ is the smallest initial velocity satisfying ExpIpUqJµ “ Jν . The dis-
tance inherits the right-invariance from the metric, dRIpJµ,Jνq “ dRIpJµP,JνPq
for any P in GL`pnq, and therefore the invariance under the template holds. In
addition, dRI ful�lls the coincidence axiom, i.e. dRIpJµ,Jνq “ 0 if and only if
Jµ “ Jν .

2 Actually, in [23] the closed-form solution is given for a left-invariant Riemannian
metric, however using the identity Expright

I pUq “ pExpleft
I p´Uqq´1 it is possible to

express in closed-form its right-invariant version.
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In this work it is proposed to compute the Riemannian distance solving the
following problem:

minimize
UPTIGL

`pnq

›

›

›
ExpIpUqJµ ´ Jν

›

›

›

2

F

, (L1)

where, for simplicity, the Frobenius norm was chosen.
The Riemannian exponential function under a right-invariant metric is a

surjective mapping to the identity component of the group. As the group GL`pnq
consists of only one connected component, then the distance is well de�ned for
any pair of elements.

Using the right-invariance property in eq. (4), it is possible to reformulate
the problem (L1) as

minimize
UPglpnq

›

›

›
ExpIpUq ´ JνJ

´1
µ

›

›

›

2

F

, (L2)

where glpnq ” Rnˆn is the Lie algebra of GL`pnq.
A gradient descent procedure can be used to solve (L2) where the gradient

with respect toU is needed. LetQ P GL`pnq and EpU;Qq “
›

›

›
ExpIpUq ´Q

›

›

›

2

F

“
›

›

›
expmpU´UT qexpmpUT q ´Q

›

›

›

2

F

be the objective function. Its derivative with

respect to U results in

DUEpU;Qq “ 2
´

ExpIpUq ´Q
¯T

DUExpIpUq , (6)

where M denotes the n2 dimensional vector resulting by the stacking of the
columns of M. D is the Fréchet derivative operator: for a matrix function of
matrix argument F : Rm n̂ Ñ Rp̂ q, DMFpMq is a ppqq̂ pmnq linear operator

ful�lling rDMFpMqsi,j “ B
M
jFpMq

i
. Some rules to compute matrix functions

derivatives are in [24, Chapter 13].
Deriving the expression in eq. (5) it is obtained

DUExpIpUq “
`

In b expmpU´UT q
˘

dexpmpUT qKnn`

`
`

expmpUq b In
˘

dexpmpU´UT q pIn2 ´Knnq (7)

where Im is the mˆm identity matrix, Knn is the commutation matrix [24]

de�ned by KnnX “ XT for an n̂ n matrix X and dexpmp¨q is the Fréchet
derivative of the matrix exponential function (see Appendix A).

The optimization problem to compute dRI is presented as an iterative descent
optimization with a backtracking line-search along the direction ´DUEpU;Qq
given by eq. (6).

Once the optimal initial velocity U˚ is obtained, the length of the geodesic

segment is xU˚,U˚y
1{2
I “

›

›U˚
›

›

F

. If its Riemannian exponentiation generate the

shortest curve segment between I and JνJ
´1
µ , then dRIpJµ,Jνq “ dRIpI,JνJ

´1
µ q “

›

›U
›

›

F

.
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While the existence of a zero minimizer is guaranteed, a drawback of this
formulation is the non-uniqueness of a velocity satisfying ExpIpUq “ Q. There
may exist di�erent initial velocities which generate geodesics segments between
Jµ and Jν .

4 Cramér test

Three di�erent distance functions over Jacobian matrices have been considered in
previous sections: dDET , dAFF and dRI . Even though many statistical analysis
tools can be de�ned from the set of distances among observations, this work
focused on the Cramér two-sample test [14, 15]. This test was selected because
its statistic depends only on the inter-point distances

σptDµνuq “
nanb
na ` nb

˜

1

nanb

na
ÿ

a“1

nb
ÿ

b“1

Dab ´
1

2n2a

na
ÿ

a“1

na
ÿ

a1“1

Daa1 ´
1

2n2b

nb
ÿ

b“1

nb
ÿ

b1“1

Db1b

¸

where Dµν “ dpJµ,Jνq is the inter-element distance and na and nb is the car-
dinality of the set A and B respectively. Accordingly, this test can be directly
used on both univariate and multivariate data.

Statistical signi�cance can be assessed by means of random permutation
tests. The distribution of the statistic under the null hypothesis is empirically
estimated from random permutations of the group labels. The null hypothesis
is that both groups instances are drawn from the same distribution and it is
rejected for large enough values of σ. The p-value is assessed as the proportion
of the permutations having a σ value larger or equal than the σ value without
relabeling.

In TBM studies hypothesis tests are assessed at each image location and
therefore multiple comparison correction is an important issue. In this work
the false discovery rate (FDR) [25] criterion was used for the correction of the
proportion of false-positives among the rejected null hypotheses.

5 Results

5.1 Synthetic study

A synthetic study was designed to generate a set of controlled deformations
which will allow to illustrate the results of the three right-invariant distances in
a TBM application environment.

In order to facilitate the visualization of the results the experiment was per-
formed generating deformations on a 2D image. Two sets of 50 deformation �elds
were generated to deform a template. The �rst set was designed to represent
the anatomical variability within a 'control' group, while the second set aimed
at representing a 'pathological' group with group-driven anatomical di�erences
and intra-group variability. Representative examples of the deformation maps
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are illustrated in Fig. 1. Fig. 1 also shows 5 deformed contours from 'control'
and 'pathological' groups depicting the intra-group variabilities.

Deformation instances for 'control' group A were modeled as smooth and
invertible random deformation �elds which were obtained by integration of a
spatially correlated stationary velocity �eld. Instances for 'pathological' group
B were modeled as the composition of a common group-driven deformation and
random deformations similar to ones used for the 'control' group. The group-
driven deformation was designed as an invertible mapping producing the fol-
lowing changes on the 'subcortical structures': a clockwise rotation of the struc-
ture in the 'left hemisphere' of 15 degrees; a counter-clockwise rotation of the
structure in the 'right hemisphere' of 15 degrees and a subsequent anisotropical
scaling with factors 0.7 and 1/0.7 along the horizontal and vertical directions
respectively. Note that the group-driven deformation preserves the volume of the
'subcortical structures' but the surrounding regions su�er more complex defor-
mation due to the continuity of the deformations. This e�ect can be seen in the
zoomed panel of Fig. 1.
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Φa Φb
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Fig. 1. Synthetic data for 'control' group and 'pathological' group. Left: illustrative
examples of the deformations map Φa and Φb mapping the template to a given instance.
Right: �ve contours depicting the intra-group anatomical variability.

TBM studies were performed using the previous de�ned distances: dDET ,
dAFF and dRI . At each location Cramér tests were computed and a set of 100,000
random permutations were performed in order to assess the p-value maps. In
order to correct for multiple comparison, FDR criterion was used.

Fig. 2 shows the FDR corrected p-value maps corresponding to the Cramér
tests. The distance dDET was not able to detect statistically signi�cant volume
changes in the interior of the 'subcortical structures', because there was no sig-
ni�cant local volume changes in those regions. However, signi�cant volume dif-
ferences were found at outer regions surrounding these structures. This behavior
shows that the deformations driven by a rotation of a structure surrounded by
a static region mainly generates volume changes outside the structure.

The statistical map using dAFF shows signi�cant di�erences in the interior of
the 'right subcortical structure', because there was an anisotropic scaling. How-
ever, no signi�cant di�erences were found in the interior of the 'left subcortical
structure' because the deformations were mainly driven by a rotation.
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Fig. 2. Statistical map of FDR corrected p-values for Cramér test based on di�erent
distances. Template contours are illustrated in green for localization purposes. Cyan
contours show the boundary of the regions with signi�cant di�erences with the criterion
of pFDR ď 0.05.

Regarding the statistical map using dRI , it can be seen that signi�cant dif-
ferences were found in the interior of both 'subcortical structures'.

5.2 ADNI dataset

A set of T1-MRI brain images was selected from ADNI database (adni.loni.ucla.edu).
Twenty elderly control subjects (denoted here as NOR group) and twenty AD
patients (denoted as AD group) were selected from the database. As the brain
atrophy is a�ected by factors such as age and gender, subjects were selected
to be gender-matched and within a narrow age interval (72˘ 1 years). Clinical
scores, such as MiniMental State Examination (MMSE) [26] or the memory score
in the Clinical Dementia Ratio (CDR) [27], were signi�cantly di�erent between
both groups under a Student's t-test (MMSE: 29.3 ˘ 1.0 for NOR group while
23.3˘ 1.8 for AD group; CDR: 0.0˘ 0.0 for NOR group while 0.9˘ 0.3 for AD
group).

The MRI template T was built from 40 elderly control subjects as described
in [2]. The deformations �elds Φµ were estimated using a SVF di�eomorphic
registration [28, 2] between the MRI template T and each image instance.

Voxel-wise Cramér tests were performed using the three right-invariant dis-
tances dDET , dAFF and dRI . Critical values were estimated by means of a permu-
tation test using 100,000 permutations. After, the p-values maps were corrected
with FDR criterion. Fig. 3 shows a coronal and sagittal illustrative slice of the
corrected p-value map for each method.

The three statistical maps are in agreement with the pathophysiological
knowledge of Alzheimer's disease. As it was expected, the number of voxels
with signi�cant di�erences in the dDET map was much smaller than in dAFF
and dRI maps.

6 Conclusion

Previous literature on TBM focused on selecting di�erent features or descriptors
of the Jacobian matrix on which to perform either univariate or multivariate
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Fig. 3. Illustrative coronal (left) and sagittal (right) view of FDR-corrected p-value
maps of the Cramér test on three right-invariant distances: dDET (top row), dAFF

(middle row) and dRI (bottom row). L and R denote left and right hemisphere respec-
tively. The dashed vertical lines show the location of the sagittal and coronal slices.

statistics. In this work di�erent distance functions over Jacobian matrices were
analyzed. From this distance perspective, the template invariance requirement
led to the use of right-invariant distances.

Three di�erent right-invariant distances on GL`pnq were considered in this
work. The �rst two distances have been previously used in the literature: the
distance between log of Jacobian determinants dDET and a distance between
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deformation tensors dAFF . While the distance dDET only measures local vol-
ume changes, dAFF additionally quanti�es anisotropic scalings and shearings
but no local rotations. The third one is a right-invariant Riemannian distance
between Jacobian matrices dRI , and it has not been previously used on TBM.
The Riemannian distance dRI quanti�es the complete local deformation. This
behavior was clearly illustrated in the results from the synthetic data.

A Fréchet derivative of the matrix exponential
To compute the Fréchet derivative DUExpIpUq given in eq. (7) an expression for
dexpmpMq ” DMexpmpMq is required. This is the linear operator containing the
derivatives of each element of expmpMq with respect to a perturbation on each ele-
ment of M and results in an n2 n̂2 matrix.

There are di�erent attempts to compute DMexpmpMq [29�31]. For our computa-
tions we used the approach given in [32], where for an analytic matrix function FpMq

F

ˆ

$

’

%

M P
0 M

,

/

-

˙

“

$

’

’

’

%

FpMq drFpM` rPq

0 FpMq

,

/

/

/

-

and if Pj is the j-th canonical perturbation, then the vectorization of the upper-right
submatrix drFpM` rPjq is the j-th column of the matrix DMFpMq.
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