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Preface

Computational anatomy is an emerging discipline at the interface of geometry,
statistics and image analysis which aims at modeling and analyzing the biolog-
ical shape of tissues and organs. The goal is to estimate representative organ
anatomies across diseases, populations, species or ages, to model the organ de-
velopment across time (growth or aging), to establish their variability, and to
correlate this variability information with other functional, genetic or structural
information.

The Mathematical Foundations of Computational Anatomy (MFCA)
workshop aims at fostering the interactions between the mathematical com-
munity around shapes and the MICCAI community in view of computational
anatomy applications. It targets more particularly researchers investigating the
combination of statistical and geometrical aspects in the modeling of the vari-
ability of biological shapes. The workshop is a forum for the exchange of the
theoretical ideas and aims at being a source of inspiration for new methodolog-
ical developments in computational anatomy. A special emphasis is put on the-
oretical developments, applications and results being welcomed as illustrations.
Following the successful first edition of this workshop in 2006! and second edi-
tion in New-York in 20082, the third edition was held in Toronto on September
22 20113,

Contributions were solicited in Riemannian and group theoretical methods,
geometric measurements of the anatomy, advanced statistics on deformations
and shapes, metrics for computational anatomy, statistics of surfaces, model-
ing of growth and longitudinal shape changes. 22 submissions were reviewed by
three members of the program committee. To guaranty a high level program,
11 papers only were selected for oral presentation in 4 sessions. Two of these
sessions regroups classical themes of the workshop: statistics on manifolds and
diffeomorphisms for surface or longitudinal registration. One session gathers pa-
pers exploring new mathematical structures beyond Riemannian geometry while
the last oral session deals with the emerging theme of statistics on graphs and
trees. Finally, a poster session of 5 papers addresses more application oriented
works on computational anatomy.

August 2011 Xavier Pennec
General Chair
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Direct LDDMM of Discrete Currents
with Adaptive Finite Elements

Andreas Giinther, Hans Lamecker, and Martin Weiser

Zuse Institute Berlin, Takustrafie 7, D-14195 Berlin-Dahlem, Germany
guenther@zib.de

Abstract. We consider Large Deformation Diffeomorphic Metric Map-
ping of general m-currents. After stating an optimization algorithm in
the function space of admissable morph generating velocity fields, two
innovative aspects in this framework are presented and numerically in-
vestigated: First, we spatially discretize the velocity field with conform-
ing adaptive finite elements and discuss advantages of this new approach.
Second, we directly compute the temporal evolution of discrete m-current
attributes.

1 Introduction

The Large Deformation Diffeomorphic Metric Mapping (LDDMM) approach ini-
tiated in [4, 18] has attracted considerable attention over the last few years in
medical imaging. It allows to match highly deformed objects and as such is ca-
pable of performing inter-individual registration. LDDMM constructs a space
mapping by evolving a displacement field along a velocity field, we call wind.
Depending on the regularity of the wind, either diffeomorphisms [1,12] or home-
omorphisms [21] of the embedded space can be obtained. Thus, it provides a
basis for many applications of anatomical shape analysis, where a one-to-one
correspondence between different spatial objects is required.

The LDDMM technique is commonly applied for matching currents [5]. Cur-
rents provide a unified mathematical description of geometrical objects of dimen-
sion 0 (points), 1 (curves), 2 (surfaces) or 3 (volumes) [7, 14] which are embedded
in R3. The spaces of m-currents are linear and equipped with an inner product
and hence are a suitable tool for statistical shape analysis [5]. The induced norm
provides a similarity measure for matching of source and target objects.

In [3] a particle-mesh method has been applied to 1-currents in 2D. Therein
curves of same topology represented by a parameterization were approximated
by a finite point set without any tangential information regardless of some ge-
ometrical level of detail for matching. Although attaching a momentum vector
at each vertex of the source shape can be proven to be the optimal wind pa-
rameterization, Cotter proposes to use cubic B-splines on a fixed grid. In an
enclosed efficiency discussion this sub-optimal parameterization is still compet-
itive due to the simpler wind structure. However the numerical scheme there
relies on equidistant cartesian grids with constant diffusity in order to apply
FFT techniques.
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In contrast to [3] we apply in 3D the Orthogonal Matching Pursuit (OMP)
proposed in [6] to obtain a sparse representation for general m-currents at a
given geometric resolution (spectral length) in terms of a sum of discrete Dirac
delta m-currents. Currently, the LDDMM evolution of this representation is only
done indirectly via an approximative scheme [5, Rem. 4.13] as depicted in Figure
1 (left) for m = 2, because it would otherwise require the computation of the
Jacobian of the diffeomorphism, which is a challenge when discretizing the wind
using Gaussian kernels [8,9, 19]. Furthermore, one looses the connectivity of the
input mesh structure in this case. However, this is not a significant problem,
since the connectivity can be recovered by applying the final displacement field
to the input meshes afterwards.

t=20 t=T
nr
WmT
/g‘;)\\{ta,/

Fig. 1. Usual discrete 2-current deformation (left) versus the direct approach (right)

In this paper, we study the direct evolution of Dirac delta m-currents (right
of Figure 1). We show that the direct approach allows to uniformly treat m-
currents for m = 0,...,3 (Sec. 2), which to the best of our knowledge has
not been shown before. We show also how to compute the Jacobian in this
setting by using finite elements (FEM) to discretize the wind in the LDDMM
framework (Sec. 3). Since the compactly supported basis functions are fixed
in space the computation is significantly simplified. Although equidistant grids
can of course be incorporated, we also in contrast to [3] consider locally refined
meshes and exploit the decoupling of the wind and current discretization for
an adaptive current representation, giving a significant reduction of degrees of
freedom (Sec. 4). Based on our results, the increased spatial flexibility of adaptive
FEM may be exploited in the future by implementing hierarchical schemes, error
estimators and non-constant spatial anisotropic diffusity.

2 Continuous Matching Problem

For given shapes S, 7 C R3 we aim at constructing a sufficiently smooth bijection
¢ of R3 such that the distance between ¢(S) and T is minimal. Here we fix the
formalisms to describe the matching problem as an optimization task.

2.1 Currents

Currents are mathematical tools suited for describing geometrical objects such
as points, space curves, surfaces and volumes embedded in R3. Their precise
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definition from [7,14] requires notation for differential forms taken from [15].
Let for m = 0,1,2,3 the set D™ := C°(R3, A™R3) denote the vector space of
all C*> differential m-forms on R3 with compact support. A m-current is an
element of D,,, the dual space of D". The elementary Dirac delta m-currents
Jurh--Num € Dact on w € D™ as

6;1/\.../\714771 (w) = w(l‘)(’u,l TANAN Um) .

Following the discussion in [5, Sect. 1.5.1] it turns out that for the purpose of
matching currents the testspace of all C'* differential m-forms is not suited due
to a missing bound in variation. Moreover the space D° can be identified with
scalar C2° functions on R?. For m = 1 and m = 2 the space D™ is isomorph to
the space of vector-valued C2° functions from R? to R®. An element of D3 can
be written as a scalar C2° function times the determinant form on R3.

Both aspects motivate the use of Reproducible Kernel Hilbert Spaces (RKHS)
W™ as testspaces.

Definition 1. Let d,,, = 1 for m € {0,3} and d,, = 3 for m € {1,2}. For
m =0,1,2,3 let W™ denote the dense span of d,,-vectorfields of the form w(zx) =
km(z,y)a, where x,y € R3, a € R and ky,(z,y) = exp(—||x — y||*/02,). The
space W™ can be equipped with the inner product (kuy, (-, z)a,kn (-, y)b)wm =
a*km(2,y)b. Here the symbol x denotes the transpose operation.

An m-current in R® is a continuous linear functional on W™. W,, denotes
the vector space of all m-currents in R3.

For x € R? and attribute a € R% we define the elementary Dirac delta
m-currents 0¢ € Wy, acting on w € W™ as §%(w) = a*w(x).

The above inner product induces a norm on W™, which can be computed effi-
ciently via FGT even for a large number of linear combinations of the above basis
functions. The chosen Gaussian kernel k,,, can be considered as Green’s function
for some differential operator Ly (see [1,6,8]). With the above objects at hand
the Riesz representation theorem provides a unique operator Ky : W, — W™
reflecting the canonical isometry between W™ and W, defined via

(K £y g)wm = (f, ) w,,.wn = [(g)

for all f € W,, and ¢ € W™. It provides for the m-current S™ the Riesz
representant K{j;S™ as unique d,,-vectorfield on R3.

2.2 Homeomorphisms and Diffeomorphisms

Let £2 be an open bounded subset of R? and consider functions v; : 2 — R3
that vanish on 0f2. For given final time 7" > 0 and a time-dependent wind
v = (Vt)¢ejo,7] We consider the temporal evolution of the identity map

8 U
OO — vu(a) with gj(a) = . 1)
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In what follows it will be useful to define the trajectory x; := ¢} (z) for some fixed
space point x € R? and the map ¢V, := ¢V o (¢?) "1, describing the movement of
a particle starting in x at time s towards ¢%(x) at time ¢. It is well known (see
[21, Thm. C.3]), that (1) is uniquely solvable when for some zy € {2 the integral
fOT l|lv¢(w0)||rs +Lip(v¢ ) dt is bounded. Furthermore its solution ¢? : R® — R3 is a
homeomorphism of {2 for all times ¢t € [0, T]. Under more restrictive assumptions
onto the spatial smoothness of the wind, i.e. v, € C}(2,R3) V¢t € [0,T] and
fOT [lvell1,00 dt < 0o the unique solution of (1) is even a diffeomorphism of (2 for
all times ¢ € [0,T] (see [21, Thm. 8.7]). For convenience we look for the wind
v in some Hilbert space V. Such spaces can be constructed by defining inner
products associated to differential operators. Let therefore L : V — L2(R?) be
a differential operator and equip the Hilbert space V' with the inner product
(v, 9)v = (Lvy, Lg)p2 = (L*Luy, g)y+,v. Here L* denotes the adjoint operator.
For this work we use

S :=L*L = (~div(6%, V) + I)f = (ot A+ 1)k (2)

and k = 1 or k = 2 giving the Sobolev spaces H” (see [8]). For given f € V*
we consider solutions v; € V' of Sv; = f with homogeneous Dirichlet boundary
conditions for v; (and v} if kK = 2). Here the real parameter oy > 0 balances
between smoothing and data fitting of the right hand side f. For other choices of
L* L and boundary conditions see [12]. Dealing with natural boundary conditions
is also possible, but requires a sufficiently large domain to keep all trajectories
therein. Analogous to Kj; we introduce the isometry operator Ky : V* — V. A
mathematically equivalent approach of constructing V' consists in defining Ky
via the Green’s function ky (z,y) of L*L, see for instance [8,9,19, 20].

2.3 Diffeomorphic Deformation of Currents

For m = 0,1, 2,3 let currents S™ € W,,, be given. Let ¢ denote a diffeomorphism
on R? and d,¢ the Jacobian of ¢ at x. The pushforward ¢4(S™) € W,, of
S™ under ¢ is rigorously defined in [15] via the pullback of differential forms.
For our purpose it is sufficient to mention that if $™ is associated to a sub-
manifold in R? its pushforward ¢4 (S™) under ¢ corresponds to the deformed sub-
manifold ¢(S8™). This important property justifies to write also ¢(S™) € W,,.
The explicitly calculated pushforwards for elementary Dirac delta m-currents
taken from [5, Table 1.2] are given in Table 1.

Table 1. Pushforwards of Dirac delta m-currents under ¢

m=0 do=1 ceR  ¢4(67) = 05
m=1 di=3 TR ¢(57) =350
m=2 dy=3 neR® ¢ (o) =0y "? “(n)
m=3 dz3=1 peR ¢ﬁ(5£):5f&3¢>\p
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Let some wind v be given and consider the family (¢}) of diffeomorphisms
generated via (1). The following theorem describes the direct evolution of m-
current attributes a,, € R%" under (¢?);, where ' denotes the time derivative.

Theorem 1. The pushforwards of 650, 679, 6720 and 68° under ¢} satisfying (1)

are 050, 07, 67 and 0%°. Their components are given via the ODEs
s s s s

xy = v(x¢) with 2(0) = zo
7 = (de,v) T with 7(0) = 79
ny = ngtr(dyg,v) — (dg,ve) ne with n(0) = ng
py = pitr(de,ve) with p(0) = po .

Proof. Abbreviating J; = dy, ¢y and Ay = dy, v, there holds (see [1]) J; = AiJy
with J(0) = Is. Observing the evolution of the Wronskian [13, Thm. 2.14] or via
Jacobi’s formula one obtains

|| = |Jeltr (J; N T)) = [Jeltr (J7 P Ay) = [Jiftr(Ay),

where tr(A) denotes the trace of a matrix A and A= = (A~!)*. Now from
Table 1 we read out

Ty = flﬂj(!ﬂo) , Te=JT0, N = |Jt|Jt_*’ﬂ0 . pe=|Jtlpo -

Differentiation of the above equations with respect to t yields

zy = @7 (x0)" = ve(#7 (20)) = vi(xt)

Tt/ = Jt/TO = AtJtTO = AtTt

ny = |Ji| Iy " no + [Tl (T ) no = [Jeltr(Ae) Ty "no — || A} Iy " no
= Tlttf(At) — A:Tlt

pr = Tl po = [Te|tr(Ae)po = petr(Ayr),

which proves the assertion. a

Remark 1. The authors emphasize the striking advantage that Theorem 1 en-
ables to find the final position and attribute of a Dirac delta m-current without
computing the Jacobian of the deformation. The appearing ODEs only involve
the Jacobian of the velocity fields, which will be given in a closed form in any
case.

2.4 Optimization Problem in Function Space

Let source 8™ € W,,, and target current 7™ € W,, be given for m =0, ..., 3.
For given wind v we define the deformed current S;” := ¢7(S™) at time t.
Matching means the minimization of the distance of the deformed source current
at final time S} with its target current 7', i.e. minimizing the dual norm
|4 (S™) — T™w,, = |SE — T™|lw,, in the space of m-currents.
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Given a regularization parameter v > 0 and matching weights w,, > 0 we
consider for v € L%([0,T], V) the following optimization problem:

T 3
J(v) = / lodld dt+ 3 wnllh(S™) — T3, —min . (3)

m=0

Here the first summand involves the kinetic energy of the wind. The existence of a
solution for (3) is proven in [10], however it is generally not unique [2]. Following
[9] the gradient of J in L2([0,T], V) at fixed v is given by (V.J); = 2yv+2Kv (f:),
where f; € V* is defined by

3
few) =" wn( S VKR (SF = T™) 0 ¢ir) ww,,wm YueV .

m=0

For further discussion concerning the choice of the gradients metric we refer the
reader to [1]. With the above quantities at hand one is able to state a steepest
descent optimization algorithm in the function space of velocity fields v.

3 Discrete Matching Problem

3.1 Discretization of the Wind by Finite Elements (FE)

In the field of optimal current matching mainly wind discretizations of the form
vi(x) = kv (x;¢,x)o 4
t(2) Zj v( Jst ) Jst (4)

have been considered. Here aj; € R?® are the time-dependent momentum vectors
and ky denotes a Gaussian kernel with some global kernel parameter oy > 0,
describing the coherent movement of neighboring particles. In order to apply
Fast Gauss Transform (FGT) for efficient evaluation, oy is necessarily a con-
stant. Although (4) can be proven to be the optimal wind parameterization, the
spatial movement of non-compactly supported basis functions along trajectories
xj: may cause numerical difficulties. Too small distances between them cause
a redundant or badly conditioned description of the velocity field while the ab-
sence of trajectories in a part of the domain produces almost no wind there for
small kernel sizes. The trajectory density varies during optimization and hence
is difficult to control. Because the trajectories’ starting points are the spatial
components of the Dirac delta source currents the number of trajectories is fixed
and hence a notion of adaptivity for the velocity field can hardly be introduced.
Finally, as mentioned in Sect. 2.2, C*° smoothness is not required to solve the
evolution equation.

In [16] and [17], some of the above mentioned drawbacks are overcome by
incorporating multiple kernel shapes at different scales oy .

Similar to the particle-mesh method proposed in [3], we follow another sub-
optimal approach completely decoupling the discretization of the space of m-
currents W, from the spatial velocity space V. Keeping in mind that fast point
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evaluation of the wind is essential for performance, we consider adaptive hexa-
hedral grids for {2 with hanging nodes saved as an octree. Over such hexahedral
grids we construct either C'! conforming Hermite finite elements of third order
or simpler C° conforming Lagrange finite elements of first order. The wind for
fixed time ¢ € [0,T] in the FE basis {¢,},; takes the form

ve(z) = Z;;l ;(x)oye (5)

In contrast to radial basis functions, locally constant functions are contained in
the ansatz space and allow to represent local or even global translations with
few degrees of freedom (DOF). Due to the compactly supported basis functions
there is no need for an approximate evaluation like FGT with further unknown
tolerance parameters. Since the basis functions are fixed in space, the underlying
mesh provides a natural clustering which can be exploited via a smart parallel
octree search algorithm for point evaluation. Furthermore this approach provides
a multilevel wind hierarchy with a fraction of DOF's on the coarsest mesh level
completely decoupled from the m-current discretization. These advantages also
appear in the particle-mesh method with tensor-products of cubic B-splines for
instance. But since we do not apply FF'T for wind evaluation, we are more flexible
with adaptive meshes and do not require a box domain. Moreover non-constant
anisotropic diffusity oy (x) € R3*3 may be incorporated in future.

A difficulty arises in the computation of the L?([0, T, V)-gradient. It perma-
nently involves the solution of a second (k = 1) or fourth (k = 2) order elliptic
PDE in every time-step and every iteration. It is clear that one should employ
suited preconditioners and / or multigrid solvers. Using existing FE libraries lim-
its implementation overhead. We chose libMesh [11], which provides conforming
C! finite elements on adaptive hexahedral meshes.

The development of adaptive mesh refinement is beyond the scope of this
work. Here, we provide a proof of concept that adaptive grids can easily be in-
corporated. Therefore we simply geometrically refine near S™U7T ™ considered as
subsets of R3 equally for all times. More sophisticated error indicators suggest-
ing refinements could be the scalar fields |Kj (ST — T™) o ¢ip|, |ve| or |L* Lvy|.
The latter one measures the smoothness of v;. Moreover thinking of hierarchical
error estimators one could compute [|[vf — Invi || £2(q) or even |lvy — v || £2(g) on
hexahedrons @, where v* denote the numerical solutions for the C* conforming
FE discretization and I is the usual Lagrange interpolation operator.

All appearing ODEs are numerically integrated via the explicit method of
Heun on an equidistant decomposition of the time interval [0, T].

3.2 Current Compression and Direct Evolution

For approximating a m-current 8™ € W,, as 8™ = > o3t € Wy, we use the
Orthogonal Matching Pursuit (OMP) proposed in [6]. This method iteratively
selects the most important points x; and computes corresponding attributes a;
(i.e. ¢, T, ng, pi) of a general m-current via a greedy algorithm. It has the

advantage of compressing the current information for a characteristical spectral
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length 0, > 0 towards a fraction. This enables the design of highly efficient
numerical solution algorithms. The approximation error in OMP is controlled
by a threshold parameter and the grid size of a uniform testgrid.

The obvious drawback of loosing the connectivity between vertices (for m >
1) can be compensated by applying the obtained optimal diffeomorphism to all
connected vertices whenever it is required. This only requires one additional
forward flow computation at the end.

In [19, Sec. 3.2] two methods to deform a 2-current S? under a family of
diffeomorphisms (¢}); are described. In contrast to all previous work, we will
pursue the direct approach motivated by Theorem 1. For 2-currents, only 1
instead of 3 trajectories is needed to evolve the normal ngy (Fig. 1). In general,
the direct approach requires only one trajectory per attribute, hence decreasing
the number of variables in the computation, whereas in the indirect case an
artificial m-simplex with m + 1 vertices is attached.

Remark 2. To quote Rem. 4.13 in [5] the direct evolution of current attributes is
closer to the analytical concept of currents and is particularly suited for OMP,
where no connectivity between the points is provided. But [5] indicates the need
of Jacobi matrices (as they arise in Theorem 1) as a disadvantage for numerical
implementation. At least for the gradient computation in the next section we
benefit from the simpler structure of v; in (5), which in Lemma 2 enables easy
evaluations of d,,v; = 2?21 a;1V;i(z,)* and hence tr(dg,vt), (ds,ve)w and
(dz,v¢)*w for a vector w € R®. Note that all sums over j are local sums due to
the compact support of the basis functions ¢;.

3.3 Discrete Optimization Problem and its Gradient

Let a(-,-) denote the bilinear form corresponding to the elliptic differential
operator S from (2). We define the sparse symmetric, positive definite ma-
trix S := [a(pi, ;)] ;=1 using the FE basis {¢;}; from Sect. 3.1. Moreover
we introduce the block vectors o = [ai¢|iy, x¢ == X" = [x;4];™ and
a; :=a}" := [a;,);™ . This notation allows to write the matching terms as

m m v (Om m Sm i, Tm b
E™ = E™(x7,ar) = [|¢5(S™) = T™ %, = | 270 deir — 22570 0 i, -

Finally the discrete form of the current matching problem (3) is

T 3
J(a) = 7/0 [ve(@a)lls dt+ Y wll$(S™) = T™(IFy,, — min
m=0

or even shorter via (5) and ||vi(aw)||3 = a(ve(ow), vi(ew)) = o Sy

T 3
J(ay) = fy/ o;So dt + Z wm E™(xr,ar) — min . (6)
0

m=0

The analytical computation of the gradient at given a; becomes manageable
though the simpler wind representation (5). Numerically the computation is
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more involved due to presence of Hessians of basis functions. But these are
easily provided via the already mentioned libMesh library.

Theorem 2. The gradient of J in the L2-metric is
R 3
(V) =27Sau + ) wml(@]") nf" + (Oagl") ¢, (7)
m=0

wlth Soln = [@] (Iivt)Idm]izl...sm;jzl...n

T
C;n:vaTEer/ (Oag™)*C™ ds
t

T
n:n:VxTEm+/ (Oxgl)* ¢ ds .
t

The proof is postponed to the appendix. The remaining quantities Vx, E™, Va, E™, 0a8l", Oxg}"
and J,g;" from Theorem 2 for each m are specified in the next two lemmas.

Lemma 1. Let fo(x) = 325 km (i1, @)air — 3257 km(yj, 2)bj. There hold
VxTEm = [Q(dmi,Tfm(mi,T))*ai,T]f;nl and vaTE‘ml = [Qfm(x’LyT)]zé;nl
Proof.
(O E™)n =2 [(a:cT i 52: ;) } (fm) = 2a% (dor fm(27)) M
VJCTEm = ( l'Tfm(IT)) ar
(i (Vak (@i, wr))at s — Y52 (Vako (yy, 1)) )ar
[(0ar 3237 0252 )] (fm) = 20" fn(21) -

2
(Oar E™ ) = 2

Lemma 2. For g}* in (11) their sparse Jacobians are given via

g =0
8&&% = [(Tz tV‘PJ(xz t))IB]Z Losij=l..n
0agi = [nitV;(zie)* — Voj(zi)n i,t]izlwsmj:lmn
Bagi = 06,V i (i) i szt
Oxgl = diag{zyzl ;i Hy, (:c”)} j;l

S2

Oxgi = dlag{ j=1"1, t(a G o, (zit)) — (a;,tniat)HWJ (xzt)} i1
P S3
axg? = [ j= 1 Pi, taj tHap, (Izt)i| i—1
S1
Orgy = [ j=1 %4, tVoj(@ie)” L:l
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n % * 52
Oug} = ding| ), (03 Vs (@) Ts — Vips(wi)er, |

S3

08! = ding| ), a5 Vepy(ain)|

1=

=1

where H,,(x;:) denote the Hessian of v; at x;;.

Proof. The proof for all cases of m can easily be adapted from the case m = 2.
For this choice the derivatives of g2 follow from direct calculations starting with

S2

th = g2(at»xt’nt) = diag [tr(dmi,tvt)jg’ - (dzi,tvt)*]izl ng

. « " 82
= dlag[zyzl(%,tvw (zi4)) I3 — Vo, (xi,t)%,t] A
82

= {22;1 nit (o, Voj(zit)) — vcpj(xi,t)(a;,tnii)} _

1=

where diag[v] = [0;;v;]; ;—; for v € R® and §;; denotes the Kronecker delta. O

Corollary 1. If w,, =0 for m > 0 Theorem 2 simply provides
(V)i = 2ySev +wo(pf) Vier B

Remark 3. The L2(|0,T], V)-gradient of J is immediately obtained by applying
S~! from the left in equation (7).

4 Numerical Experiments

Since the numerical implementation is not yet fully tested, we postpone the
investigation of the cases m > 0 and only consider the case m = 0, i.e. w; = d;0.
The surfaces S and 7 are depicted in Fig. 2. To both of them we apply the
OMP with oy = 8 towards S with sy = 1746 points and T with ro = 2141
points, which are sketched as set of spheres of diameter 8 in Fig. 3.

i |
S e i o, /j
= HH
I T
Bi=== =
J\l' o T —\\J
LL 11 _\u
Fig. 2. S (dark green), 7 (light red) Fig.3. S (green), 7 (red), grid

We solve the discrete matching problem (6) on {2 = (0, 346.56) x (0, 205.76) x
(0,256.96) with v = 0 and tuned oy . For Lagrange FE (k = 1) on a hexahedral
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adaptive grid from Fig. 3 having 568 nodes (133 of them are hanging nodes) we
choose oy = 100. The result St is shown in Fig. 4. Secondly we solve problem
(6) with Hermite FE (k = 2) on a uniform coarse grid having 120 nodes, whose
solution is shown in Fig. 5 for oy = 15. Finally in Fig. 6 we compare our results
with the software ExoShape!, generating C*° wind via ansatz (4) with o = 30.
The greyscale highlights the term distyes, (2, T). One should keep in mind,
that with v = 0 the deformation norm vanishes in the example, but different
differential operators are still present for velocity field evaluation. Although a
proper comparison between all methods should use the same deformation norm
Il - v, Exoshape does not easily support its change.

Fig. 4. St for C° wind Fig.5. St for C' wind  Fig. 6. St for C*™ wind

A quantitative comparison between all different wind discretizations is issue
of Table 2. Therein the column DOFs denote the number of freely choosable
vectors a;; for fixed t. All methods provide acceptable matches with respect
to the fixed level of detail o9 = 8. Especially the surface Sy corresponding to
C! wind is also visually closest to 7 although it is obtained via less wind DOFs
compared to the approach from Exoshape. This fact stresses the potential of sub-
optimal, albeit simpler wind parameterizations and decoupling the discretization
of the spaces W,,, from V.

Table 2. One-sided surface distances between St and 7 for m = 0

vt DOFs mean stddev rms max
c° 1-(568-133) = 435  1.18 1.14 1.64 11.33
ct 8120 = 960  0.95 091 132 9.16
c 1746  0.97 093 1.34 9.70

no wind, distzes(z,T) 5.08 3.87 6.39 21.05

Appendix

In the following we prove Theorem 2.

! http://www-sop.inria.fr/asclepios/projects/Health-e-Child /ShapeAnalysis/
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Proof. First we consider the variation of the kinetic energy, i.e. w,, = 0 for all
m. One directly calculates

Let us now consider the contrary case, i.e. v = 0. We aim to compute Vo E™
for some fixed m. Variation of F = E™ w.r.t. a; in direction & gives

= (Oxp E)Xr + (Oap E)ar . 9)

There holds , ,
X = /0 Us(x5) ds = /0 pasds . (10)
From Theorem 1 the evolution of m-current attributes can be written as
a, = glay, x¢,ar) =g with a(0) =ag . (11)
Its variation in direction &; satisfies
a;, = (0agt): + (0x8t)X: + (Oagi)a; with a(0)=0 .

It remains to express a;. We therefore introduce the flow % = (Oagt)Fst with

Fy; = I and get

t
5t = / Fut((aagu)&u + (8xgu)iu) du
0

t t u
= / Fut (aagu)du du + / / Fut (axgu)cpsds ds du
0 0 JO
t t
= / (Fut (aagu) + / Fst (8xgs) ds ‘Pu) &u du .
0 u

In particular there holds

T T
ar = / <FtT(8agt) + / FsT(axgs) ds 90t> &t dt . (12)
0 t

Combining (9), (10) and (12) we have

T

T
E™ :/ (Oxp E) 0 + (0ar E) (FtT oSt +/ Fop(0x8s dsgot) oy dt
0

T T
:/ < [(GXTE) —|—/ (Oay E)For (0xgs ds} p; + (0ar F) FtT(aagt)> & dt
0 t

=:(;

*

=y

T
- / (150 + € (D)) Gt (13)
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Since Fy Fys = I and %fl = —(0a8s)* F, we have in particular the integral form
Fj, =TI+ [ (0agu)"F;, du. This helps to simplify

T
G = Fir(VarB) = (14 [ (0ug)"Fir ds) (Var )
t
T T
= VaTE+/ (Oags) Fir(Var E) ds = VaTE+/ (0ags)"C, ds (14)
t t

T T
M= Var B+ / (Og) Fir(Var B) ds = Vi E + / (Oxg)*Cods . (15)
t t

Collecting (8), (13), (14) and (15) yields the assertion. O
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Abstract. Quantitative motion analysis from echocardiography is an
important yet challenging problem. We develop a motion estimation al-
gorithm for echocardiographic image sequences based on diffeomorphic
image registration in which the velocity field is spatiotemporally smooth.
The novelty of this work is that instead of optimizing a functional of
velocity field which consists of similarity metrics between a reference
image to each of the following images (first-to-follow), we optimize a
functional which is a sum of similarity metrics of each two consecutive
images (frame-to-frame). This method can reduce the bias effect of us-
ing a single image as reference. It also improves registration accuracy
since consecutive frames usually have higher dependency than frames
far away. We validate our method by using both simulated images with
known ground truth and in vivo pig heart images with sonomicrome-
try. Tests indicate that our frame-to-frame motion estimation method is
more accurate than first-to-follow method.

1 Introduction

Quantitative analysis of cardiac deformation and motion is important for study-
ing heart function. Many illnesses related to ischemia or infarct can be recognized
from the motion and deformation abnormalities [1]. Techniques to discriminate
the abnormal motion and accurately locate regions with motion abnormality are
critical to identify the disease and to evaluate the treatment. Echocardiography
(echo) is the most widely used image modality because it is non-ionizing, real-
time, cost-effective and convenient. With the development of the new transducer
array technology, 3D echo can now provide real-time images of the whole heart
[2]. However, due to the low signal-noise-ratio, general methods for motion es-
timation do not work well on echo images. In addition, the 4D (3D+t) data is
acquired with a compromise that both the spatial and temporal resolutions are
reduced comparing to 2D+t sequences. As a result, 3D motion analysis from
echo sequences remains a challenging problem.

Cardiac motion analysis algorithms can be classified into three categories:
model-based, feature-based and voxel-based methods. Lots of cardiac models



16 Zhang, Sahn, Song

have been proposed for motion analysis and segmentations [3]. Surface models
such as super-quadrics are used for motion analysis by fitting the model with
a sequence of images [4,5], however, these models only estimate the deforma-
tion on the model surfaces. Comaniciu et al. [6] proposed a Kalman filter based
shape tracking method by using information fusion framework with a probabilis-
tic subspace model constraint. In this work, a shape model needs to be learned
and the motion estimation is limited along the contour points. Volumetric mod-
els such as dynamic finite elements have been used to estimate the deformation
inside the myocardium [7,8]. Wang et al. [9] tracked myocardial surface points
by maximizing the likelihood of a combined surface and a two-steps motion
prediction model. Both the initial myocardial surface detector and the motion
prediction model need to be learned in advance. Generally speaking, deformable
model based methods needs prior knowledge related to the models and their
generation needs some sort of human interaction. Feature-based methods use
landmarks such as the tagged lines to fit the deformable model such as 4D B-
spline [10]. However, in echocardiography due to lack of stable landmarks in
the myocardium and artificial features such as the tagged line are not available,
feature-based method is difficult to estimate the deformation by using trustable
correspondence. Voxel-based methods require no manual intervention, they esti-
mate spatially dense transformations from all image voxels directly. This method
can be implemented as an automatic method and we focus our work on this ap-
proach. Voxel based image registration methods such as optical-flow [11] and
B-spline based methods [12,13] have been proposed for cardiac motion analy-
sis from echo images. However, the motion analysis problem is simplified into
a series of independent pairwise image registrations and the temporal motion
smoothness is not considered. To enforce the temporal consistency of particle
motion, many temporal models have been used. Carbayo et al. [14] proposed a
spatiotemporal deformation model for cardiac motion tracking. A 2D+t B-spline
transformation with spatiotemporal smoothness is used with the first frame as
the reference. A 3D+t extension is proposed by Metz et al. [15] and the average
image is used as the reference. Particle trajectory constraint such as polynomial
modeling has been used to regularize the spatiotemporal motion smoothness
[16]. Diffeomorphic image registration is a method which the transformation
is implicitly spatiotemporally smooth. The transformation between two images
is defined as the end point of a velocity field flow which will be obtained by
optimization of an energy functional of it. It has a very useful characteristic
in computational anatomy that the transformation is one-to-one mapping and
topology preserving [17]. This large deformation topology preserving property
is preferred in cardiac motion analysis because of the fact that the deformation
from the reference frame (usually the end of diastolic) to the mostly contracted
frame (the end of systolic) is so large that deformation models without topology
preserving constraint may cause the transformation to fold over or tear apart,
which is not physically plausible. Beg et al. [18] proposed a large deformation
diffeomorphic metric mapping algorithm (LDDMM) in which the smooth veloc-
ity field is estimated by optimizing a sum of squared difference (SSD) energy.
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Khan et al. [19] extended the LDDMM method to analyze the anatomical shape
evolution in an image sequence. De Craene et al. [20] proposed a method in
which the velocity field is defined as temporal piecewise continuous 3D B-spline
functions and the B-spline control parameters are estimated by optimization
of a parameterized energy function. In a following work [21], the velocity field
is defined as a 3D+t spatiotemporal B-spline model to reduce B-spline control
points in temporal direction. In both methods, the optimal velocity field mini-
mizes the summed dissimilarity metrics between the first frame and each of the
unwarped subsequent frames, which we call them first-to-follow methods. It has
been presented theoretically and experimentally that speckle pattern will change
under large deformation [22] and that registration of frames further away from
the reference is less accurate due to speckle de-correlation [12]. We propose a
diffeomorphic registration method with a spatiotemporally smooth velocity field
which minimizes the summed SSDs of the unwarped consecutive frames (frame-
to-frame method). Our registration method is tested with simulated and in-vivo
pig datasets, the results show that the accuracy is improved over first-to-follow
method.

2 Method

2.1 Diffeomorphic Image Sequence Registration

A diffeomorphism flow is a dynamic system with each of the diffeomorphism
to be a state in a differentiable manifold [23]. We define a flow ¢(x,t),t €
[0,T],x € 2 C R%d = 2,3) with its smooth velocity field v(x,t) by using the
differential equation of %? = v(¢p(x,t),t). It has been proven in [24] that if
v(x,t) is smooth enough with a differential operator L in a Sobolev space V,
then the transformation ¢(x, t) will be a group of diffeomorphisms with ¢ varying
from 0 to T. The diffeomorphic image registration is stated as a variational
problem, that given two images Iy and I, to find an optimal velocity field ©
which minimizes an energy functional consisting of a sum of squared difference
(SSD) and a geodesic distance metric between ¢(x,0) and ¢(x,T) [18]:

T
o= arg b A [ oGl [0 - h@x )P (1)

with A being the weight to balance these two energies. If we have a sequence
of Ny images to be registered, the similarity metric consists of the SSD of the
difference between a reference frame Iy and each of the deformed subsequent
frames I(¢(x,tx)),k = 1,2,..., Ny. Then the mathematical form can be in a
similar form as [19]:

k=N

T 2 2
D= argglel‘f/)\/o [lv(x,t)|[-dt + 1;1 /(Io(x) — I(od(x,tr)))*dx.  (2)

This scheme has two disadvantages: first, the speckle de-correlation between
far away frames are high which may cause correspondence ambiguity between
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the two images; second, it take longer time to converge since the difference
between reference frame to far away frames is bigger than that of the consecutive
frames. Instead of optimizing each deformed subsequent frames to be similar
to the reference frame, we propose a variational energy which minimizes the
difference between every two deformed consecutive frames Ij;_1 (¢(x,tx—1)) and

Ik(¢(xa tk)):

k=N

T
o =arg inf A [ e e+ 30 [ (B tin)) = T 00) P
k=1

veV
(3)
we denote the two energy terms in Eqn.(3) as Erey and E,qq respectively. This
method will find a flow of diffeomorphisms which have the shortest geodesic
path in the manifold and simultaneously minimizes summed errors of each two
neighboring images. This will improve the accuracy of the transformation since
the neighboring frames generally have higher intensity correlation than those
which are not neighbors. It can also reduce the chance that the transformation
is biased due to noise in the reference images. Our frame-to-frame method is
different from the method which simply estimates the diffeomorphisms between
consecutive frames and then composites together. In our method, minimizing
the difference between two consecutive frames jointly optimizes all the velocity
field before and between the time of these two frames.
The direct solution for this variational framework is expensive. Alternatively,
a parameterized representation of the velocity field is used [25], where the ve-
locity field is represented as a series of B-spline functions and the displacement
field can be expressed as the forward Euler integral of velocity field. We use a
spatiotemporally smooth B-spline function to represent the velocity field. It is
defined as v(x, ty) = > ¢k B(x—x;), with c;.; being the B-spline control vectors
at ¢y located on a uniform grid of x;, B(x —x;) is the 3D B-spline kernel function
which is the tensor product of the 1-D B-spline functions. Define ¢, = ¢(x, tx)
the transformation at time step tx, we assume the velocity is piecewise constant
within a time step, then we have ¢, = ¢, _1 +v(¢j_1, tk—1)At, with ¢y(x) = x,
k=1,2,..., Ny, with N; being the total number of time steps of the velocity field.
Without loss of generality, we can have At = 1. In our test, we use one time step
in velocity field between two neighboring frames since the deformation between
them is usually small, that is NV; = N;. However, our method easily generalizes
to multiple time steps between frames if the deformation between two consecu-
tive frames is large. The energy functional will be a parameterized function of
ci; and it can be optimized by using a steepest descent method.

2.2 Regularization

In order to assure the ¢(x,t) to be diffeomorphic, we need to define v(x,t) to
be spatiotemporally smooth under a differential operator L. The linear operator
we choose is: L = Vv + wtccll—i’, with V2(-) being a Laplacian operator and w; a
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constant weight. In the discrete time form of velocity field, the time integral of the

Ny Ny
norm in V space of Eqn.(3) will be: E.cp = > S1(V20r)2 +wi >, D Jop(x +
k=1 x k=2 x
v 14t) — vp_1|%, with vy = v(x,k). The first term makes the velocity field
spatially smooth which is denoted as FE.. The second term keeps the particle
velocity smooth and it is denoted as Ey,.. The overall effect is to keep the velocity

field spatiotemporally smooth.

2.3 Optimization

We use a steepest descent method to optimize the parameterized function. The
derivative of the total registration energy with respect to the transformation
parameters will be calculated analytically. The derivative of the similarity metric
with respect to the B-spline parameters c;j/ is:

aE‘ssd
8Ci;k’

I,
8Ci;k’

011
6Ci;k’

=D Un(¢r) = T (D141)) (VIk(y) = Vi1 (Ppi1) ); (4)

with % being the Jacobian matrix of transformation at time step k with
respect to the ith B-spline coefficient in k’th frame. It can be calculated with
chain rule and it is zero when k' > k. For detailed computation refer to [21].

For the derivative of the spatial and temporal regularization energies with
respect to the mth component of c;, we have:

O 5™ Bl (x— x,), (5)

OCi.m:
i,m;k xe

with 2’ being the local support of the B-spline kernel function, and ,8;;1() being
the second derivative of the B-spline function with respect to mth component.
Considering that the displacement between two time step is small, we have:
OFy,
aci,m;k

R Wy Z (2 % Vimik — Vimik—1 — Viymsk+1)08(X — X;). (6)
xe 2’

The registration energy can be optimized by starting from initial position and
descending along the negative gradient direction at each iteration until there is
no significant decrease.

2.4 Implementation

In our implementation, we use a series of B-spline transformations with grid
spacing of 10 in each dimension to represent the velocity field. The values of A
and wy are set to be 0.1 and 0.5. The algorithm is implemented with Matlab
under a windows XP 64 bit system on a machine with 2.13GHz Xeon 8 cores
CPU and 6GB memory. It takes about 1 hour to register a 3D (3 minutes for a
2D) sequence with 20 frames.
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3 Experiment and Data

We use both simulated and real data to validate our algorithm. In the simulated
data experiment, a longitudinal view of a diastolic left ventricle (LV) image with
size of 274 x 192 is used as the reference image. This frame is then deformed
with a series of continuous displacement field functions. The deformations are
symmetrical along the long axis of the LV to simulate the myocardial contraction
effect along radial and longitudinal directions. The displacement functions are

L%Zd%)sin(ﬁ,—’;) and f,(i)= aysin72(gif;yj;§:3x) (sin(ﬁ,—”f—i—
L) — sin), with x.,r4 the axis center coordinate and the average axial radius

éffs LV, ya;ei and Ypase the height of base and apex planes, Ny and ¢ the number
of frames and the frame index, and a,, a, are the magnitudes of displacement
fields. An image sequence with Ny + 1 frames is generated when 4 varies from 0
to Ny to simulate the cardiac motion in one cycle.

We carry out two experiments for the simulated data. In the first experiment,
three sequences with 20 frames each are simulated with multiplicative speckle
noise of variance 0.06, 0.08 and 0.10 added. The reference frame and the 10th
frame with speckle noise variance 0.10 are shown together with the ground truth
displacement field in Fig.1. In the second simulated experiment, we first generate
20 frames without deformation by adding independent speckle noise of variance
0.10 to the reference frame. Then each of the frame I; will have a percentage p
pixels replaced with the intensity at the same position in frame I;_;. By updating
noisy image one by one we assure that the two consecutive frames to have noise
overlap ratio of p. Each frames will then be deformed by using the ground truth
displacement fields. We simulate two sequences with overlap ratio of 0.2 and 0.4
respectively.

in form of: f,(i)=azsin

Fig. 1. The reference frame and the 10th frame in speckle variance 0.1 test and the
displacement field (only displacement field inside a bell-shaped mask is displayed).

A real world dataset is acquired from an open-chest pig by using a Philips
IE33 system. For validation, we installed six sonomicrometers in the heart wall.
The distances between each pair of the sonomicrometers are recorded with the
image sequences and are used as ground truth to compare with the tracked
distance in the echo images. The images are resampled into volume sequences of
160 x 100 x 128 with voxel size Immx1mmx1mm. The crystal coordinates in
the reference frame are manually denoted.
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4 Result

In the first simulated experiment, we compare our frame-to-frame method with
the first-to-follow method by tracking the trajectories of the points in the my-
ocardial wall during the motion process. The estimated trajectories of four ex-
ample points from a small region of the myocardium for speckle noise variance
0.06 test are shown in Fig.2, where the ground truth trajectories are overlaid
for comparison. We can see generally coordinates of the points in each time step
in our method are closer to the ground truth position than the first-to-follow
method.

o

x>

106 108 110 112

Fig. 2. Points trajectories in the first-to-follow method (left) and the frame-to-frame
method (right). The ground truth trajectories (blue) are overlaid with the estimated
curves (multiple color) for comparison. The arrow shows the velocity at each time step.

In Fig.3 we illustrate the motion estimation errors in both z and y coordinates
in noise level 0.08 dataset. We can see that the motion estimation errors of z and
y coordinates in most of frames in our method are closer to zero than those of
the first-to-follow method. The figure also shows that our method has a smaller
error variance in both coordinates. The mean of magnitude of errors in the three
noise variance levels in frame-to-frame method are 0.23, 0.26 and 0.32, while in
first-to-follow method they are 0.38, 0.45 and 0.56 respectively.

In the second test, the motion estimation errors in y coordinates for two
methods are shown in Fig.4. The results are similar for z coordinate errors. We
can see the results of frame-to-frame method are better than those in first-to-
follow method in means and standard deviations of errors. We can see for the
frame-to-frame method, when the intensity correlation between two images is
increased, the mean and variance of the registration error are decreased. In the
results of first-to-follow methods, the error mean does not change obviously when
the correlation between consecutive frames are increased.

In the in-vivo open-chest pig test, we compare the performance of the two al-
gorithms by computing the correlations over time between the algorithm-derived
pair-wise distances with sonomicrometry, shown in Table.1. Sonomicrometry pro-
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Fig. 3. The motion estimation errors in z (left) and y (right) coordinates of frame-to-
frame method and first-to-follow method. The error bars shows the standard deviation
of the errors in each frames. The horizontal lines represent the curves of zero mean
transformation errors to help comparison.
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Fig. 4. The motion estimation errors in y coordinates of frame-to-frame method and
first-to-follow method. The left and right figures show the results of 20 and 40 percent
noise overlap tests. The horizontal lines show the zeros mean transformation errors.
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vide the ground truth distances between each two of the crystals. We can clearly
see the improvement of our proposed method.

Table 1. The correlations between the estimated pair-wise distances and those from
the sonomicrometry, with frame-to-frame method (numbers to the left) and the first-
to-follow method (numbers to the right). Numbers 1-6 index the six sonomicrometry
markers.

1

2

3

4

5

6

1.0/1.0

0.936/0.907]0.901/0.885

0.913/0.902

0.948/0.923

0.859/0.831

0.936,/0.907

1.0/1.0

0.881/0.856

0.927/0.904

0.887/0.838

0.951/0.916

0.901/0.885

0.881/0.856

1.0/1.0

0.825/0.786

0.902/0.905

0.819/0.788

0.913/0.902

0.927/0.904

0.825/0.786

1.0/1.0

0.937/0.919

0.934/0.902

0.948/0.923

0.887/0.838

0.902/0.905

0.937/0.919

1.0/1.0

0.918/0.873

| Y| W N~

0.859/0.831

0.951/0.916

0.819/0.788

0.934/0.902

0.918/0.873]

1.0/1.0

5 Conclusion

We propose a large deformation diffeomorphic registration method by minimiz-
ing the difference between every consecutive images. Simulation test shows that
our frame-to-frame method has a higher estimation accuracy of motion than
the first-to-follow method. Validation with sonomicrometry also shows that our
motion estimation result has higher consistency with real data.
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Abstract. The growth by random iterated diffeomorphisms (GRID)
model seeks to decompose large deformations, caused by growth, anomaly,
or anatomical differences, into smaller, biologically-meaningful compo-
nents. These components are spatially local and parametric, and are
characterized by radial deformation patterns around randomly-placed
seeds. A sequential composition of these components, using the group
structure of diffeomorphism group, models the cumulative deformation.
The actual decomposition requires estimation of GRID parameters from
observations of large growth, typically from 2D or 3D images. While past
papers have estimated parameters under certain simplifying assump-
tions, including that different components are spatially separated and
non-interacting, we address the problem of parameter estimation under
the original GRID model that advocates sequential composition of ar-
bitrarily interacting components. Using a gradient-based approach, we
present an algorithm for estimation of GRID parameters by minimizing
an energy function and demonstrate its superiority over the past additive
methods.

Keywords: Large deformation, GRID model, parameter estimation

1 Introduction

The mathematical and statistical modeling of diffeomorphic deformations over
time is an important problem with a variety of applications ranging from med-
ical diagnostics to evolutionary biology. The use of medical images, especially
the MRI images of human parts, in studying anatomical structures is a growing
area of research by itself. Here one uses 2D and/or 3D images taken across time,
species, or specimens to compare to extract salient differences in anatomical
structures, and to analyze and model their variations both within and across
biological classes. These differences may result from standard biological growth,
abnormalities, inter-specimen variability, or other reasons. In terms of image-
based analysis of anatomical structures, the study of shapes of anatomical parts
has become a central idea. For instance, one can use longitudinal image data for
tracking biological growth [11,9,19,4,3] in fetus brains and evaluating tumor
growth. A major difficulty in solving such problems is the high dimensional-
ity of image data. The diffeomorphic deformation when estimated from image
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sequences can be very high dimensional and not amenable to standard tools
from multivariate statistics. Some current methods simplify this analysis by us-
ing simplistic measures like lengths, sizes, or areas as indicators of overall shape
changes. Some others use relatively simple geometrical models, such as spheres
or ellipsoids, to represent shapes in parametric forms and to study the evolution
of parameters during growth.

We start with the basic question of how to represent large deformations
in a mathematical framework. There is a large body of work on represent-
ing differences in imaged objects using deformations of background space [2,
12,7,20,1,13]. This approach utilizes diffeomorphisms of the underlying coor-
dinate systems to represent and measure shape and other differences. Let an
image be I : [0,1]% — IR, where d = 1,2,3. A deformation is then a mapping
& : [0,1]¢ — [0,1]¢, with the resulting deformed image is I o @ : [0,1]? — IR.
Thus, a point on an anatomical landmark is always observed with the same color
intensity; it simply moves to a different location under the deformation. The goal
is to use @ to model, understand and analyze large deformations. These deforma-
tions are typically very high dimensional and do not permit standard statistical
analysis directly. Therefore, some tools for reducing dimensionality become im-
portant. One can apply some standard dimension reduction algorithms, such
as PCA, but it is difficult to interpret the resulting representation in biological
terms. Durrleman et al. [5] proposed a parametric way of representing large dif-
feomorphisms by forcing the instantaneous velocity fields to take a parametric
form. One starts with a finite number of so-called control points and for each of
them specifies a vector that defines the deformation at that point. The vector
field over the whole domain is obtained using a Kernel-based interpolation. This
approach provides a data-driven sparse parametric method to estimate the large
diffeomorphic deformation.

Motivated by the need for biologically-interpretable decompositions of large
deformations, Grenander [8] introduced the Growth as Random Iterated Dif-
feomorphisms (GRID) model. It highlights the role of gene control in biologi-
cal growths and uses a combination of local, structured deformations to form
the large composite deformations. This model has been studied extensively, but
mostly from a perspective of synthesis and asymptotics. Some authors proposed
a “thermodynamic limit equation” that approximates the growth pattern in a
macroscopic way [16,15]. Portman et al. [14] further developed the GRID model
by analyzing the growth patterns at microscopic levels. In addition to synthesis,
one is also interested in the inverse problem where we want to decompose large
biological growth into smaller biologically-interpretable units. Grenander et al.
[18,8] studied this inverse problem albeit in a limited context. The estimation
of growth components was done in two steps: (1) estimate the full deformation
between a pair of images that represents biological growth, (2) estimate parame-
ters for growth components under the GRID model, with a major simplification
that different components are spatially local and do not interact with each other.
With this assumption, the cumulative growth becomes a simple superimposition
of different components and one can use standard projection procedures to esti-
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mate component parameters. In this paper we seek a solution to the problem of
parameter estimation under the original GRID model, without assuming spatial
independence of components. This model is different from Durrleman et al. [5]
in the sense that it is the individual diffeomorphisms that take the parametric
forms, rather than the instantaneous velocity fields. This results in different local
deformations around the focal points. For example, in our method the diffeomor-
phism around a seed is restricted to be radial while in Durrleman et al. [5] there
is no such structure.

The estimation follows the two steps as Grenander et al. [8]. In the first step,
the full deformation @ is estimated using the shape matching technique of [10].
As for the second step, since there is a concatenation of deformation associated
with different components, the time-ordering of the components becomes im-
portant. Due to the nonlinear effect of compositions, it is not possible to solve
for GRID parameters using linear methods. This general estimation problem
is posed as an optimization problem with a gradient-based minimization of the
cost function. The difficulty of getting trapped in local solutions is handled using
clever initializations of the gradient algorithm.

2 Grenander’s GRID Model

We start by describing the general GRID model as introduced by Grenander
[6]. In this model the overall large deformation is modeled as a composition of
a sequence of local, elementary deformations. At time t, the elementary growth
is a diffeomorphism ¢, : [0,1]¢ — [0,1]? such that the point = moves to ¢;(z).
The full deformation is then expressed in the form of the composition of iterated
diffeomorphisms.

QZL = ¢tn 0---0 ¢t2 © ¢t1 (1)
The next step in the GRID model is to simplify diffemorphic components by
expressing each ¢; in a parametric form. Here the elementary deformation ¢, is:
(1) assumed to be centered at a point of activation called a growth seed Tseed,
and (2) the growth around the seed is assumed to be radial. Therefore, it is
easier to express this local deformation using polar coordinates centered at the
seed ZTgeea: (r,7) — (p(r,7),7) with = 0 denoting the seed. Furthermore,
the model assumes that the change in radial distance can be decomposed into
two independent parts: p(r,7) = r + R(r) A(7). Here, A : S! — R is called
the angular deformation function (ADF) and R : R4 — IR is called the radial
deformation function (RDF). These individual deformation functions are allowed
to take the following forms:

1. The radial deformation function RDF can be one of the following two types:

"’2/62 >0
re r c>0
R = ’ - 2
(r) {(r/c)p le (’”/C), r>0,p, c>0. ( )

In both cases the deformation is zero at the seed (r = 0), increases steadily
with r, reaches a peak, and then decreases for a further increase in r. The
“zone” of influence of a seed is determined by the parameter c.
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2. Similarly, the angular deformation function ADF can also take many forms,

including:
a, 7S, aeR
A(1) = aercosi—m)=r Sl R, k>0, and 9 €S'  (3)
asin(%), 7S, a€lR, and o > 0.

The first case provides an isotropic deformation, the second provides a uni-
modal deformation with a well-defined growth/decay direction, while the
last one provides a sinusoidal variation.

In this paper we will use R(r) = re=""/¢* and will study two choices for ADFs:
(1) A(T) = a, and (2) A(1) = ae®°(7=70) Tt has been shown that the resulting
¢+ is a diffeomorphism as long as —1 < A (1) < 2.2408 [8]. Each such ¢; is now
characterized by the following set of parameters: 6 = [£, a, ¢, Kk, T9] € RS, where
¢ € IR? is the seed location.

Problem Statement: Having chosen the model, the estimation problem can
be described as follows. Let @ represent the observed deformation associated
with a growth experiment, observed over a time interval [0,T]. The goal now
is to estimate n, the number of diffeomorphism components and the associated
parameters §; € R® for each j =1,2,...,n.

This problem has been studied by several papers in the past. However, a
common simplifying assumption in the past papers is that different seeds are
placed away from each other so that there is no or negligible interaction between
the corresponding deformations. In this case, the total displacement field ¥ (z) =
&(x) — x can be written as a superposition of the displacements resulting from
individual seeds:

thln =apy, +o A+ Yy, (4)

where 94 (x) = ¢¢(z) — x. This is a very restrictive assumption and reduces the
efficacy of the GRID model. The additive model has several problems, including
the fact that the set of diffeomorphisms is not a group under the additive model.
In the context of biological growth, it is difficult to interpret growth components
under the assumption that there is no spatial interaction between them. Also,
as shown in Fig. 1, the results of these different models, composite versus ad-
ditive models are quite different for the same components. It is also illustrated
that, for the composite model, the ordering of components is also important in
determining the cumulative deformation. In this paper, we study the problem
of parameter estimation under the composite model (Eqn. 1) and compare the
results with those obtained under the additive model (Eqn. 4).

3 Owur Approach

In this section we formulate the problem of parameter estimation as minimization
of a certain objective function. The goal is to estimate difeomorphic components
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Fig. 1: Cumulative deformation for composite models with: (a) & = ¢3 0 ¢1, (b)
@ = ¢1 0 ¢y, and additive model (c) @ = x + b1 + 1o, for the same ¢1 and ¢s.
In the remaining panels, we show @ — & (4th panel), and @ — & (5th panel) as
vector fields.

¢1, ¢2, ...,0n such that their order composition is as closed to the given @ as
possible. In order words, we can use a distance between @ and (¢, 0 -+ 0 ¢1) as
the objective function. Although the choice of a geodesic distance in the space
of diffeomorphisms (under a suitable Riemannian metric) seems like a natural
choice, the use of the .2 distance simplifies the problem, by forming an energy

E/Mz [8(2) — (¢n 00 d1)(@)|dz . (5)

We justify the use of .2 distance, over the geodesic distance, with the argument
that minimization under one distance often leads to a minimizer under the other.

It is rather difficult to solve for all the parameters (for all the seeds) simul-
taneously. Indeed, the expression for cumulative deformation with just two local
deformations gets complicated. Therefore, we take a sequential approach and
add one local deformation to the model at a time. Let ¢*) = ¢y, 0 pp_10---0 ¢y
be the cumulative deformation generated by first k seeds. Define two energy
functions associated with this partial inference problem:

B = [ o) ~ (b1 06 @)| s

and

B = [ o) - 69@) - (o) ds

E®+1) denotes the energy under the composite model for k + 1 seeds while
E(+1) denotes a similar energy except that the contribution from the last seed
is considered additive. (Since this last seed is additive, it is relatively easier to
solve for its parameters by minimizing E**1.) Our iterative approach is to
solve for the parameters of @51 to minimize E**D for k = 1,2,...,n, and
we will do so using a gradient approach. Similar to any gradient-based solution,
the initialization of parameters becomes very important. For the purpose of
improving initialization, we will solve for the parameters of ¢j1 under Ek+1)
first and use these values as initial conditions in optimization of E*+1).
We summarize the iterative procedure for estimating GRID parameters.
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Algorithm 1 Set k= 0.

1. Given the current estimated parameters for the k-seed composite model, {0;}, =
{(&,a4,¢j,k5,70,5) | 5 =1,...,k}, compute the cumulative deformation ¢*).

2. Pind Opy1 = (€pt1, ki1, Chi1, Kht1, Tok+1) for the (k + 1)1 seed by min-
imizing E*tY | Use these values as initial condition for parameters of the
(k + 1) seed.

3. For each possible permutation group of the set {1,2,... . k+ 1}, perform the
following. Update each set of parameters {Hj}k_H using the gradient method
to minimize E**TY | Finally, choose the permutation/parameters that result
in the minimum E*+1)

4. Test the significance of the (k + 1) seed. If it is found significant, set k =
k+1 and go to step 1; if not, stop.

Note that even though the complexity of the composed deformation ¢*) and
thus E(®) increases with the number of seeds (or local elementary deformations),
we still have analytical expressions for the gradients using the chain rule. It is
important to note that all the previous seeds are re-estimated/updated as new
seeds are added to the deformation. Thus, although this process is iterative, it
is not incremental.

We have studied two cases for estimating ADF's:

1. Constant ADF": In the first case, we simplify the discussion by first assum-
ing that A(7) = a for all 7 € S'. In this model, the partial derivatives of

E®) with respect to different parameters of ¢; for j =1,---  k are given by:
oE k) z”: OE®)  gpk)  ggplk—1) It §pl) Lo
JR— . . c e e - . R r = , s

3 et 0p®)  9pk=1)  gp(k=2) 0o 3
OE k) “OE®)  9pk) g1 AUt §pld)
da *; 9™ ap—1) " 9pk-2) T 9p) " da;
OE k) “OE®) 9ok g1 AUt §pld)
dc; *; 9o®) ap=1) " 9pk-2) 96 B,
The different terms needed in these expressions, including ‘gﬁ—g;, %,
651’5(;), 6;;?, and agg) , forj = 1,... k, are given in the appendix. Similar

expressions can also be derived for the gradient of E®*) wrt the GRID pa-
rameters and those expressions are, as expected, simpler compared to the
gradient given above.

2. Non-isotropic ADF: In the general case where the ADF is non-isotropic,
we represent it using a scaled von-Mises density (the second term in Eqn.
3) and is parameterized by (a,k, 7). For every deformation ¢;, the two
additional parameters x; and 7 ; are initialized in two steps. First, the ADF
is estimated non-parametrically by integrating the deformation along each
direction, as was done in [8]. Then, the parameters x and 7y are estimated
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from the nonparametric estimate using moment matching. The estimation is
similar to estimating the parameters of von-Mises density from a sample by
treating the non-parametric estimation as a weighted sample[17]. After these
parameters are initialized, they are estimated using the gradient method,
similar to the other parameters, with the gradient expression given in the
appendix.

The last remaining item in Algorithm 1 is the test of significance of an in-
cremental local deformation. In order to test the significance of the model with
one more seed, several general methods for model selection may apply. Possible
methods includes partial F test, AIC or BIC, and adjusted R2. In this paper,
a model is selected based on the adjusted R2. It is a modification of R?, which
denotes the coefficient of determinant, that adjusts for the number of model
parameters. Given any two estimated models, the model with the larger value
of adjusted R? is preferred. In the experiments, we add one more seed if the
improvement of adjusted R? is larger than a small cutoff value.

Since this method is based on a gradient search, it is difficult to claim a global
solution. In principle, the solution obtained in the parameter space is a local one.
However, there are some advantages to using this approach. Firstly, since the
gradients of the energy function are available analytically, the gradient iterations
are computationally fast. Secondly, for relatively small number of seeds in the
model, the search over different orderings is efficient and gets us out of several
local solutions.

4 Experimental Illustrations

Here we demonstrate the use of our framework for decomposing large cumulative
deformations into smaller, parametric components using Algorithm 1. We will
use both the simulated and real data to illustrate the estimation process, and
will compare our results with those obtained using the additive model.

4.1 Synthetic Data

In order to validate estimation method for the composite model, we perform
two experiments on the following types of synthetic data: (1) a 2D deforma-
tion with constant ADF, and (2) 2D deformation with non-constant ADF. In
these experiments, a cumulative deformation is simulated using Eqn. 1 for an
arbitrary number of local deformations, each with arbitrary parameters, and a
white Gaussian noise is added at the end to form the observed deformation @.

Example 1: Fig. 2 shows the estimation results for the isotropic model. It
shows the true underlying deformation (a), made up of n = 2 seeds, its noisy
observation @ (b) and several different GRID estimates from the observed @ (c-
e). Firstly, we estimate GRID components as described in Algorithm 1, with the
result shown as @, in (e). Then, we reverse the order of two estimated seeds and
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try to optimize their parameters, with the result shown as @', in (¢). The result
of estimated deformation under the additive model is shown as &, in (d). To
highlight the differences between different estimated deformations we also show
their differences in the remaining panels. The Table 1 provides a quantification
of estimation performance. It compares the energy E and estimated parameters
for the three models, with the true values. Since the energy for &, is same as
that for true underlying parameters, it shows the superiority of that estimation
process described in Algorithm 1.

© ) (&) )

Fig. 2: Experiment with isotropic ADF: (a) synthetic deformation; (b)noisy ob-

servation @, and different estimated deformations (c) @.; (d)®,, and (e)d.. The

differences (f) &, — &, (g)®, — &, and (h)P, — &

Model E %1) 552) a1 c1 él) 5&2) as c2

True 0.0334(0.6500]0.4500]1.0000{0.1500{0.5000{0.60000.8000{0.1000

Estimated ¢, |0.0334/0.6500|0.4502|1.0045|0.1498|0.4995(0.6006|0.7947|0.0998

Reverse order @/, 0.0576 |0.5070{0.5930(0.7072|0.0956|0.6478|0.4525(1.0108|0.1527

Additive &, 0.0548 |0.6496|0.4507|1.0262(0.1501|0.5172|0.5827|0.7352]0.1004
Table 1: Estimation results for Example 1.

Example 2: Similarly, Fig. 3(a) shows an experiment involving seeds with non-
isotropic ADFs. In this case we show the synthetic deformation (a) , its noisy
version @ (b), and the estimated deformation under the composite model &,
(c). For further evaluation of this estimation, we show the true displacement



GRID Estimation for Large Deformations 33

¥ (z) = &(x) —  (d) and the estimated displacement ¥ (e).

" - ’ , '(('1)' sy '(é)” .

Fig. 3: Experiment with non-isotropic ADF: (a)synthetic deformation; (b) noisy
observation @; (c) estimated deformation map @; (d)true displacement field ¥;
(e)estimated displacement field ¥

Model E 51) 52) a1 c1 él) éQ) az c2

True 0.0330{0.6700{0.4000{1.0000{0.2000/0.3200|0.6000|1.0000{0.2000

Composite|0.0333|0.6677|0.4014|1.0004|0.1975|0.3233|0.5980(1.0248|0.1948
K1 | Toz K2 | 70,2

True 2.0000(2.3562 5.0000(5.4978

Composite 1.9200(2.3379 4.9050(5.4865

Table 2: Estimation Results for Example 2.

Ensemble Results: Beyond individual examples, we have exhaustively com-
pared performances of the composite and the additive models using many real-
izations. Here we use 20 sets of data that are simulated from the 2D composite
model with constant ADF and the parameters are then estimated using both
the models. The results are summarized in Fig. 4. Panel (a) is a histogram of
which model, composite or additive, is closer to the true deformation. Positive
number indicates that the composite model outperforms the additive one, and
vice-versa. We can see that for most data sets the composite model outperforms
the additive model. Panel (b) presents a close up view of the parameter biases
and variances. Each line represents the bias for one parameter. If the estimates
equals the true parameters, the line will be all horizontal lines with y = 0. The
top plot shows the biases from the additive model and the bottom one is for the
composite model. The lines for composite model are all around zero with the
ones for additive model having larger variation.
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Fig.4: (a) Relative errors under two models: ; (b) Parameter

estimation bias: top: 0, — 0, bottom: 0, — 0.

4.2 Estimation of GRID Component for Image Data

This method is applied to analysis of differences in human brains observed using
MRI scans. In this case we perform the following experiment. We take two image
scans as I and J, which are two slices of MRI of the same z coordinates from
different subjects, and use a shape-based technique [10] to estimate a cumulative
deformation @ from I to J. This @ is in the set of diffeomorphisms from [0, 1]2
to itself and minimizes a certain cost function involving I o @ and J. Then, we
use Algorithm 1, to estimate components of this deformation under the GRID
model. We present two examples of this idea.

Example 1: Fig. 5 shows an example of images I and J and the deformation @
that deforms I to match with J. In addition to plotting the maps = — &(z) as
a surface mesh, one can also plot the displacement vector field ¥(z) = §(x) —
x for better visualization. Shown in the remaining panels are the estimated
displacement vector @, showing the ordered sequence of displacement fields with
the GRID components that were found using Algorithm 1, and a couple of ways
of comparing the estimated deformations with the true deformations.
Example 2: Fig. 6 shows another example of estimating GRID parameters for
deformation estimated from MRI images.

5 Conclusion

In this paper we have proposed a method to decompose and estimate the pa-
rameters in GRID based decomposition of anatomical deformations. The method
preserves the iterative structure of the GRID model and gives an analytical form
of the gradient for parameter estimation. Experimental results show that impacts
from faraway seeds can be approximated by additive seeds model and composite
model can not add much to it; however, as for seeds that are close to each other
and have interaction, our method improves the estimation for large deformation
as well as the model parameters.
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Fig. 5: Estimation of GRID components for deformation between MRI images.
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Fig. 6: Estimation of GRID components for deformation between MRI images.
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A Gradient Expressions

The terms

oEW Ixd _9¢W dxd 8¢\ dxd 8¢ 991 dx1
’6¢(1)€R ’6¢(1*1)€R ,Q—QER ,le,andWER 5

that are required in gradient computation are given as follows.
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When the ADF takes parametric forms of the second type, the gradient of the
energy function with respect to the two parameters x; and 79 ; for j =1,--- ,k
is calculated in the similar way as the other parameters. The partial derivatives
from the one time deformation is shown as below.
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Abstract. We propose a novel method to apply Teichmiiller space the-
ory to study the signature of a family non-intersecting closed 3D curves
on a general genus zero closed surface. Our algorithm provides an efficient
method to encode both global surface and local contour shape informa-
tion. The signature - Teichmiiller shape descriptor - is computed by sur-
face Ricci flow method, which is equivalent to solving an elliptic partial
differential equation on surfaces and is quite stable. We propose to apply
the new signature to analyze abnormalities in brain cortical morphom-
etry. Experimental results with 3D MRI data from ADNI dataset (12
healthy controls versus 12 Alzheimer’s disease (AD) subjects) demon-
strate the effectiveness of our method and illustrate its potential as a
novel surface-based cortical morphometry measurement in AD research.

1 Introduction

Some neurodegenerative diseases, such as Alzheimer’s disease (AD), are charac-
terized by progressive cognitive dysfunction. The underlying disease pathology
most probably precedes the onset of cognitive symptoms by many years. Efforts
are underway to find early diagnostic biomarkers to evaluate neurodegenerative
risk presymptomatically in a sufficiently rapid and rigorous way. Among a num-
ber of different brain imaging, biological fluid and other biomarker measurements
for use in the early detection and tracking of AD, structural magnetic resonance
imaging (MRI) measurements of brain shrinkage are among the best established
biomarkers of AD progression and pathology.

In structural MRI studies, early researches [30,9] have demonstrated that
surface-based brain mapping may offer advantages over volume-based brain map-
ping work [2] to study structural features of the brain, such as cortical gray
matter thickness, complexity, and patterns of brain change over time due to
disease or developmental processes. In research studies that analyze brain mor-
phology, many surface-based shape analysis methods have been proposed, such
as spherical harmonic analysis (SPHARM) [11, 4], minimum description length
approaches [7], medial representations (M-reps) [24], cortical gyrification index
[32], shape space [21], metamorphosis [33], momentum maps [25] and conformal
invariants [34], etc.; these methods may be applied to analyze shape changes
or abnormalities in cortical and subcortical brain structures. Even so, a stable
method to compute a global intrinsic transformation-invariant shape descriptors
would be highly advantageous in this research field.
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Here, we propose a novel and intrinsic method to compute the global correla-
tions between various surface region contours in Teichmiiller space and apply it
to study brain morphology in AD. The proposed shape signature demonstrates
the global geometric features encoded in the interested regions, as a biomarker
for measurements of AD progression and pathology. It is based on the brain
surface conformal structure [18,1,13,37] and can be accurately computed using
the surface Ricci flow method [35, 20].

1.1 Related work

In brain mapping research, volumetric measures of structures identified on 3D
MRI have been used to study group differences in brain structure and also to
predict diagnosis [2]. Recent work has also used shape-based features [21, 33, 25],
conformal invariants [34], analyzing surface changes using pointwise displace-
ments of surface meshes, local deformation tensors, or surface expansion factors,
such as the Jacobian determinant of a surface based mapping. For closed sur-
faces homotopic to a sphere, spherical harmonics have commonly been used for
shape analysis, as have their generalizations, e.g., eigenfunctions of the Laplace-
Beltrami operator in a system of spherical coordinates. These shape indices are
also rotation invariant, i.e., their values do not depend on the orientation of the
surface in space [30,11,28]]. Chung et al.[4] proposed a weighted spherical har-
monic representation. For a specific choice of weights, the weighted SPHARM is
shown to be the least squares approximation to the solution of an anisotropic heat
diffusion on the unit sphere. Davies et al. performed a study of anatomical shape
abnormalities in schizophrenia, using the minimal distance length approach to
statistically align hippocampal parameterizations [7]. For classification, Linear
Discriminant Analysis (LDA) or principal geodesic analysis can be used to find
the discriminant vector in the feature space for distinguishing diseased subjects
from controls. Tosun et al. [32] proposed the use of three different shape mea-
sures to quantify cortical gyrification and complexity. Gorczowski [12] presented
a framework for discriminant analysis of populations of 3D multi-object sets. In
addition to a sampled medial mesh representation, m-rep [24], they also consid-
ered pose differences as an additional statistical feature to improve the shape
classification results.

For brain surface parameterization research, Schwartz et al. [26] and Tim-
sari and Leahy [31] computed quasi-isometric flat maps of the cerebral cortex.
Hurdal and Stephenson [18] reported a discrete mapping approach that uses cir-
cle packings to produce ”flattened” images of cortical surfaces on the sphere,
the Euclidean plane, and the hyperbolic plane. Angenent et al. [1] implemented
a finite element approximation for parameterizing brain surfaces via conformal
mappings. Gu et al. [13] proposed a method to find a unique conformal mapping
between any two genus zero manifolds by minimizing the harmonic energy of
the map. The holomorphic 1-form based conformal parameterization [37] can
conformally parameterize high genus surfaces with boundaries but the result-
ing mappings have singularities. Other brain surface conformal parametrization
methods, the Ricci flow method [35] and slit map method [36] can handle surfaces
with complicated topologies (boundaries and landmarks) without singularities.
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Wang et al. [34] applied the Yamabe flow method to study statistical group
differences in a group of 40 healthy controls and 40 subjects with Williams syn-
drome, showing the potential of these surface-based descriptors for localizing
cortical shape abnormalities in genetic disorders of brain development.

Conformal mappings have been applied in computer vision for modeling the
2D shape space by Sharon and Mumford [27]. The image plane is separated by
a 2D contour, both interior and exterior are conformally mapped to disks, then
the contour induces a diffeomorphism of the unit circle, which is the signature
of the contour. The signature is invariant under translations and scalings, and
able to recover the original contour by conformal welding. Later, this method
is generalized to model multiple 2D contours with inner holes in [22]. To the
best of our knowledge, our method is the first one to generalized Sharon and
Mumford’s 2D shape space to 3D surfaces.

1.2 Our Approach

For a 3D surface, all the contours represent the ’shape’ of the surface. Inspired
by the beautiful research work of Sharon and Mumford [27] on 2D shape anal-
ysis (recently it has been generalized to model multiple 2D contours [22]), we
build a Teichmiiller space for 3D shapes by using conformal mappings. In this
Teichmiiller space, every 3D contour (a simple closed curve) is represented by a
point in the space; each point denotes a unique equivalence class of diffeomor-
phisms up to a Mobius transformation. For a 3D surface, the diffeomorphisms of
all the contours form a global shape representation of the surface. By using this
signature, the similarities of 3D shapes can be quantitatively analyzed, there-
fore, the classification and recognition of 3D objects can be performed from their
observed contours.

We tested our algorithm in some segmented regions on a set of brain left
cortical surfaces extracted from 3D anatomical brain MRI scans. The proposed
method can reliably compute signatures on two cortical functional areas by com-
puting the diffeomorphisms of each observed contour. Using the signature as the
statistics, our method achieve about 92% accuracy rate to discriminate a set of
AD subjects from healthy control subjects.

To the best of our knowledge, it is the first work to apply contour diffeomor-
phism to brain morphometry research. Our experimental results demonstrated
that this novel and simple method may be useful to analyze certain functional
areas, and it may shed some lights on understanding detecting abnormality re-
gions in brain surface morphometry. Our major contributions in this work
include:

1. A new method to compute Teichmiiller shape descriptor, in a way that gen-
eralized a prior 2D domain conformal mapping work [27].

2. The method is theoretically rigorous and general. It presents a stable way
to calculate the diffeomorphisms of contours in general 3D surfaces based on
Ricci flow.

3. Tt involves solving elliptic partial differential equations (PDEs), so it is nu-
merically efficient and computationally stable.
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Fig. 1. Diffeomorphism signature via uniformization mapping for a genus zero surface
with 3 simple closed contours 71,72,7s in (a), which correspond to the boundaries
c1, ¢z, c3 of the circle domains Dy, D2, D3 in (c), respectively. These three contours are
also mapped to the boundaries of the base circle domain Dg in (b). The curves in (d)
demonstrate the diffeomorphisms for the three contours.

4. The shape descriptors are global and invariant to rigid motion and conformal
deformations.

Pipeline. Figure 1 shows the pipeline for computing the diffeomorphism sig-
nature for a surface with 3 closed contours. Here, we use a human brain hemi-
sphere surface whose functional areas are divided and labeled in different color.
The contours (simple closed curves) of functional areas can be used to slice
the surface open to connected patches. As shown in frames (a-c), three con-
tours 71, 72,vs are used to divide the whole brain (a genus zero surface S) to
4 patches Sy, S1, 52, 53; each of them is conformally mapped to a circle domain
(e.g., disk or annuli), Dy, D1, D2, D3. Note that v; is the contour of the joint
functional areas of precuneus and posterior cingulate. One contour is mapped to
two unit circles in two mappings. The representation of the shape according to
each contour is a diffeomorphism of the unit circle to itself, defined as the map-
ping between periodic polar angles (Angley, Angles), Angley, Angles € [0, 27].
The proper normalization is employed to remove M&bius ambiguity. The diffeo-
morphisms induced by the conformal maps of each curve form a diffeomorphism
signature, which is the Teichmiiller coordinates in Teichmiiller space. As shown
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in (d), the curves demonstrate the diffeomorphisms for three contours; the area
distance is defined as the metric for shape comparison and classification.

2 Theoretical Background

In this section, we briefly introduce the theoretical foundations necessary for the
current work. For more details, we refer readers to the classical books [10, 16].

2.1 Surface Uniformization Mapping

Conformal mapping between two surfaces preserves angles. Suppose (S, g1) and
(S2,82) are two surfaces embedded in R3, g and g, are the Euclidean induced
Riemannian metrics. A mapping ¢ : S; — S is called conformal, if the pull back
metric of gy induced by ¢ on S; differs from g; by a positive scalar function:
¢*go = e?* gy, where )\ : S; — R is a scalar function, called the conformal factor.

For example, all the conformal automorphisms of the unit disk form the
Mébius transformation group of the disk, each mapping is given by

02— 2
z— 6207_0.
1—2pz
All the conformal automorphism group of the extended complex plane CU {oo}

is also called Mobius transformation group, each mapping is given by

az+b

———,ad —bc=1,a,b,d,c € C.
cz+d

By stereo-graphic projection, the unit sphere can be conformally mapped to the
extended complex plane. Therefore, the Mobius transformation group is also the
conformal automorphism group of the unit sphere.

A circle domain on the complex plane is the unit disk with circular holes.
A circle domain can be conformally transformed to another circle domain by
Mobius transformations, z — eief:—;o”z. All genus zero surfaces with boundaries
can be conformally mapped to circle domains:

Theorem 21 (Uniformization) Suppose S is a genus zero Riemannian sur-
face with boundaries, then S can be conformally mapped onto a circle domain.
All such conformal mappings differ by a Mébius transformation on the unit disk.

This theorem can be proved using Ricci flow straightforwardly. Therefore, the
conformal automorphism group of S Conf(S) is given

Conf(S) :={¢p o1 odp|T € M5b(S?)}.

2.2 Teichmiiller Space

Definition 22 (Conformal Equivalence) Suppose (S1,81) and (S2,g2) are
two Riemannian surfaces. We say S1 and Sy are conformally equivalent if there
is a conformal diffeomorphism between them.
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All Riemannian surfaces can be classified by the conformal equivalence relation.
Each conformal equivalence class shares the same conformal invariants, the so-
called conformal module. The conformal module is one of the key component for
us to define the unique shape signature.

Definition 23 (Teichmiiller Space) Fizing the topology of the surfaces, all
the conformal equivalence classes form a manifold, which is called the Teichmdiller
space.

For example, all topological disks (genus zero Riemannian surfaces with sin-
gle boundary) can be conformally mapped to the planar disk. Therefore, the
Teichmuller space for topological disks consists of a single point.

Suppose a genus zero Riemannian surface S has n boundary components
{7,72, s}, 0S =71 +v+ -+, ¢: S — D is the conformal mapping
that maps S to a circle domain D, such that (a). ¢(v1) is the exterior boundary
of the ; (b) ¢(2) centers at the origin; (c) The center of ¢(vy3) is on the imag-
inary axis. Then the conformal module of the surface S (also the circle domain
D) is given by Mod(S) = {(¢c;,r;)|i = 1,2,---,n}. This shows the Teichmiiller
space of genus zero surfaces with n boundaries is of 3n — 6 dimensional. The
Teichmiiller space has a so-called Weil-Peterson metric [27], so it is a Rieman-
nian manifold. Furthermore it is with negative sectional curvature, therefore, the
geodesic between arbitrary two points is unique.

2.3 Surface Ricci Flow

Surface Ricci flow is the powerful tool to compute uniformization. Ricci flow
refers to the process of deforming Riemannian metric g proportional to the
curvature, such that the curvature K evolves according to a heat diffusion pro-
cess, eventually the curvature becomes constant everywhere. Suppose the metric
g = (gi;) in local coordinate. Hamilton [15] introduced the Ricci flow as

dg; j

— _Kg..
dt 91

Surface Ricci flow conformally deforms the Riemannian metric, and converges to
constant curvature metric [3]. Furthermore, Ricci flow can be used to compute
the unique conformal Riemannian metric with the prescribed curvature.

Theorem 24 (Hamilton and Chow [3]) Suppose S is a closed surface with
a Riemannian metric. If the total area is preserved, the surface Ricci flow will
converge to a Riemannian metric of constant Gaussian curvature.

2.4 Teichmiiller Shape Descriptor

Suppose I = {70,71, e ,Vn} is a set of non-intersecting smooth closed curves
on a genus zero closed surface. I' segments the surface to a set of connected
components {2, 1, -+ ,§2,}, each segment (2; is a genus zero surface with

boundary components. Construct the uniformization mapping ¢ : 2x — Dy
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to map each segment (2 to a circle domain Dy, 0 < k < n. Assume ~y; is the
common boundary between {2; and (2, then ¢;(v;) is a circular boundary on the
circle domain D, ¢y (7;) is another circle on Dy. Let fils: := ¢jo¢;, g : St — St
be the diffeomorphism from the circle to itself. We called the the diffeomorphism
fi the signature of ;.

Definition 25 (Signature of a Family of Loops) The signature of a family
non-intersecting closed 3D curves I' = {~9,71, - ,Yk} on a genus zero closed
surface is defined as: S(I") :== { fo, f1,- -+, [ }U{Mod(Do), Mod(Dy), - - , Mod(Dy)}.

The following main theorem plays fundamental role for the current work.
Note that if a circle domain Dy is disk, its conformal module can be omitted
from the signature.

Theorem 26 (Main Theorem) The family of smooth 3D closed curves I' on
a genus zero closed Riemannian surface is determined by its signature S(I"),
unique up to a conformal automorphism of the surface n € Conf(S).

The proof of Theorem 26 can be found in the appendix section.

The theorem states that the proposed signature determine shapes up to a
Mobius transformation. We can further do a normalization that fixes oo to oo
and that the differential carries the real positive axis at oo to the real positive
axis at oo, as in Sharon and Mumford’s paper [27]. The signature can then
determine the shapes uniquely up to translation and scaling.

The shape signature S(I") gives us a complete representation for the space of
shapes. It inherits a natural metric. Given two shapes Iy and . Let S(I3) :=
{féa f{a T 7flz} U {MOd(DzO)a MOd(]D)zl)a T 7M0d(D§c)} (Z =1, 2) We can define
a metric d(S(I1),S(I2)) between the two shape signatures using the natural
metric in the Teichmiiller space.Our signature is stable under geometric noise.
Our algorithm depends on conformal maps from surfaces to circle domains using
discrete Ricci flow method.

3 Algorithm

In this section, we explain each step of the pipeline in Figure 1 in details.

3.1 Circular Uniformization Mapping

We apply discrete Ricci flow method [20] to conformally map the surfaces onto
planar circle domains ¢y, : S — . The surface is represented as a triangle mesh
X, A discrete Riemannian metric is represented as the edge length.
We associate each vertex v; with a circle (v;,~;), where ~; is the radius. Let
u; = log~y; be the discrete conformal factor. The discrete Ricci flow is defined as
follows:
dt

where K; is the user defined target curvature and K; is the curvature induced
by the current metric. The discrete Ricci flow has exactly the same form as the

= (Ki — Ki), (1)
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smooth Ricci flow, which conformally deforms the discrete metric according to
the Gaussian curvature. The computation is based on circle packing metric [20].

Suppose Y is a genus zero mesh with multiple boundary components. The
uniformization conformal mapping ¢ : X — D, where D is the circle domain,
can be computed using Ricci flow by setting the prescribed curvature as follows:
(a) The geodesic curvature on the exterior boundary is +1 everywhere; (b) the
geodesic curvature on other boundaries are negative constants; (c) the Gaussian
curvature on interior points are zeros everywhere. We use this method to compute
conformal mapping, and get conformal module and shape descriptor. The main
challenge is that the target curvature is dynamically determined by the metric.
The metric is evolving, so is the target curvature. The detailed algorithm is
reported in [38].

3.2 Computing Shape Descriptor

After the computation of the conformal mapping, each connected component is
mapped to a circle domain. We define an order for all the loops on the surface,
this induces an order for all the boundary components on each segment. Then
by the definition for the conformal module of a circle domain, we normalize
each circle domain using a M&bius transformation, then compute the conformal
modules directly. For those segments, which are simply connected and mapped
to the unit disk, we compute its mass center, and use a Md&bius transformation
to map the center to the origin.

Each loop on the surface becomes the boundary components on two segments,
both boundary components are mapped to a circle under the uniformization
mapping. Then we compute the signature directly.

4 Experimental Results

We demonstrate the efficiency and efficacy of our method by analyzing the hu-
man brain cortexes of Alzheimer’s disease (AD) and healthy control subjects.
The brain surfaces are represented as triangular meshes; a half brain with 100K
triangles. We implement the algorithm using generic C++ on windows XP plat-
form, with Intel Xeon CPU 3.39 GHz, 3.98 G RAM. The numerical systems are
solved using Matlab C++ library. In general, the signature calculation on each
half brain surface with 2 or 3 contours on each half takes less than 1 minute to
compute, even on complicated domains.

Data and preprocessing. The experimental data include 12 Alzheimer disease
patients and 12 healthy control subjects. The structural MRI images were from
the AD Neuroimaging Initiative (ADNI [19, 23]. We used Freesurfer’s automated
processing pipeline [6] for automatic skull stripping, tissue classification, surface
extraction, cortical and subcortical parcellations. It calculates volumes of in-
dividual grey matter parcellations in mm? and surface area in mm?2. It also
provides surface and volume statistics for about 34 different cortical structures,
and also computes geometric characteristics such as curvature, curvedness, local
foldedness for each of the parcellations [8]. In this work, we studied segmented
surface regions for group difference analysis.
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Fig. 2. Diffeomorphisim signature (die ¢, drignt) of a healthy control brain cortex. Each
(left and right) half brain is a genus zero surface with 2 contours.

Quantitative analysis. Figure 2 shows an example of diffeomorphism signatures
for a brain cortical surface. We selected two contours on the left and the right
half brain cortical surfaces, which correspond to superior temporal and the joint
areas of precuneus and posterior cingulate. Early resecarches [17,14] have indi-
cated that these two areas may have significant atrophy in AD group. These two
contours segment a brain hemisphere surface to 3 patches; one topological annu-
lus (called the base domain), two topological disks. The base domain with two
boundaries is mapped to an annulus, one boundary to exterior unit circle, the
other one to the inner concentric circle. The diffeomorphism signature for each
contour is plotted as a monotonic curve within the square [0, 27] x [0, 27]. The
area difference between the plotted curves, d = fOQTF (Angle3 — Anglel)dAngles,
is used as the metric to represent the global shape of both contours. So the
signature of the whole brain surface is represented as a pair (djefs, drignt) for
combining the left-hemisphere and right-hemisphere brain shape signatures. The
method was tested on 12 AD subjects and 12 healthy subjects, with mean sig-
natures (3.6827,—7.12957) and (5.2752, —5.6036), respectively. Figure 3 shows
that with a simple linear discriminant analysis (LDA) model, there were only
two subjects that were not correctly classified. It demonstrates that the proposed
global diffeomorphism signature of contours is very efficient and may be effective
to differentiate the shapes within healthy control and AD subject groups.
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Fig. 3. Distribution of diffeomorphism signature for 12 AD (in red) and 12 healthy
control (CTL) (in blue) subjects. Each point denotes the diffeomorphism signature
value (djest, dright) for a whole brain surface, computed as in Figure 2.

Discussion. The proposed work is based on surface Ricci flow research. Comput-
ing the conformal module is equivalent to solving an elliptic partial differential
equation on surfaces. According to PDE theory, the solution is smoother than
its boundary conditions, so the solution process is quite stable.

For surface-based AD research, the state-of-the-art work has used cortical
thickness as the measurement [29,5]. However, recent research [39] indicated
that the commonly used cortical thickness and cortical area measurements are
genetically and phenotypically independent. The biological meaning of the pro-
posed shape signature is closely related to brain atrophy so it is more related to
cortical area changes. Our method provides a unique and intrinsic shape feature
to study brain morphometry changes caused by brain atrophy. It studies the
sensitivity and reproducibility of shape features computed in the entire brain
surface domain. The gained insights help improve our understanding to AD re-
lated pathology and discover the precise etiology of the grey matter changes. The
preliminary results demonstrated that the shape signature provides a reasonably
good discriminant power for AD biomarker research. We currently studied the
superior temporal area, which is directly related to medial temporal lobe atro-
phy. The method can be equally applied to other regions as well. In future, we
may study/compare other functional areas in the medial temporal lobe.

5 Conclusion

In this paper, we propose a novel method that computes the global shape sig-
natures on specified functional areas on brain cortical surfaces in Teichmiiller
space. In the future, we will further explore and validate other applications of
this global correlation shape signature in neuroimaging and shape analysis re-
search.
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Appendix: Proof of Theorem 26

proof See Figure 4. In the left frame, a family of planar smooth curves I' = {~o,
-+, v5} divide the plane to segments {29, {21, - , {2}, where 2y contains the
oo point. We represent the segments and the curves as a tree in the second frame,
where each node represents a segment (2, each link represents a curve ;. If £2;
is included by (2;, and (2; and (2; shares a curve 7z, then the link v, in the tree
connects f2; to {2;, denoted as vy : {2; — (2;. In the third frame, each segment
(2. is mapped conformally to a circle domain Dy by @;. The signature for each
closed curve v, is computed f;; = ®; o ¢;1|%7 where v, : £2; — {2; in the tree.
In the last frame, we construct a Riemann sphere by gluing circle domains Dy’s
using f;;’s in the following way. The gluing process is of bottom up. We first
glue the leaf nodes to their fathers. Let v, : D; — Dj, D; be a leaf of the tree.
For each point z = re? in Dj, the extension map: G;j (re??) = refis(0),

We denote the image of D; under G;; as S;. Then we glue S; with D;. By
repeating this gluing procedure bottom up, we glue all leafs to their fathers.
Then we prune all leaves from the tree. Then we glue all the leaves of the new
tree, and prune again. By repeating this procedure, eventually, we get a tree
with only the root node, then we get a Riemann sphere, denoted as S. Each
circle domain Dy is mapped to a segment Si in the last frame, by a sequence
of extension maps. Suppose Dy, is a circle domain, a path from the root Dy to
Dy, is {ip = 0,41, 142, -+ ,in = k}, then the map from Gy : Dy — Sj, is given by:
Gy = Gipi, © Giyiy ©---0 Gy, 4, . Note that, G is identity. Then the Beltrami
coefficient of G,;l : S, — Dy, can be directly computed, denoted as uy : Sy — C.
The composition &}, o G,;l : S — (2, maps S to {2k, because @, is conformal,
therefore the Beltrami coefficient of @y, o G;l equals to .

We want to find a map from the Riemann sphere S to the original Riemann
sphere 2, @ : § — (2. The Beltrami-coefficient p : S — C is the union of ug’s
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each segments: u(z) = pr(z), vz € Sk. The solution exists and is unique up to a
Mbobius transformation according to Quasi-conformal Mapping theorem [10].

Note that, the discrete computational method is more direct without ex-
plicitly solving the Beltrami equation. From the Beltrami coefficient p, one can
deform the conformal structure of S to that of {25, under the conformal struc-
tures of {2, @ : S — (2 becomes a conformal mapping. The conformal structure
of {2} is equivalent to that of Dy, therefore, one can use the conformal structure
of Dy, directly. In discrete case, the conformal structure is represented as the an-
gle structure. Therefore in our algorithm, we copy the angle structures of Dy’s
to .S, and compute the conformal map & directly.
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Abstract. In this paper we consider planar conformal deformations,
motivated by the warps that Wentworth Thompson used to deform im-
ages of one species into another. We study an equation for geodesic mo-
tion on the infinite dimensional Fréchet manifold Con(D,R?) of confor-
mal embeddings of the disk into the plane. We demonstrate that solutions
may be represented as sheets, and use the sheet ansatz to derive a nu-
merical discretization scheme. We also show that the equation admits
totally geodesic solutions corresponding to scaling and translation, but
not to affine transformations.

1 Introduction

The use of diffeomorphic transformations in both image registration and shape
analysis is now common and utilised in many machine vision and image analysis
tasks. One image or shape is brought into alignment with another by deforming
the image until some similarity measure reaches a minimum. The deformation
is computed as a geodesic with respect to some metric on the diffeomorphism
group. For a general treatment and an overview of the subject see [1] and refer-
ences therein.

The standard approach to the deformation method is to first perform an
affine registration (principally to remove translation and rotation), and then
to seek a diffeomorphic warp of the image. However, in what is arguably the
most influential demonstration of the application of warping methods — D’Arcy
Wentworth Thompson’s seminal book ‘On Growth and Form’ [2] — Thompson
transforms images of one species into another using relatively simple warps, so
that the gross features of the two match. In a recent review of his work, biologist
Arthur Wallace says:

This theory cries out for causal explanation, which is something the great
man eschewed. [...] His transformations suggest coordinated rather than piece-
meal changes to development in the course of evolution, an issue which almost
completely disappeared from view in the era of the ‘modern synthesis’ of evolu-
tionary theory, but which is of central importance again in the era of evo-devo.
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[..] All the tools are now in place to examine the mechanistic basis of trans-
formations. Not only do we have phylogenetic systematics and evo-devo, but,
so obuvious that it is easy to forget, we have computers, and especially, in this
context, advanced computer graphics. We owe it to the great man to put these
three things together to investigate the mechanisms that produce the morpholog-
ical changes that he captured so elegantly with little more than sheets of graph
paper and, of course, a brilliant mind. [3]

Figure no. in [2] Transformation group

515 T ar, yr—y

513.2 T — azx, y— by

509, 510, 518 x — az, y — cx + dy (shears)
521-22, 513.5 z — azx + by, y— cx + dy (afline)
506,508 x—az, y— g(y)

511 z— f(z), y— 9(y)

517-20, 523, 513.1, 513.3, 513.4, 513.6, 514, 525 |conformal

524 ‘peculiar’

Table 1. Transformation groups used in some transformations in Chapter XII, ‘On
the Theory of Transformations, or the Comparison of Related Forms', of [2]

We draw attention to two key aspects of Thompson’s examples: (i) the trans-
formations are as simple as possible to achieve what he considers a good enough
match (see Table 1); and (ii) the classes of transformations that he considers all
forms groups (or pseudo groups), either finite or infinite dimensional. Mostly, he
uses conformal transformations, a constraint he is reluctant to give up®.

In terms of diffeomorphic image matching, Figs. 506, 508 and 511 of [2] are
related to the one-dimensional diffeomorphism group, and hence to the Camassa—
Holm family of equations [4]; but the groups usually studied in the literature are
the full diffeomorphism group (two functions of two variables) and the volume-
preserving group (one function of two variables). Conformal maps are defined
by two functions of one variable: a drastically reduced dimensionality.

For applications in image registration we therefore suggest to vary the group
from which warps are drawn as well as the metric. If a low-dimensional group
gives a close match, then it should be preferred over a similar match from a
higher-dimensional group; if necessary, local deformations from the full diffeo-

3 “It is true that, in a mathematical sense, it is not a perfectly satisfactory or perfectly
regular deformation, for the system is no longer isogonal; but[...] approaches to
an isogonal system under certain conditions of friction or constraint.” (2], p. 1064)
“[...] it will perhaps be noticed that the correspondence is not always quite accurate
in small details. It could easily have been made much more accurate by giving
a slightly sinuous curvature to certain of the coordinates. But as they stand, the
correspondence indicated is very close, and the simplicity of the figures illustrates
all the better the general character of the transformation.” (ibid., p. 1074).
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morphism group can be added later. In this paper we consider the case of con-
formal transformations.

Although the composition of two conformal maps R? — R? is conformal, it
need not be invertible: we need to restrict the domain. The invertible conformal
maps D — D do form a group, the disk-preserving Md&bius group, but it is
only 3 dimensional. We are therefore led to consider the infinite dimensional
configuration space Con(D, R?) of planar conformal embeddings of the closed
unit disk D into the plane. This is not a group, but it is a pseudo group.

2 Derivation of the Weak Geodesic Equation

In this section we give a derivation of the weak form of the governing equation.

Let g denote the Euclidean metric on R?, i.e., in Cartesian coordinates we
have g = dz ® dz + dy ® dy. Then (D, g) is a compact Riemannian mani-
fold with boundary. The linear space C>°(D, R?) of smooth maps D — R? is
a Fréchet space (see [5, Sect. I.1] for details on the Fréchet topology used).
The set Emb(ID, R?) of smooth embeddings of the disk into the plane is an
open subset of C°°(DD, R?) and has the structure of a Fréchet manifold (see [5,
Sect. 1.4.1]). The subspace C°(D,R?) = {¢ € C®(D,R?);¢*g = Fg,F €
F(D)} of maps preserving the metric up to a scalar function is topologically
closed in C°° (D, R?). Furthermore, it holds that the set of conformal embeddings
Con(D, R?) = C2°(D, R?) NEmb(ID, R?) is a Fréchet submanifold of Emb(D, R?).

For standard planar template matching equations, one introduces a positive-
definite quadratic Lagrangian function (corresponding to a weak Riemannian
structure) on the infinite dimensional manifold Diff(D) = Emb(D, D). However,
as mentioned above, the set Diff.(ID) of disk preserving conformal maps is small,
so we consider instead Con(ID, R?) as configuration manifold. The Riemann map-
ping theorem asserts that Con(ID, R?) contains a rich set of maps: for any simply
connected domain U C R? we can find ¢ € Con(ID,R?) such that (D) = U,
and ¢ is then unique up to the disk-preserving Mdbius transformations. That
is, ¢ must be an element of a unique co-set [¢] € Con(D, R?)/Diff. (D), where
Diff.(D) acts on Con(ID,[R?) by composition from the right. Thus, it holds that
Con(D, R?)/Diff.(D) is equivalent to the well known shape space Emb(ID, R?)/Diff (D),
so we expect that the equation studied in this paper will be relevant not only
for conformal image matching, but also for planar shape matching?*. Also, as
developed in [6], a planar shape may, by conformal mappings, be represented by
a fingerprint in Diff(S'), which suggests that Diff(S') may be used for co-sets.

Since Con(D, R?) is open in the linear space C°(D, R?) its tangent bundle is
TCon(D,R?) = Con(D,R?) x C>°(D, R?). The Lagrangian we are interested in
is given by

) 1 . 1 . _
L(%@)=2/(D)g(ww Lpop )dA (1)
©

4 This is only true in R?: for higher dimensions the set of conformal embeddings of
the unit ball B is very small, and it does not hold that Con(B,R")/Diff.(B) and
Emb(B,R")/Diff(B) are equivalent.
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where dA = dzAdy is the standard Euclidean area form on R? associated with g.

Note that ¢ ~! is well-defined as a map (D) — D and that the Lagrangian
is well-defined on the full embedding manifold Emb(D, R?). It is quadratic in
¢ and positive-definite, thus determining a (weak) Riemannian metric. When
restricted to the submanifold Diff(D) of Emb(D, R?), this metric coincides with
the metric used in the L? template matching equation (TME). Further, Diff. (D)
is a right symmetry group: if ¢ € Diff (D) then L(p o ¢, o ¢) = L(p,¢). In
turn, this implies that we obtain a reduced variational principle with respect
to the reduced variable £ = ¢ o o™ € X (¢(D)), where X.(¢(D)) denotes the
set of conformal vector fields (whose flow is conformal). However, we still need
to keep track of the correct domain (D), which corresponds to the “shape
space” element in Con(ID, R?)/Diff. (D), so the complete set of reduced variables
consists of a domain U € R(R?) (where R(R?) is the Fréchet manifold of simply
connected compact planar regions, see [5, Sect. 1.4.3]), and a conformal vector
field £ € X.(U) defined on this domain. Thus, the reduced phase space is the
Fréchet tangent bundle X(R(R?)) over R(R?), such that the fibre over U is the
vector space X(U) of conformal vector fields (see [7] for details). For £, € X(U)
let (&, n)y = fU g(&,n)dA. The variational principle then becomes

! d
L po)dt = —
EZOA (‘Psa@s) de

where ¢, is a variation of an extremal curve t — ¢(t) in Con(ID, R?) and

d

de

~—

L1
= / §<£57 §E>UE dt (2

e=0 0

(Ue, &) = (pe (D), ¢ 0 ‘Pe_l)-

Since a general variation of t — ©(t) is of the form exp(en) o ¢ (where t — n(t)
is a path in X.(p(D)) with vanishing endpoints) direct calculation yields

d

dEL:
2dg‘5:0<f75>ua = (£q6,6)u+ /U g (&, €) div(n)vol.

Oﬁa =70+ £y¢

where £,, denotes the Lie derivative along 7. Plugging this into (2) yields the
weak form of a planar conformal template matching equation (PCTME) to be
studied in this paper:

1
/0 (6,77 + 260 + div(n)E)y dt = 0 3)

for all variations t — n(t) € X(U(¢)), where ¢t — U(t) fulfills the “compatibility”
equation U = £(0V) and U(0) = D, i.e., the domain is transported along the flow
generated by £. In practice, however, we do not solve for the domain variable U,
but instead we immediately solve the reconstruction equation ¢ = o, and use
the fact that U = (D).
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2.1 The Complex Form

By identifying R? with C the space X.(U) is identified with the space of holomor-
phic functions in the complex domain U C C. Likewise, C°(D, R?) is identified
with the space of holomorphic function on D C C, and Con(ID, R?) with the space
of injective holomorphic functions on . We therefore identify ¢, ¢ as holomor-
phic functions on D, and ¢!, € as holomorphic functions on ¢(ID). The complex
derivative of a holomorphic function is denoted by a prime, e.g., £’ for z — &'(2).

When working with complex entries, it is useful to express the weak form (3)
in terms of the Hermitian inner product (&, n))y = [, £7dA instead of the real-
valued inner product.

Direct calculation yields that g(&,div(n)¢) + ig(€, div(in)¢) = 2&n/E. Using
this and the fact that (&, 7))o @) = (£, 1) () +i(,11) () We obtain the complex
weak form of the PCTME (3) as (where we write ¢(D) instead of U to indicate
that we choose to simultaneously solve the reconstruction equation ¢ = & o ¢,
instead of only solving for U)

1
/O (€. + /€ — 26'm) i = 0. (4)

We investigate a sheet ansatz for this equation in Section 4, leading to a
numerical discretization, but first we consider a set of special solutions to this
equation, by identifying a totally geodesic submanifold of Con(DD, R?).

3 Totally Geodesic Submanifolds

Recall that a submanifold N C M of a Riemannian manifold (M,g) is totally
geodesic with respect to (M,g) if geodesics in N (with respect to g restricted
to N) are also geodesics in M. For a thorough treatment of totally geodesic
subgroups of Diff (M) (with respect to various metrics), see [8].

Consider the Fréchet submanifold of linear conformal transformations

Lin(D,R?) = {¢ € Con(D,R?);p(2) = cz,c € C}.
Proposition 1. Lin(D, C) is totally geodesic in Con(D, C).

Proof. If t — ¢(t) is a path in Lin(D,C), i.e., ¢(z) = cz with ¢ € C, then
&€= ¢ o lis of the form £(2) = az with a € C. Now, let ¢t — (i, &) fulfill the
variational equation (4) for each variation of the form n(z) = bz with b € C. We
need to show that ¢t — (p,&) then fulfills the equation for any variation of the
form 7(z) = ez (since the monomials span the space of holomorphic functions).
Thus,

(&n+an'e =28 em = (&' -Eow), o - (440§ —2En) o )b

. 5
= |c|*((az, b2* + 4kbaz® — 2abz*)p. (5)

where in the first line we use the conformal change of variables formula for
integrals. Now, since the monomials are orthogonal with respect to (-, ))p the
expression vanish whenever k # 1, which concludes the proof. O
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From equation (5) we may derive a differential equation for the totally
geodesic solutions in Lin(D, C) in term of the variables (¢, a) corresponding to

©(z) = cz and &(z) = az. Indeed, choosing k£ = 1 and plugging equation (5) into
the variational equation (4) we obtain

1 1
= - d - - d
0= / c[*(ab + 2|a|?b) dt = / —ab|c|* — b(—alc|* — 2|al?|c|*) ) dt
0 o \dt dt
1
= —/ b(alc|* + 2ace|c]? + 2aéc|c|* — 2|al*|c[*)
0
17
—/ b|c|4(d+ 2a)
0

where we have used that b vanish at the endpoints, and in the last line we use
that ¢ = ac, which follows since ¢ = £ o ¢. Hence, the governing equations for
the totally geodesic solutions are

> (6)

where ¢(0) = 1 (since ¢(z) = z initially). We can see that if a(0) is real, then
both a and c stay real, so that the smaller submanifold of pure scalings is also
totally geodesic. However, pure rotations are not totally geodesic.

By using again the weak form (4) of the governing equation one can further
show that the submanifold of translations is not totally geodesic in Con(D, C).
Nor is the submanifold of affine conformal transformations. The result is some-
what surprising, given that these types of basic transformations are totally
geodesic for the L>>TME and H-TME?®, if boundary conditions are set up
to allow them [8]. In fact, from a template matching point of view, where basic
transformations should preferably be totally geodesic, our result indicates that
the metric we have picked is not ideal.

4 Sheet Ansatz

The L?>TME and H!-TME are known to admit solutions corresponding to
totally geodesic submanifolds described by momentum particles or sheets [9].
These special solutions can be used for structure preserving numerical discretiza-
tion [10,11]. Since the ansatz is non-smooth (the momentum is a traveling
peakon), it cannot describe solutions to the conformal equation studied here.
However, in this section we show that it is possible to express solutions to the
PCTME (4) with a different sheet ansatz, using a reproducing kernel.

Let O C C be an open bounded complex region. Then A%(0) = {f €
L?(0); f is holomorphic} is a Hilbert space with the inner product (-, -))o (called

5 Also called the EPDiff equation or the averaged template matching equation.
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a Bergman space, see [12, Ch. 1]). For any z € O it holds that point-wise evalua-
tion E, : £ — &(2) is continuous with respect to (-, ) 0. Thus, by the Riesz rep-
resentation theorem there exists a unique k, € A?(0) such that f(z2) = (f, k.)o
for every f € A2(0). Let U = O be the closure of O. Since X.(U) C A%(0) it
clearly holds that £(z) = (&, k.))u for all £ € X.(U) (however, notice that it does
not hold that k, € X.(U)). The function defined by Ky(z,w) = k.(w) is called
the reproducing kernel (or sometimes the Bergman kernel function) for the do-
main U. On the interior of U this function is analytic in z and anti-analytic in
w, with K(z,w) = K(w, z). Furthermore, if ¢ € Con(D, C), then

Kp(p™'(2), ¢~ (w))
¢ (71 (2))¢ (¢ (w))
which follows by a change of variables in the integral over (D). When working

with kernels in practice, e.g., for numerical purposes, this formula is very useful
since the kernel function for the disk is known to be

K<p(]]))(z>w) = (7>

1 1
KD(Z,W) = ;m .

Now, consider the following ansatz:

27 . .
€(z) = / Do (06°) K oo (2 9(06*)) ds (8)

where p, € C*(D,C) and 0 < p < 1 is a fixed constant. We introduce the
periodic functions v, p, : ST — C defined by v(s) = ¢(pe'*) and p,(s) = p,(pe'),
so that £(z) = fOZﬂ Py K, (2,7)ds. One may think of v(s) as just a notational
shortcut, but it has other significance: by expanding ¢ as a Taylor series with
coefficients (ci)72 , we see that the periodic curve v(s) only has positive Fourier
coeflicients, which are given by (pkck)?;o. An equivalent statement is to say that
the Fourier coefficients of v(s) are the Taylor coefficients of z — (pz). Exactly
the same relation holds between p, and p,. This observation can be used in the
numerical discretization to accelerate the evaluation of the right-hand side using
fast Fourier transformations.
Plugging the ansatz (8) into the weak equation (4) yields

0= / / Py () + '€ = 26", K o) (7)) (o) ds dt
- /01 /0%%@(7) +4n' (7)E(y) - 26’(7)77(7)) ds dt
- /01 /02” (n(v)( Py — 2]975’(7)) + 777 (7) (45(7) _ 7)) ds dt

where we use the evaluation property of the kernel in the second line and the
fact that t — n(t) vanish at the endpoints in the third. Next, using that 4(s) =
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p(pe'*) = E(p(pe™)) = £(7(5)), we get

o= [ [ (w5 - 2mreen) + () 3e) asar
= [ 7 (oo~ - e ) + e (T ) asar
= /01 /0% (77(7) (=By = 25€'(7)) — n(v)% (W)) dsdt

—/01/027r n(7) (137— 26(7)% (1;7) +5% (mi@)) dsdi

where ~' denotes the derivative of v with respect to s. Thus, by inserting the
ansatz (8) we obtain a weak formulation of the PCTME, equivalent to (4), in
terms of the variables v and p,. This form involves an integral operator, since £
is related to «y, py by the ansatz (8).

In contrast to the L>>TME and H!-TME, any solution to the PCTME can
be represented by the sheet ansatz, since any ¢ can be reconstructed from ~ by
the Fourier transformation.

A nice feature of the weak formulation (9) is that the test function 7 is
isolated, i.e., without derivatives. This allows us to use the fundamental lemma
of calculus of variations to get rid of the outermost time integral (so we get a
condition at each fixed point in time). However, we do not immediately obtain
a strong formulation, because the test function 1 must be holomorphic, so we
cannot use the fundamental lemma of calculus of variations for the inner integral
without introducing a projection operator. Since the trigonometric monomials
e'#s are orthogonal with respect to the s-integral, the projection is given by
neglecting negative Fourier coefficients. Hence, let x 1 : Z — R be the sequence

)

Lif k>0
X+ (k) = {Oifk:<0

and let F denote the Fourier operator taking a 2r—periodic function to its Fourier
series. Then the projection operator is given by P = F =1y, F (where x is acing
by element-wise multiplication). We now obtain a strong integral formulation of
the PCTME in terms of v and p, as

7 =£(0)
- <2M§pv . 58%«5@)) | (10

s ! 0s !

5 Numerical Discretization

In this section we describe a method for numerical discretization of equations (10).
The idea is to represent the dynamic variables (s) and p,(s) by truncated pos-
itive Fourier series, or, equivalently, truncated Taylor series of z — ¢(pz) and
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z = Py (pz). T hus, our finite set of dynamic variables are ¢ = (ck)z;é e C" and
Pe = (pr)}Zy € C™ such that

7(s) che = py(pe'® Zpke (11)

For the discretization we insert these into the right-hand side of equation (10) and
compute the first n positive Fourier coefficients, which then gives an ordinary
differential equation for (¢,p.) € C?". We now describe how this discretized
right-hand side is computed efficiently.

1. Compute v = (v(0),y(7/n),...,y(w(2n — 1)/n)) from c. (Notice that ~
has length 2n.) Since v(s) = @(pe'*) and ¢ are the Taylor coefficients of
2 — ¢(pz), we obtain ~ from the inverse FFT as v = 2nIFFT(c"), where
ct = (c,0,...,0) is zero-padded to get the same length as « (since in the
FFT the last half of the vector corresponds to negative frequencies).

2. Compute py = (p4(0),...,py(m(2n—1)/n)) from p.. By the same argument
we have p, = 2nIFFT(p.).

3. Compute v = (v/(0),~'(2w/n),...,7' (2w(n — 1)/n)). Since the Fourier co-
efficients of v(s) are given by ¢, we have v/ = 2nIFFT(ik™ - ¢*) where
k=(0,1,...,n—1) and kT - ¢* denotes element-wise multiplication.

4. Compute &€ = (£(7¢),---,&(Y9n_1))- From the ansatz (8) and the equation
for the Bergman kernel (7), we get

T py (o els, pel? 2 (G p2el(5—0)
£(v(s)) = /0 Py () Knlpe®, pe?) }(S) /0 P (0)Gp%ei =)

@' (pe*) ! (pe') ™ (o)
where G(z) = z/(1 — 2)2. Now, set f(s) = p,(s)/7'(s) and g(s) = G(p?e'®).
Then .
E0(s) = — [ F(o)(s — oo = LI,

™' (s) Jo ™' ()

Thus, using that a convolution becomes element-wise multiplication in the
Fourier domain, we get £ = 22 IFFT(f-g)/~ where g = (0, p2,..., p*"= D (n—
1),0,...,0), which follows by computing the Taylor coefficients of G(z), and
f= FFT(py/~’)/2n (divisions are carried out element-wise).

5. Compute ¢. Using again the correspondence between Taylor and Fourier
coefficients, we get ¢ = FFT(£)™ /2n, where the FFT(£)™ means that we
only keep the first n elements. Thus, we have now computed the first half of
the right-hand side.

6. Compute p. From the second equation in (10) we get

Pe = FFT(2€ - IFFT(ik™ - f))~ — 5ik - FFT(€ - py /7)™ /2n.

Note that the projection (corresponding to the operator P in equation (10))
occurs in the above computation since we only keep elements corresponding
to positive frequencies.
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We have now computed the full right-hand side (¢, p.). By using a time-
stepping method for ODEs (e.g., a Runge-Kutta method), a numerical method
for equation (10) is obtained. Each evaluation of the right-hand side requires
element-wise operations and 9 FFTs on vectors of length 2n, which leads to
complexity O(nlog(2n)).

6 Experimental Results

In this section we study the dynamical behaviour of some solutions to the
PCTME. First, we look at the solutions corresponding to the totally geodesic
submanifold derived in Section 3. Thereafter, we use the numerical method de-
rived in Section 5 to study other solutions. In particular, we study the spectrum
of small perturbations of a totally geodesic solution.

6.1 Totally Geodesic Solutions

Let @o(z) = z be the identity maps, and let ¢1(2) = c1z where ¢; € C\{0}.
Since both ¢y and ¢ belong to the totally geodesic submanifold Lin(ID, C), the
geodesic from ¢g to ¢ stays in Lin(D,C). In Fig. 1 the geodesics for ¢ =
0.2 (scaling of the disk) and ¢; = %™ (rotation of the disk) are shown. The
solutions confirm what we earlier noticed, that pure scalings are totally geodesic
(the curve p(t) remains a scaling for each ¢) whereas the geodesic corresponding
to the rotated disk does not stay a pure rotation, but contains scaling along its
path.

— el.G7ri

C1

Fig. 1. Geodesic curve from ¢g(z) = z to ¢1(2) = c1z for different values of cj.
The mesh lines show how the unit circle evolves. Notice that the scaling geodesic
stays a scaling (left figure), whereas the rotation geodesic picks up some scaling
during its time evolution (right figure).
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6.2 Development of Cusps in Finite Time

The L?-TME is known to develop singularities in finite time. Originally, we
expected solutions to the PCTME be more “well behaved” due to the holomor-
phic constraint. However, experiments with the numerical method derived in
Section 5 indicates that the same phenomenon still occurs despite of the con-
straint. For example, Fig. 2 shows an experiment with initial data of the form
¢0(2) = azz®. A cusp develops in the solution, which leads to a breakdown of
the dynamics.

OOOC

Fig. 2. Time evolution of the PCTME with initial conditions of the form ¢g(z) = z
and ¢o(z) = az?. From left to right the plots show the development of a cusp.
Thus, the geodesic curve ceases to exist in finite time.

6.3 Spectral Behaviour

In Fig. 3 the time evolution of the absolute values of p., computed with the
numerical method in Section 5, are shown in two plots. Dark colours corresponds
to low order coefficients, and light colours to high order coefficients. In the top
plot, initial data corresponding to a totally geodesic solution in Lin(ID,C) are
used. In the bottom plot, this initial data is perturbed ¢o(z) = a12+0(2), where
0(z) is a small perturbation of the first five Taylor coefficients.

Notice in both plots that the initially suppressed coefficients grow exponen-
tially fast, which indicates that the totally geodesic solutions are not stable.
Also, notice that the growth rate increases with the order, which indicates that
the PCTME is ill-conditioned, as is also the case for the L>~TME. Again, our
investigation indicates that the dynamics of the PCTME is similar to that of the
L2-TME. We plan to carry out a more thorough investigation of the spectral
behaviour, by using both analytical and numerical techniques.

7 Conclusions

In this paper we have studied a geodesic equation on the manifold of planar con-
formal embeddings. We showed that that the equations have a totally geodesic
submanifold corresponding to linear conformal maps. We also showed that the
submanifold of affine conformal maps is not totally geodesic. Numerical exper-
iments indicates that the dynamic behaviour of the equation is similar to that
of the L>-TME.
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le-1- 1

L 1 S ——

le-1- 1

0 1 )

Fig. 3. Time evolution of the absolute values of p. for a totally geodesic solution
computed with the numerical method. (Top): without perturbation, (bottom): a
random perturbation of size ~ 10~* of initial data for the first five coefficients.

In future work we will study the spectral behaviour more thoroughly. Also,

as an approach for obtaining more well behaved dynamics, we will consider
other metrics, in particular H.. We will also look into more advanced numerical
techniques for solving the equations.
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Abstract. The aim of computational anatomy is to develop models
for understanding the physiology of organs and tissues. The diffeomor-
phic non-rigid registration is a validated instrument for the detection
of anatomical changes on medical images and is based on a rich math-
ematical background. For instance, the “large deformation diffeomor-
phic metric mapping” framework defines a Riemannian setting by pro-
viding an opportune right invariant metric on the tangent space, and
solves the registration problem by computing geodesics parametrized
by time-varying velocity fields. In alternative, stationary velocity fields
have been proposed for the diffeomorphic registration based on the one-
parameter subgroups from Lie groups theory. In spite of the higher com-
putational efficiency, the geometric setting of the latter method is more
vague, especially regarding the relationship between one-parameter sub-
groups and geodesics. In this study, we present the relevant properties
of the Lie groups for the definition of geometrical properties within the
one-parameter subgroups parametrization, and we define the geomet-
ric structure for computing geodesics and for parallel transporting. The
theoretical results are applied to the image registration context, and dis-
cussed in light of the practical computational problems.

1 Introduction

Main objective of the computational anatomy is to develop suitable statistical
models on several subjects for understanding the physiology of organs and tis-
sues. In particular, the longitudinal observations from time series of images are
an important source of information for understanding the developmental pro-
cesses and the dynamics of pathologies. Thus, a reliable method for comparing
different longitudinal trajectories is required, in order to develop population-
based longitudinal models.

Non-rigid registration is a validated instrument for the detection of anatomi-
cal changes on medical images, and it has been widely applied on different clinical
contexts for the definition of population-based anatomical atlases ([14],[9],[3]).
However, in case of longitudinal data, the optimal method for comparing defor-
mation trajectories across different subjects is still under discussion. In fact, the
methods for integrating the subtle inter-subject changes into the group-wise anal-
ysis have an important impact on the accuracy and reliability of the subsequent
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results. The aim is to preserve as much as possible the biological informations
carried on by the different subjects, while allowing a precise comparison in a
common geometric space.

Among the different techniques proposed for the comparison of longitudinal
trajectories ([12],[2],[4]), parallel transport represents a promising method which
relies on a solid mathematical background. Basically, it consists in transport-
ing the infinitesimal deformation vector across different points by preserving its
properties with respect to the space geometry, such as the parallelism.

The parallel transport has been introduced for the first time in medical
imaging with the LDDMM setting [16]. LDDMM solves the image registra-
tion problem by using a Riemannian framework in which the deformations are
parametrized as diffeomorphisms living in a suitable space, once provided an op-
portune right-invariant metric [10]. The registration problem is solved by com-
puting the diffeomorphisms lying on the geodesics of the space parametrized by
time-varying velocity fields under the Riemannian exponential. The setting al-
lows the computation of the parallel transport along geodesics at the cost of a
computationally intensive scheme, and this limitation prevents the application
on high resolution images or large datasets.

A more efficient solution to the image diffeomorphic registration problem
was introduced by the stationary velocity field (SVF) setting [1]. In this case,
the diffeomorphisms are parametrized as one-parameter subgroups by station-
ary velocity fields through the Lie group exponential. This restriction allows an
efficient numerical scheme for the computation but it does not directly rely on
any geometric assumption on the underlying space. This implies that some im-
portant mathematical properties are not guaranteed, for instance whether the
one-parameter subgroups are still geodesics or if the space is metrically com-
plete. In spite of this lack of knowledge, the framework was found very efficient
and reliable in many applications in different contexts ([8],[7],[13]) and, in [6], a
framework based on the Schild’s Ladder has been proposed for the evaluation of
the parallel transport with the SVF.

In this paper, we investigate the relationship between Lie groups and Rieman-
nian geometry and we highlight many interesting properties that might provide
the SVF setting with part of the geometrical solidity required. In Section 2 we
present the relevant properties of the Lie groups and the relationship with the
Riemannian setting for the definition of the geodesics and the parallel transport.
In Section 3, the results are introduced and discussed for the image registra-
tion context, while in Section 4 we show how these theoretical insights provide
a clean, precise, and numerically efficient solution for the parallel transport of
deformation trajectories on time series of images.
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2 Lie Group and covariant differentiation

This section will recall the conceptual basis for the definition of the parallel
transport along the one-parameter subgroups.

Let G an arbitrary finite dimensional Lie group and let g the associated Lie

algebra defined here with the tangent space at the identity 7T;;G. We define the
left translation L, as the mapping La : g — ag, and we say that a vector field
X € T(G) is left invariant if DLy (X)p = (X)ab-
There is a one-to-one correspondence between left-invariant vector fields and
elements of the Lie algebra g, which associates to each X € g the vector field
defined as X (g) = DL,X. The left-invariant vector fields are complete and their
associated flow ¢, is such that ¢;(g) = ge:(id). The association X — 1 (id) of
g into G is called Lie group exponential and denoted by exp. In particular, the
map exp defines the one-parameter subgroup associated to the vector X and has
the following properties:

— @i (id) = exp(tX), for each t € R
— exp((t + $)X) = exp(tX)exp(sX), for each t,s € R

It can be shown that the Lie group exponential is a diffeomorphism from a neigh-
borhood of 0 in g to a neighborhood of id in G.

We are going to illustrate the transport of vectors along the exponential path
exp(tX), and in particular the analogies with the classical Riemannian parallel
transport defined for geodesics.

An affine connection on G is an operator which assigns to each X € T(G) a
linear mapping Vx : T(G) — T(G) such that

Vixtey = fVx +9Vy (1)

Vx(fY) = fVx(Y) +(X[f)Y (2)

A vector field X is parallel transported along a curve (t) if VX = 0 for

each t. In particular, a path v(t) on G is then said geodesic if V5% = 0. The
definition generalizes the concept of “straight lines”, by requiring to the tangent
vector of the path to be covariantly constant.
Given a point p € G and a vector X € T,G, there exist a unique geodesic
~(t, p, X) such that at the instant ¢ = 0 passes through p with velocity X. We de-
fine therefore the Riemannian exponential as the application exp : GXT(G) = G
given by exp,(X) = (1, p, X).

If, as in the euclidean case, we want to associate to the straight lines the prop-
erty of minimizing the distance between points, we need to provide the group G
with a Riemannian manifold structure, i.e. with a metric operator g on the tan-
gent space. In this case there is a unique symmetric connection compatible with
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the metric in the sense that, for each X,Y,Z € T(G) the following conditions
hold:

Xg9(Y,Z)=9g(VxY,Z) + g(X,VxZ) (Compatibility wrt the metric)
VxY - VyX = [X,Y] (Torsion free)

With the choice of this special connection, called Levi-Civita connection, the
corresponding geodesics (Riemannian geodesics) v(t) are the length minimizing
path.

2.1 Relationship between Riemannian geodesic and one-parameter
subgroups

Given a vector X on T;4G, we can therefore define two curves on G passing
through id and having X as tangent vector, one given by the Lie group expo-
nential exp and the other given by the Riemannian exponential exp;s. When do
they coincide?

The connection V on G is left-invariant if, for each left translation L,
(a € G), we have VDL,IX(DLaY) = DLan(Y)

A left-invariant connection V on a space G is a Cartan connection if, for
any element of the Lie algebra X € g, the one-parameter subgroups and the
Riemannian geodesics coincide, i.e. exp(tX) = exp(t,id, X) [11].

For each left-invariant connection V we can univoquely associate a product «
(symmetric bilinear operator) on T;4G given by

a(X,Y) = (v;a?) )
where X,Y are the unique left-invariant vector fields induced by the tangent
vectors X,Y. We note here that a bilinear for can be uniquely decomposed
as a = o + o, where o/ = L (a(X,Y)+a(Y,X)) is commutative, while

2
o =1 (a(X,Y) - a(Y, X)) is skew-symmetric.

We deduce that the condition for V to be a Cartan connection is to satisfy
a(X,X) = 0 or, equivalently, to be skew-symmetric, for instance by assigning

a(X,Y) = A\X,Y] (3)

In this case, the zero curvature connections are given by A = 0, 1 (with torsion
T =—-[X,Y] and T = [X, Y] respectively) and are called left and right Cartan
connections.
The choice of A = % lead to the symmetric (or mean) Cartan connection VxY =
11X, Y], with curvature C'= —1 [[X, Y], Z] and torsion-free. This connection is
the average between left and right Cartan connection. Therefore the Cartan
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connections of a Lie group are:

VY =0 Left
@XY = % [X,?} Symmetric
@X? = [~ ,?] Right

2.2 Parallel Transport on Cartan connections

Once described the conditions for the one-parameters subgroups to be geodesics,
it is natural to ask how to parallel transport along these paths, and each Cartan
connection lead to a specific parallel transport method.

For the left Cartan connection, the unique fields that are covariantly constant
are the left-invariant vector fields, and the parallel transport is induced by the
left multiplication, i.e. IT' : T,G — T,G is defined as

T"(X) = DL, X (4)

Conversely, the right-invariant vector fields are covariantly constant with re-
spect to to the right invariant connection. As above, the parallel transport is
given by the differential of the right translation I7%(X) = DR,-1,X . Finally,
for the symmetric Cartan connection the parallel transport is given by the com-
bination of the left and right transports. In fact it can be shown [5] that the
parallel transport of X along the curve exp(tY) is

HS(X) = DLexp(%Y)DRexp(%Y)X (5)

3 Application to image registration

The Lie group theory is of relevant interest in the image registration context. For
instance, the Lie group exponential has been already used for the diffeomorphic
registration parametrized by stationary velocity fields. Of course, when moving
to the infinite dimensional group of the diffeomorphisms, some caution is required
for the generalization of the standard Lie theory and further research is still
needed in order to quantify the impact of using such mathematical framework.
However, the effectiveness of the SVF parametrization in terms of registration
accuracy and computational efficiency encourage the adoption of the SVF as a
valid instrument for the computational anatomy.

Given that one-parameter subgroups are geodesics for all the Cartan connections,
we can implement the associated parallel transport for the SVF. Given the left
and right actions on diff( M),

Lyg=fog Ryg=gof
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we have
DLfL-’Df-g DRfﬁgof

We can therefore provide an explicit closed form formula for the parallel trans-
port with respect to the canonical Cartan connections. In particular, if X is a
vector to be transported, and exp(tY) is the one-parameter subgroup we have:

IT(X) = Dexp(Y) - X )
IT(X) = X oexp(Y) (7)
1500) = Dexp(3) - (Xoexn(3)) ®

Remark 1. The geodesics given by the Cartan connection are intrinsically differ-
ent from the metric Riemannian ones, in the sense that the underlying connection
is different from the Levi-Civita one. In particular the geodesics are not related
to a positive definite from in TG x T'G. As consequence the space is not metri-
cally complete, i.e. not all the elements of the space G might be reached by the
one-parameter subgroups. The effect of such geometric property in the image
registration context requires further investigation, in order to characterize the
transformations that cannot be parametrized by SVF. However, we observe that
in the image registration we are not interested in recovering “all” the possible
diffeomorphisms, but only those which lead to admissible anatomical transfor-
mations.

Remark 2. From the computational point of view, we notice that among the
three transport methods, IT%7 requires the simple resampling of the velocity field,
while both IT* and IT® involve the computation of the Jacobian Matrix. The
involvement of high order terms can raise accuracy problems, especially in case
of noisy data and numerical approximations. We can alleviate the computational
inaccuracy by taking advantage of the scaling properties of the one-parameter
subgroups. Rather than directly compute the Jacobian Dexp(Y), from the prop-
erty

exp(Y) = exp(%) o exp(%) =
= exp(%) O0...0 exp(

3|

).

we can derive an iterative scheme for the Jacobian computation.
In fact, given a suitable first approximation Dexp(Y)[° ~ D% for an opportune
scaling factor n, we have the iterative formula

Y
Dexp(Y)V ) = Dexp(Y) M |gip v - Dexp(—) ()
Thanks to the iterative scheme (9) the Jacobian is updated for a sufficient num-

ber of small steps along the one-parameter subgroup. Thus, the scheme avoids
the computation of high order quantities on the final deformation field, that could
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introduce biases due to the discretization inaccuracy. In fact, the derivatives here
are more robustly computed only for an opportunely scaled velocity field, and
the iterative formula evaluates the final Jacobian by successive resampling and
multiplications. Although the resampling scheme has an important impact on
the final computational accuracy, in the following it will be performed by simple
scalar interpolation.

4 Transport of longitudinal atrophy

4.1 Synthetic experiment on a simplified geometry

A synthetic progression of longitudinal atrophy was simulated on a simplified
geometry, represented by a 3D gray matter sphere Sy enclosing a white/black
matter region. The atrophy was simulated by decreasing the gray layer thickness
on four subsequent time points to generate the sequence S;, i = 1 —4 (Figure 2).
The longitudinal trajectories of deformation fields exp(X*) were then evaluated
by registering the images to the baseline with the Log-Demons algorithm [15].
The sequence of deformations exp(X’) was then transported on a target el-
lipsoidal geometry Ej along the inter-subject deformation exp(Y) such that
exp(Y) x Sg = Ey. The transport methods that we tested were:

_ ]jR7
— IT* and IT° with the iterative sch‘eme7 ‘
— the conjugate action Conj(exp(X?)) = exp(Y )exp(X*)exp(Y) L.

Moreover, the velocity fields X* were transported with the Schild’s Ladder,
which operates along the “diagonal” inter-subject deformations exp(Y?!) such
that exp(Y') * S; = Ey (Figure 1).

The methods were quantitatively assessed by evaluating the features of in-
terest in the ellipsoid gray layer: the average L? Norm of the transported sta-
tionary velocity field and the Jacobian determinant, log-Jacobian determinant
and Elastic energy of the associated deformation fields. Since we are interested
in preserving the interesting features of the transported trajectories, the trans-
ported quantities were compared to the original values in the reference sphere
space. Moreover, the stability of the methods was tested by checking the scalar
spatial maps associated to the features.

Results Table 1 shows the accuracy of the transport methods in the preser-
vation of the measure of changes in the gray matter layer. Among the different
methods, the transport IT7 was the most accurate in preserving the average
measures, while the Schild’s Ladder performed better on the Log-Jacobian.

From the inspection of the related scalar log-Jacobian maps (Figure 2), the
transport 177 is the less stable and leads to noisy maps. Moreover, we notice
that the areas of expansions does not fit the boundary of the ellipsoid. On the
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Fig. 1. Synthetic example: Intra and inter-subject variations from the sphere source
space to the ellipsoid target space with related deformations.

other hand, the transport IT7 leads to smooth maps of changes, consistent with
the target geometry, while the transport IT° lies “in between”, as one could
reasonably expect. The Schild’s Ladder lead to smooth maps as well, although
the inner spherical shape seems corrupted for higher deformations. This could
explain the lower performance on the quantitative measurements for the time
points 3 and 4. Finally, the log-Jacobian maps associated to the conjugate actions
are smooth but fail to preserve the target ellipsoidal geometry, especially for the
higher deformations.

Table 1. Average measures of changes on the gray matter layer. Top-row (Source
Space): changes measured on the reference sphere at each time point 1—4. Bottom-rows:
changes measured from the transported longitudinal deformations on the ellipsoid. For
the conjugate action it was not possible to compute the L? Norm of the associated
stationary velocity field, since it acts on deformation fields.

L? Norm Log Jacobian Jacobian Elastic energy

1 [ 2] 374 I [ 2] 3 [ 4 I [2]3]4a]1]2[3]4
Source Space [2.97]9.85 | 22.68 | 44.62 |-4.77|-9.54 | -14.76 | -19.14 | 0.68|0.47|0.35 [0.37|3.47|3.93| 4.5 |5.23
g 3.02]9.57|22.1442.32| -5 |-9.82|-14.88|-20.43]0.69|0.51|0.43|0.45|3.51|4.01|4.67|5.53
ik 2.94| 10 |22.81(44.58|-4.70|-9.36/|-14.51 |-19.180.69|0.49|0.36(0.37|3.49| 3.9 (4.44|5.15
I 3.3 |11.17| 25.7 | 50.37|-5.74 |-11.2 | -17.13 | -23.65 |0.67|0.50 | 0.42|0.48 | 3.58 | 4.2 |1 4.99|6.05
Schild’s Ladder|3.65|10.74| 24.3 | 51.49 |-4.83|-9.86 |-14.65|-19.11|0.71|0.51|0.45|0.49|3.57 |4.14|4.84 | 6.21
Conjugate / / / / |-2.6]-5.5-9.18 |-13.93| 0.8 |0.63|0.47|0.32|3.43|3.83|4.36 |5.04
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5 Conclusions

The study shows how the straightforward application of the Lie group theory to
the diffeomorphic registration can lead to simple and efficient solutions for the
transport of deformations. In particular the one-parameters subgroups are the
geodesics with respect to the Cartan connections, and this mathematical setting
leads to a closed form solution for the parallel transport. The geodesic of the
Cartan connections generally differ from those of the Riemannian framework like
the LDDMM, in the sense that they are not defined from a metric on the tangent
space, and consequently the parallel transport is not related to the preservation
of metric properties.

The present study highlights the trade-off between the choice of proper mathe-
matical constructions and the related numerical implementation. In fact, among
the parallel transports from the Cartan connections, the right one showed greater
accuracy and smoothness, due to the simple computational requirements. How-
ever, the transport IT? operates according to a specific geometry corresponding
to the right Cartan connection. In this case, we are working in a zero-curvature
space with torsion, while from the theoretical point of view it might be prefer-
able to work with respect to a symmetric connection which leads to torsion-free
spaces. At this purpose, further studies are required in order to clarify the ef-
fects in the image registration context of imposing a specific connection, and
for defining more robust numerical schemes for the computation of high order
quantities.
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the target space

Conjugate
action

Fig. 2. Top row: Spherical source and ellipsoidal target geometrical references. From
top to bottom: Longitudinal atrophy sequence in the spherical space, associated log-
Jacobian determinant scalar maps, and log-Jacobian determinant maps associated to
the different methods of transport.
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Abstract. This paper introduces a regression method for modeling the
relationship between a manifold-valued random variable and a real-valued
independent parameter. The principle is to fit a geodesic curve, param-
eterized by the independent parameter, that best fits the data. Error in
the model is evaluated as the sum-of-squared geodesic distances from
the model to the data, and this provides an intrinsic least squares crite-
rion. Geodesic regression is, in some sense, the simplest parametric model
that one could choose, and it provides a direct generalization of linear
regression to the manifold setting. A hypothesis test for determining the
significance of the estimated trend is also developed. While the method
can be generally applied to data on any manifold, specific examples are
given for a set of synthetically generated rotation data and an application
to analyzing shape changes in the corpus callosum due to age.

1 Introduction

Regression analysis is a fundamental statistical tool for determining how a mea-
sured variable is related to one or more potential explanatory variables. The most
widely used regression model is linear regression, due to its simplicity, ease of
interpretation, and ability to model many phenomena. However, if the response
variable takes values on a nonlinear manifold, a linear model is not applicable.
Such manifold-valued measurements arise in many applications, including those
involving directional data, transformations, tensors, and shape. For example, in
biology and medicine it is often critical to understand processes that change
the shape of anatomy. The difficulty is that shape variability is inherently high-
dimensional and nonlinear. An effective approach to capturing this variability
has been to parameterize shape as a manifold, or shape space.

Several works have studied the regression problem on manifolds. Jupp and
Kent [6] propose an unrolling method on shape spaces. Regression analysis on
the group of diffeomorphisms has been proposed as growth models by Miller [10],
nonparametric regression by Davis, et al. [3], and second order splines by Trouvé
and Vialard [12]. Finally, Shi, et al. [11] proposed a semiparametric model with
multiple covariates for manifold response data. None of these methods provide a
direct generalization of linear regression to manifolds. The purpose of this paper
is to develop such a generalization, called geodesic regression, which models the
relationship between an independent scalar variable with a dependent manifold-
valued random variable as a geodesic curve. Like linear regression, the advantages
of this model are its simplicity and ease of interpretation. As will be shown, the
geodesic regression model also leads to a straightforward generalization of the R?
statistic and a hypothesis test for significance of the estimated geodesic trend.
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2 Multiple Linear Regression

Before formulating geodesic regression on general manifolds, we begin by review-
ing multiple linear regression in R™. Here we are interested in the relationship
between a non-random independent variable X € R and a random dependent
variable Y taking values in R™. A multiple linear model of this relationship is
given by

Y=a+XB+e¢, (1)

where o € R™ is an unobservable intercept parameter, § € R™ is an unob-
servable slope parameter, and € is an R"-valued, unobservable random variable
representing the error. Geometrically, this is the equation of a one-dimensional
line through R™ (plus noise), parameterized by the scalar variable X. For the
purposes of generalizing to the manifold case, it is useful to think of « as the
starting point of the line and 8 as a velocity vector.

Given realizations of the above model, i.e., data (z;,y;) € R x R”, for
i =1,..., N, the least squares estimates, &, B, for the intercept and slope are
computed by solving the minimization problem

N
(&,8) = argmin 3 lyi — o — 28" (2)
=1

This equation can be solved analytically, yielding
% DTiYi—TY
EDCE

yifﬁa

B

where T and 7 are the sample means of the x; and y;, respectively. If the errors
in the model are drawn from distributions with zero mean and finite variance,
then these estimators are unbiased and consistent.

o /(@) =Exp(p,xv)

Fig. 1. Schematic of the geodesic regression model.
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3 Geodesic Regression

Let y1,...,yn be points on a smooth Riemannian manifold M, with associated
scalar values z1,...,xx € R. The goal of geodesic regression is to find a geodesic
curve v on M that best models the relationship between the x; and the y;. Just
as in linear regression, the speed of the geodesic will be proportional to the in-
dependent parameter corresponding to the z;. Estimation will be set up as a
least-squares problem, where we want to minimize the sum-of-squared Rieman-
nian distances between the model and the data. A schematic of the geodesic
regression model is shown in Figure 1.

Before formulating the model, we review a few basic concepts of Riemannian
geometry. We will write an element of the tangent bundle as the pair (p,v) € TM,
where p is a point in M and v € T),M is a tangent vector at p. Recall that for any
(p,v) € TM there is a unique geodesic curve «, with initial conditions v(0) = p
and 7/(0) = v. This geodesic is only guaranteed to exist locally. When + is defined
over the interval [0, 1], the exponential map at p is defined as Exp,(v) = v(1).
In other words, the exponential map takes a position and velocity as input and
returns the point at time 1 along the geodesic with these initial conditions. The
exponential map is locally diffeomorphic onto a neighborhood of p. Let V(p) be
the largest such neighborhood. Then within V(p) the exponential map has an
inverse, the Riemannian log map, Log,, : V(p) — T,,M. For any point ¢ € V(p)
the Riemannian distance function is given by d(p,q) = || Log,(q)||- It will be
convenient to include the point p as a parameter in the exponential and log
maps, i.e., define Exp(p,v) = Exp,(v) and Log(p, ¢) = Log,(q).

Notice that the tangent bundle T'M serves as a convenient parameterization
of the set of possible geodesics on M. An element (p,v) € TM provides an
intercept p and a slope v, analogous to the « and § parameters in the multiple
linear regression model (1). In fact, 3 is a vector in the tangent space T, R™ = R,
and thus («, 8) is an element of the tangent bundle TR™. Now consider an M-
valued random variable Y and a non-random variable X € R. The generalization
of the multiple linear model to the manifold setting is the geodesic model,

Y = Exp(Exp(p, Xv), €), (3)

where € is a random variable taking values in the tangent space at Exp(p, Xv).
Notice that for Euclidean space, the exponential map is simply addition, i.e.,
Exp(p,v) = p + v. Thus, the geodesic model coincides with (1) when M = R™.

3.1 Least Squares Estimation

Consider a realization of the model (3): (x;,y;) € Rx M, fori=1,..., N. Given
this data, we wish to find estimates of the parameters (p,v) € TM. First, define
the sum-of-squared error of the data from the geodesic given by (p,v) as

N

Blp,v) = 5 3 d(Exp(p, 7i0), 1) (4)
=1
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Following the ordinary least squares minimization problem given by (2), we
formulate a least squares estimator of the geodesic model as a minimizer of the
above sum-of-squares energy, i.e.,

(p,0) = argmin E(p,v). (5)
(p,v)
Again, notice that this problem coincides with the ordinary least squares problem
when M = R"™.

Unlike the linear setting, the least squares problem in (5) for a general mani-
fold M will typically not yield an analytic solution. Instead we derive a gradient
descent algorithm. Computation of the gradient of (4) will require two parts:
the derivative of the Riemannian distance function and the derivative of the
exponential map. Fixing a point p € M, the gradient of the squared distance
function is V,d(p,x)? = —2Log,(p) for x € V(p).

J(x) “ J(x)
U v Vv
P M p M
dp EXp d, Exp

Fig. 2. Jacobi fields as derivatives of the exponential map.

The derivative of the exponential map Exp(p,v) can be separated into a
derivative with respect to the initial point p and a derivative with respect to
the initial velocity v. To do this, first consider a variation of geodesics given by
c1(s,t) = Exp(Exp(p, su1),tv(s)), where uy € T,M defines a variation of the
initial point along the geodesic 7(s) = Exp(p, su1). Here we have also extended
v € T,M to a vector field v(s) along 1 via parallel translation. This variation
is illustrated on the left side of Figure 2. Next consider a variation of geodesics
ca(s,t) = Exp(p, sua + tv), where ug € T, M. (Technically, us is a tangent to the
tangent space, i.e., an element of T,(T,M), but there is a natural isomorphism
T, (T, M) = T,M.) The variation ¢, produces a “fan” of geodesics as seen on the
right side of Figure 2.

Now the derivatives of Exp(p,v) with respect to p and v are given by

d

d, Exp(p,v) - u1 = gcl(s,t) " J1(1)
d

dy, Exp(p,v) - ug = %CQ(S,t) o Jo(1),
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where J;(t) are Jacobi fields along the geodesic v(t) = Exp(p, tv). Jacobi fields
are solutions to the second order equation

D2 / /

2 (O + RJ(@), 7'(1) v'(8) =0, (6)
where R is the Riemannian curvature tensor. For more details on the derivation
of the Jacobi field equation and the curvature tensor, see for instance [2]. The
initial conditions for the two Jacobi fields above are J;(0) = uq, J;(0) = 0 and
J2(0) = 0,J5(0) = ug, respectively. If we decompose the Jacobi field into a
component tangential to v and a component orthogonal, i.e., J = J' + J*, the
tangential component is linear: J ' (t) = u{ + tu] . Therefore, the only challenge
is to solve for the orthogonal component.

Finally, the gradient of the sum-of-squares energy in (4) is given by

N

Vy E(p,v) = = d, Bxp(p, z;v)! Log(Exp(p, z:v), ;)
=1

N
vv E(p7 U) = - Z Zq d’u EXp(pa 'TZ"U)T LOg(EXp(p, ZCZ‘U), yl)a

i=1

where we have taken the adjoint of the exponential map derivative, e.g., defined
by (d, Exp(p,v)u,w) = (u,d, Exp(p,v)Tw). As we will see in the next section,
formulas for Jacobi fields and their respective adjoint operators can often be
derived analytically for many useful manifolds.

3.2 R? Statistics and Hypothesis Testing

In regression analysis the most basic question one would like to answer is whether
the relationship between the independent and dependent variables is significant.
A common way to test this is to see if the amount of variance explained by the
model is high. For geodesic regression we will measure the amount of explained
variance using a generalization of the R? statistic, or coefficient of determination,
to the manifold setting. To do this, we first define predicted values of y; and the
errors €; as

i = Exp(p, z;0),
gi = Log(:l)“ yl)v

where (p, ) are the least squares estimates of the geodesic parameters defined
above. Note that the ¢; are points along the estimated geodesic that are the best
predictions of the y; given only the x;. The €; are the residuals from the model
predictions to the true data.

Now to define the total variance of data, y1,...,yny € M, we use the Fréchet
variance, intrinsically defined by

N
1
var(y;) = ;reuz\r/l[ N E d(y7yi)2.
i=1
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The unexplained variance is the variance of the residuals, var(¢;) = & > [|&]|°.
From the definition of the residuals, it can be seen that the unexplained vari-
ance is the mean squared distance of the data to the model, i.e., var(é;) =
% > d(9;,y:)?. Using these two variance definitions, the generalization of the
R? statistic is then given by

unexplained variance var(é;)

RZ=1 =1-

total variance var(y;)’

(7)

Fréchet variance coincides with the standard definition of variance when M =
R™. Therefore, it follows that the definition of R? in (7) coincides with the R?
for linear regression when M = R"™. Also, because Fréchet variance is always
nonnegative, we see that R? < 1, and that R? = 1 if and only if the residuals
to the model are exactly zero, i.e., the model perfectly fits the data. Finally, it
is clear that the residual variance is always smaller than the total variance, i.e.,
var(¢;) < var(y;). This is because we could always choose p to be the Fréchet
mean and v = 0 to achieve var(¢;) = var(y;). Therefore, R? > 0, and it must lie
in the interval [0, 1], as is the case for linear models.

We now describe a permutation test for testing the significance of the esti-
mated slope term, 9. Notice that if we constrain v to be zero in (5), then the
resulting least squares estimate of the intercept, p, will be the Fréchet mean
of the y;. The desired hypothesis test is whether the fraction of unexplained
variance is significantly decreased by also estimating v. The null hypothesis is
Hy : R? = 0, which is the case if the unexplained variance in the geodesic model
is equal to the total variance. Under the null hypothesis, there is no relationship
between the X variable and the Y variable. Therefore, the z; are exchangeable
under the null hypothesis, and a permutation test may randomly reorder the
x; data, keeping the y; fixed. Estimating the geodesic regression parameters for
each random permutation of the z;, we can calculate a sequence of R? values,
R?,..., R?,, which approximate the sampling distribution of the R? statistic un-
der the null hypothesis. Computing the fraction of the R that are greater than
the R? estimated from the unpermuted data gives us a p-value.

4 Results

4.1 Regression of 3D Rotations

Overview of Unit Quaternions We represent 3D rotations as the unit quater-
nions, Q;. A quaternion is denoted as ¢ = (a,v), where a is the “real” compo-
nent and v = bi + ¢j + dk. Geodesics in the rotation group are given simply
by constant speed rotations about a fixed axis. Let e = (1,0) be the identity
quaternion. The tangent space T.Q; is the vector space of quaternions of the
form (0,v). The tangent space at an arbitrary point ¢ € Q; is given by right
multiplication of 7,Q; by ¢. The Riemannian exponential map is Exp,((0,v) -
q) = (cos(0/2),2v - sin(0/2)/0) - q, where § = 2||v||. The log map is given by
Log,((a,v) - q) = (0,0v/||v]|) - ¢, where 6 = arccos(a).

Being a unit sphere, Q; has constant sectional curvature K = 1. In this case
the orthogonal component of the Jacobi field equation (6) along a geodesic ()
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Fig. 3. Results for simulated rotation data: MSE of the geodesic regression estimates
for the intercept (left) and slope (right) as a function of sample size.

has the analytic solution
J(t)t = uy (t) cos (Lt) 4 ug(t) sin (Lt) ,

where uq,ug are parallel vector fields along ~, with initial conditions u;(0) =
J(0)1 and u2(0) = J'(0)*, and L = ||+'||. While the Jacobi field equation gives
us the differential of the exponential map, we really need the adjoint of this
operator for geodesic regression. However, from the above equation it is clear
that d, Exp and d,, Exp are both self-adjoint operators. That is, the above Jacobi
field equation provides us both the differential and its adjoint.

Geodesic Regression of Simulated Rotation Data To test the geodesic
regression least squares estimation on Qq, synthetic rotation data was simulated
according to the geodesic model (3). The intercept was the identity rotation:
p=(1,0,0,0), and the slope was a rotation about the z-axis: v = (0,0,0,7/4).
The x; data were drawn from a uniform distribution on [0, 1]. The errors in the
model were generated from an isotropic Gaussian distribution in the tangent
space, with o = /8. The resulting data (z;,y;) were used to compute estimates
of the parameters (p,v). This experiment was repeated 1,000 times each for
sample sizes N = 2F, k = 1,...,8. We would expect that as the sample size
increases, the mean squared error (MSE) in the estimates (p, 0), relative to the
true parameters, would approach zero. The MSE is defined as

M M
. 1 . . 1 W Al
MSE(p) = M Zd(pi,p)Qa MSE(9) = M Z [[9; - (p; 117) —|%,
i=1 i=1

where M = 1,000 is the number of repeated trials, and (p;,0;) is the estimate
from the ¢th trial. Notice the multiplication by (p; 'p) in the second equation
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is a right-translation of ¥; to the tangent space of p. Figure 3 shows plots of
the resulting MSE for the slope and intercept estimates. As expected, the MSE
approaches zero as sample size increases, indicating at least empirically that the
least squares estimates are consistent.

4.2 Regression in Shape Spaces

One area of medical image analysis and computer vision that finds the most
widespread use of Riemannian geometry is the analysis of shape. Dating back
to the groundbreaking work of Kendall [7] and Bookstein [1], modern shape
analysis is concerned with the geometry of objects that is invariant to rotation,
translation, and scale. This typically results in representing an object’s shape as
a point in a nonlinear Riemannian manifold, or shape space. Recently, there has
been a great amount of interest in Riemannian shape analysis, and several shape
spaces for 2D and 3D objects have been proposed [5, 8,9, 13]. We choose here to
use Kendall’s shape space, but geodesic regression is applicable to other shape
spaces as well. It could also be applied to spaces of diffeomorphisms, using the
Jacobi field calculations given by Younes [14].

Overview of Kendall’s Shape Space We begin with derivations of the nec-
essary computations for geodesic regression on Kendall’s shape space. A config-
uration of k points in the 2D plane is considered as a complex k-vector, z € CF.
Removing translation, by requiring the centroid to be zero, projects this point
to the linear complex subspace V = {z € C* : Y z; = 0}, which is equivalent
to the space C*~!. Next, points in this subspace are deemed equivalent if they
are a rotation and scaling of each other, which can be represented as multipli-
cation by a complex number, pe’?, where p is the scaling factor and 6 is the
rotation angle. The set of such equivalence classes forms the complex projective
space, CP*~2. As Kendall points out, there is no unique way to identify a shape
with a specific point in complex projective space. However, if we consider that
the geodesic regression problem only requires computation of exponential/log
maps and Jacobi fields, we can formulate these computations without making
an explicit identification of shapes with points in CP*~2,

Thus, we think of a centered shape = € V' as representing the complex line
L, ={z-z:2z¢e C\{0}}, ie.,, L, consists of all point configurations with the
same shape as x. A tangent vector at L, € V is a complex vector, v € V', such
that (z,v) = 0. The exponential map is given by rotating (within V') the complex
line L, by the initial velocity v, that is,

||z|| sin 6

o
Likewise, the log map between two shapes z,y € V is given by finding the
initial velocity of the rotation between the two complex lines L, and L,. Let
7.(y) = x - (z,y)/||x||* denote the projection of the vector y onto z. Then the
log map is given by

Exp,(v) =cosf -z + 0 = ||v]. (8)

(=

0 (y—ma(y)) ;
[l

0 = arccos
ly — e (y)|l

Log,(y) =

)

Y)
iyl ©)
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Fig. 4. Corpus callosum segmentation and boundary point model for one subject.

Notice that we never explicitly project a shape onto CP*~2. This has the effect
that shapes computed via the exponential map (8) will have the same orientation
and scale as the base point x. Also, tangent vectors computed via the log map
(9) are valid only at the particular representation z (and not at a rotated or
scaled version of x). This works nicely for our purposes and implies that shapes
along the estimated geodesic will have the same orientation and scale as the
intercept shape, p.

The sectional curvature of CP¥~2 can be computed as follows. Let u,w be
orthonormal vectors at a point p € CP*~2. These vectors may be thought of as
vectors in C*~! =2 R2*=2_ Writing the vector w as w = (wy, ..., wak_2), define
the operator

Jj(w) = (—wg, ..., —Wak—2, W1, ..., Wg_1).
(This is just multiplication by i = \/—1 if we take w as a complex vector with the
k — 1 real coordinates listed first.) Using this operator, the sectional curvature
is given by
K(u,w) =14 3(u, j(w))?.

When k = 3, CP! is the space of triangle shapes and is isomorphic to the sphere,
52, and thus has constant sectional curvature, K = 1. For k > 3, CP*~2 has sec-
tional curvature in the interval K € [1, 4]. Furthermore, let u € T,CP*~2 be any
unit length vector. If we decompose the tangent space into an orthonormal basis
€1,...,e25—_2, such that e; = j(u), then we have K(u,e;) =4 and K(u,e;) =1
for ¢ > 1. This leads to the following procedure for computing the Jacobi field
equation on CP*~2 along a geodesic . Given initial conditions for J(0)* and
J'(0)*, decompose J(0)*+ = u; +wy, so that u; is orthogonal to (') and w; is
tangential to j(7/). Do the same for J'(0)* = uy + wo. As before, extend these
vectors to parallel fields, w;(t), w;(t), along 4. Then the orthogonal component
of the Jacobi field along v is given by

J(t)F = ua(t) cos (Lt) + ua(t) sin (Lt) + wi (t) wbgﬂ T wat) % |

As was the case for rotations, both d, Exp and d, Exp are self-adjoint operators.

Application to Corpus Callosum Aging The corpus callosum is the major
white matter bundle connecting the two hemispheres of the brain. A midsagittal
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Fig. 5. The input corpus callosum shape data and corresponding subject ages in years.

slice from a magnetic resonance image (MRI) with segmented corpus callosum
is shown in Figure 4. Several studies have shown that the volume of the corpus
callosum decreases with normal aging [4]. However, less is known about how the
shape of the corpus callosum changes with age. Understanding shape changes
may provide a deeper understanding of the anatomical and biological processes
underlying aging. For example, does the corpus callosum shrink uniformly in
size, or do certain regions deteriorate faster than others? This type of question
can be answered by geodesic regression in shape spaces.

To understand age-related changes in the shape of the corpus callosum,
geodesic regression was applied to corpus callosum shape data derived from
the OASIS brain database (www.oasis-brains.org). The data consisted of
MRI from 32 subjects with ages ranging from 19-90 years old. The corpus
callosum was segmented in a midsagittal slice using the ITK SNAP program
(www.itksnap.org). These boundaries of these segmentations were sampled with
128 points using ShapeWorks (www.sci.utah.edu/software.html). This algo-
rithm generates a sampling of a set of shape boundaries while enforcing corre-
spondences between different point models within the population. An example of
a segmented corpus callosum and the resulting boundary point model is shown in
Figure 4. The entire collection of input shapes and their ages is shown in Figure 5
(boundary points have been connected into a boundary curve for visualization
purposes). Each of these preprocessing steps were done without consideration of
the subject age, to avoid any bias in the data generation.

Geodesic regression was applied to the data (x;,y;), where z; was the ith
subject’s age, and y; was the ith subject’s corpus callosum, generated as above
and represented as a point in Kendall’s shape space. First, the average age of the
group, T, was subtracted from each z;, which was done to make the intercept
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Fig. 6. Geodesic regression of the corpus callosum. The estimated geodesic is shown
as a sequence of shapes from age 19 (blue) to age 90 (red).

term correspond to the shape at the mean age, rather than the shape at age
zero, which would be far outside the data range. Least squares estimates (p, )
were generated according to (5), and using the above calculations for CP*~2,
The resulting estimated geodesic is shown in Figure 6 as a sequence of shapes:
A(tr) = Exp(p, (tx —Z)0), for t, = 19,36, 54, 72,90. The shape trend shows a very
clear thinning of the corpus callosum, with the largest effects in the posterior
part of the body and in the genu (anterior end).

Finally, the statistical significance of the estimated trend was tested using
the permutation test described in Section 3.2, using 10,000 permutations. The p-
value for the significance of the slope estimate, 0, was p = 0.009. The coefficient
of determination (for the unpermuted data) was R? = 0.12. The low R? value
must be interpreted carefully. It says that age only describes a small fraction of
the shape variability in the corpus callosum. This is not surprising: we would
expect the intersubject variability in corpus callosum shape to be difficult to
fully describe with a single variable (age). However, this does not mean that the
age effects are not important. In fact, the low p-value says that the estimated
age changes are highly unlikely to have been found by random chance.

5 Conclusion

We introduced a geodesic regression analysis method for Riemannian manifolds.
The geodesic regression model is the natural generalization of linear regression
and is parameterized by an intercept and slope term. We also developed a gen-
eralization of the R? statistic and a permutation test for the significance of the
estimated geodesic trend. There are several avenues for future work. First, the
hypothesis test presented here could be extended to test for group differences,
for example, to test if age-related anatomical changes are different in a disease
population compared to controls. Second, theoretical properties of geodesic re-
gression, such as unbiasedness and consistency, would be of interest. Finally,
regression diagnostics and model selection procedures need to be developed to
assess the appropriateness of a geodesic model for a particular data set.

Acknowledgments: This work was supported by NSF CAREER Grant 1054057.
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Abstract. This paper develops a functional data analysis framework
to model diffusion tensors along fiber bundles as functional responses
with a set of covariates of interest, such as age, diagnostic status and
gender. This framework has a wide range of clinical applications including
the characterization of normal brain development, the neural bases of
neuropsychiatric disorders, and the joint effects of environmental and
genetic factors on white matter fiber bundles. A challenging statistical
issue is how to appropriately handle diffusion tensors along fiber bundles
as functional data in a Riemannian manifold. We propose a statistical
model with varying coefficient functions,called VCTF to characterize the
dynamic association between functional SPD matrix-valued responses
and covariates. We calculate a weighted least squares estimation of the
varying coefficient functions under the Log-Euclidean metric in the space
of SPD matrices. We also develop a global test statistic to test specific
hypotheses about these coefficient functions. Simulated data are further
used to examine the finite sample performance of VCTF . We apply
our VCTF to study potential gender differences and find statistically
significant aspect of the development of diffusion tensors along the right
internal capsule tract in a clinical study of neurodevelopment.

1 Introduction

Diffusion Tensor Imaging (DTI), which can track the effective diffusion of water
in the human brain in vivo, has been widely used to map the microstructure
and organization of fiber tracts and to assess the integrity of anatomical connec-
tivity in white matter [1]. In DTI, the degree of diffusivity and the directional
dependence of water diffusion in each voxel can be quantified by a 3 x 3 sym-
metric positive definite (SPD) matrix, called a diffusion tensor (DT), and its
three eigenvalue-eigenvector pairs {(Ag, vg) : & = 1,2,3} with Ay > Ao > As.
Fiber tracts in white matter can be constructed by consecutively connecting
the principal directions (v1) of DTs in adjacent voxels [2]. Therefore, DTs and
tensor-derived quantities (e.g., fractional anisotropy (FA)) are distributed along
these white matter fiber tracts for each subject. As an illustration, Figure 1 (a)
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presents the right internal capsule tract and Figure 1 (b) presents DTs along
this tract obtained from 10 subject’s, in which each DT is geometrically repre-
sented by an ellipsoid. In this representation, the lengths of the semiaxes of the
ellipsoid equal the square root of the eigenvalues of a DT, while the eigenvectors
define the direction of the three axes. Mathematically, these diffusion tensors
along the fiber tract are functionals of SPD matrices. Our research of interest is
to statistically model SPD functionals as responses with covariates of interest,
such as age and gender, across multiple subjects.

Fig.1. (a) The right internal capsule tract. (b) The ellipsoidal representation of full
tensors on the fiber tract from 10 selected subjects, colored with FA values.

Statistical approaches have been developed for the statistical analysis of
tensor-derived quantities along fiber tracts. A tract-based spatial statistics frame-
work was developed to construct local diffusion properties along a white matter
skeleton and then perform pointwise hypothesis tests at each grid point of the
skeleton [3]. A model-based framework was developed to construct the medial
manifolds of fiber tracts and then to test pointwise hypotheses based on diffu-
sion properties along the medial manifolds [4]. However, since these two methods
ignore the functional nature of diffusion properties along fiber tracts, they can
suffer from low statistical power in detecting interesting features and in ex-
ploring variability in tract-based diffusion properties. A functional data analysis
framework was used to compare a univariate diffusion property along fiber tracts
across two (or more) populations for a single hypothesis test per tract by using
functional principal component analysis and the Hotelling T2 statistic [5]. Their
method has two major limitations including only consideration of a univariate
diffusion property and the lack of control for other covariates of interest, such
as age. To address these two limitations, a functional regression framework was
proposed to analyze multiple diffusion properties along fiber tracts as functional
responses with a set of covariates of interest, such as age, diagnostic status and
gender [6]. An alternative approach, called generalized functional linear models,
was developed with a scalar outcome (e.g., diagnostic group) as responses and
fiber bundle diffusion properties as varying covariate functions (or functional
predictors) [7].
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The calculated diffusion properties, which are nonlinear and linear functions
of the estimated three eigenvalues of DT containing inherent bias, may be sub-
stantially different from the true diffusion properties [8]. Numerical simulations
have shown that estimates of the largest eigenvalue in a DT usually overesti-
mate the true value of A\; and that estimates of the smallest eigenvalue usually
underestimate Ag. These differences between the estimated and true eigenval-
ues subsequently bias the estimation of diffusion properties that are calculated
from the values of these estimated eigenvalues. The sorting bias is pronounced
in three types of degenerate DT including isotropic (A = A2 = A3), oblate
(M = X2 > A3 ), or prolate ( Ay > Ay = A3). Previous studies have shown that a
major portion of DTs along fiber tracts are prolate tensors [9], and thus directly
comparing these biased diffusion properties along fiber tracts can create ‘statis-
tical artifacts’ including biased parameter estimates and incorrect test statistics
and p—values for hypotheses of interest as shown in Section 3.

To avoid these statistical artifacts, it is important to directly analyze esti-
mated DTs along fiber tracts. There are several advantages of comparing the es-
timated DT's along fiber tracts with covariates. The first one is that the standard
weighted least squared estimates of true DTs are almost unbiased [8]. Moreover,
as shown in Section 3, directly modeling DTs along fiber tracts as a smooth SPD
process allows us to incorporate smoothness constraint to further reduce noise
in the estimated DTs along fiber tracts, which subsequently leads to reduced
noise in estimated diffusion properties along the fiber tracts. Furthermore, the
use of scalar diffusion properties ignores the direction information of DT, and
thus it can lose the statistical power in detecting the differences in DT oriented
in different directions.

There is a growing interest in the DTI literature in developing statistical
methods for direct analysis of DTs in the space of SPD matrices. [10] proposed
several parametric models for SPD matrices and derived the distributions of
several test statistics for comparing differences between the means of the two
(or multiple) groups of SPD matrices. [11] developed a nonparametric estimator
for the common density function of a random sample of positive definite ma-
trices. [12] developed a semi-parametric regression model with SPD matrices as
responses in a Riemannian manifold and covariates in a Euclidean space. [13]
and [14] proposed tensor splines and local constant regressions for interpolating
DTT tensor fields based on the Riemannian metric.

In this paper, we propose a varying coefficient model (VCTF) to use varying
coefficient functions to characterize the association between fiber bundle diffu-
sion tensors and a set of covariates. This model is different from that in [12]
because the former is applicable to DT-valued functional data and consider the
within-subject correlations while the latter is only applicable to data with a DT
response for each subject. Since the space of SPD matrices is a Riemanian man-
ifold, to the best of our knowledge, our VCTF is the first paper for developing
a functional data analysis framework for modeling functional manifold-valued
responses with covariates in Euclidean space. To account for the curved na-
ture of the SPD space, we employ the Log-Euclidean metric in [15] and then
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use a weighted least squares estimation method based on the geodesic distance
under the Log-Euclidean metric to estimate the varying coefficient functions.
Furthermore, we develop global test statistics to test hypotheses on the varying
coefficient functions and use a resampling method for approximating its p-value.
The rest of the paper is organized as follows. Section 2 presents VCTF and
related statistical inference. Section 3 examines the finite sample performance of
VCTF via simulation studies. Section 4 illustrates an application of VCTF in a
clinical study of neurodevelopment. Section 5 presents concluding remarks.

2 Methodologies

In this section, we present our VCTF for the statistical analysis of DTs along
fiber tracts as functional responses with a set of covariates. To compare DT's in
populations of DTIs, we use the DTI atlas building followed by atlas fiber trac-
tography and fiber parametrization as described in [5] to extract DTT fibers and
establish DTI fiber correspondence across all DTI fiber correspondence across
all DTT datasets from different subjects. For the sake of simplicity, we do not
include these image processing steps here, which have been discussed in details
in [5].

Varying Coefficient Model for Functional SPD data Let Sym™(3) and
Sym(3) be, respectively, the set of 3x3 SPD matrices and the set of 3x 3 symmet-
ric matrices with real entries. Let vecs(C) = (¢1,1,¢2,1,¢2,2** ,Cmy 15 - ,cml,ml)T
for any my x my symmetric matrix C' = (¢y;). Let Ivecs(-) be the inverse oper-
ator of vecs(-) and (a;) be a ¢ x 1 vector with the I-th element a;. Let C ® D
denote the Kronecker product of two matrices C and D.

Let « € [0, L] be the arc length of any point on a specific fiber bundle relative
to a fixed end point of the fiber bundle, where L is the longest arc length on
the fiber bundle. For the i-th subject, we measure a diffusion tensor, denoted
by Si(z;) € Sym™(3), at the arc length x; € [0, Lo] for the j-th location grid
point on the fiber bundle for j = 1,--- ,ng and i = 1,--- ,n, where ng and
n denote the numbers of grid points and subjects, respectively. We consider a
varying coefficient model given as follows:

log(S;(x)) = Ivecs((ziTﬂl(x))) +Ui(x) + E(x) for 1=1,--- ,n, (1)

where log(-) denotes the matrix logarithm, & (x) € Sym(3) is a 3 X 3 sym-
metric matrix of measurement errors, and U;(z) € Sym(3) characterizes both
individual matrix variations from Ivecs((z! 8;(x))) and the correlation struc-
ture between log(S;(z)) and log(S;(z)) for different = and z’. Moreover, z; and

Bi(x) = (Bu(x),---, Br(x))T are, respectively, a r x 1 vector of covariates of
interest with z; ; = 1 and its associated vector of varying coefficient functions of
x forl=1,---,6. Model (1) can be regarded as a generalization of varying co-

efficient models, which have been widely studied and developed for longitudinal,
time series, and functional data.
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Let SP(u, ) denote a stochastic process with mean p(x) and covariance
matrix function X (z, z’) for any z, 2’ € [0, Lo). It is also assumed that vecs(&;(x))
and vecs(U;(x)) are independent and respectively, independent and identical
copies of SP(0,X¢) and SP(0, Xy). Moreover, vecs(&;(x)) and vecs(€;(x)) for
x # ' are assumed to be independent and thus Xg(x,2’) takes the form of
25(33)19;:30/.

Weighted Least Squares Estimation To estimate the coefficient functions
in 3(x) = (B (x),- - ,Bg(x))T, we develop a weighted least squares estimation
method based on an adaptive local polynomial kernel (LPK) smoothing tech-
nique [16] and the geodesic distance under the Log-Euclidean metric (see [15]
for details). Specifically, using Taylor’s expansion, we can expand f;(z;) at = to
obtain §(z;) = fi(x) + pi(z)(z; — x),

For a fixed bandwidth ﬁ(l), we first calculate a weighted least squares esti-
mate of (;(z), denoted by f;(z), which minimizes an objective function given by
SIS Ky (o — ) tr{[log (S () — Ivees (2 (Bi(w) + G () (r; —2))))] 52,
where Kj,u)(-) = K(-/hM)/h() is a rescaled kernel function, K(-) be a kernel
function, such as the Gaussian and uniform kernels [16] and a®2 = aa® for any
vector or any matrix a. Then with some calculation, we can have

Bilw) = (Bix(@), -, Bu(@)" = [I @ (1,0)] Ai(2)), (2)
where I, is an r x r identity matrix, A;(z)) = 2(hM,2)~ 37 Y71 Ky (25

2)[2:@y oo (2;—2)](log(Si(2)) )i and D(htD, z) = 377 3700, Koy (2;-12) [z ®2®
Vi (x5 — 2)9%] with yy,o (2 — @) = (1, (27 — ) /AT
We pool the data from all n subjects and select an estimated bandwidth A1),

denoted by A" by minimizing the cross-validation score given by (nng)~! >
> 058, tr{[log(Si(x;)) —Tvecs((z] Bi(z;, D) (=D))]92}, where §;(z, hM) (= is the
weighted least squares estimator of 8j(z) for the bandwidth A(") based on ob-
served data with the observations from the i-th subject excluded. Finally, by
substituting A into (2), we can obtain an estimate of §;(z), denoted by Ble(x)

Combining all Bl7e(x) leads to fe(x) = [Br.e(z), - ,que(x)].

Smoothing Individual Functions and Estimating Covariance Matrices
To simultaneously construct the individual function U;(z), we also employ the
local polynomial kernel smoothing technique. Specifically, using Taylor’s expan-
sion, we can expand U;(z;) at = to obtain U;(x;) ~ U;(x) + Ui(z)(z; — z). For
each fixed z and each bandwidth h(®), we calculate the weighted least square
estimator of U; (), denoted as U;(x), by minimizing an objective function given
by 320C) Kpen (5 — x)tr{{log(S;(25)) — Ivecs((2] Bre(x;))) —Ui(x) +Us(x) (x5 —
7)]®?}. With some calculation, it can be shown that the weighted least square
estimate of U;(z), denoted by U;(x), given by

ng

vees(U, Z h (@ x)(vecs(log(Si(xj)))—(Z?Bl,e(xj)))T, (3)
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where f(}?m (zj—z,2) = Z1(h?,2) " Ky (v; — )y (zj — 2) is the empirical
equivalent kernel and Xy (h(? z) = Z;ﬁl Kpo (rj — 2)ypo (x; — 2)®? with
Yhe (25 — ) = (1, (z; — ) /AT

Let R; be a matrix with the j-th row vecs(log(Si(z;))) — (27 Br.e(x;))T and
S be a ng X ng smoothing matrix with the (4, j)-th element K2<2> (xj — zi, xi).
We pool the data from all n subjects and select an estimated bandwidth of h(?)

denoted as iL£ ), by minimizing the generalized cross-validation score given by

-1 20 (R —SR)®?} (2)
(11 WTE(8))? . Based on ht”,

and U;(z), denoted by vecs(U o(x)) and U .(x), respectively, for all i. After
obtaining U; . (x), we can estimate the mean function U(z) and the covariance
function Xy (x,2") by using their empirical counterparts.

We construct a nonparametric estimator of the covariance matrix X¢(x,x)
as follows. Let &(x;) = log(Si(z;)) — Ivecs((z] B1.e(x;))) — Ui o(2;) be estimated
residuals for i =1,--- ;nand j =1, --- ,ng. We consider the kernel estimate of
Ye(x,z) given by

we can use (3) to estimate vecs(U;(x))

. Ky (25 — x)vees(E(x;))®2
Ye(x,x) . 4
4 ;; 255 Ky (5 — ) @

Let Se(zj,z;) = (n—q)~ ' 0 L vees(Ei(z5))®2. To select an estimated band-

width h(3) denoted by hg ), we minimize the cross-validation score given by
(nng)~ A Zz:l Z;: tl_"{[VeCS(g (%))@)2 25(95]7$J7h(3))( z)]®22é‘nga$]) ez,
where Y (x, 2, h®))(=%) is the weighted least squares estimator of X (x, z) based
on observed data with the observations from the i-th subject excluded. Based

~ 3)

on A, we can use (4) to estimate Xg(z, ), denoted by Ze (z, z).

Hypothesis Test In neuroimaging studies, some scientific questions require
the comparison of fiber bundle diffusion tensors along fiber bundles across two (or
more) diagnostic groups and the assessment of the development of fiber bundle
diffusion properties along time. Such questions can often be formulated as linear
hypotheses of S(x) as follows:

Hy: RB(z) =bg(x) forall z vs. Hp:RpB(z) # bo(x), (5)

where R is a t x 6r matrix of full row rank and bg(z) is a given ¢t x 1 vector of
functions .

We propose both local and global test statistics. The local test statistic can
identify the exact location of significant grid point on a specific tract. At a
given grid point x; on a specific tract, we test the local null hypothesis Hy(x;) :
RA(x;) = bo(x;) against Hi(z;) : RB(z;) # bo(z;). We use a local test statistic
T, (z;) defined by

T(wj) = nd(z;) " {R(Zu(xj,2;) @ 2, )RT} (), (6)
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where 27 = n=' 327 222 and d(z) = R(f,(x)" — bias(B,(x)T)) — bo(x). Fol-
lowing [17], a smaller bandwidth leads to a small value of bias(f,(x)). Moreover,
according to our simulation studies below, we have found that the effect of drop-
ping bias(f,(x)) is negligible and therefore, we drop it from now on.

We test the null hypothesis Hy : RG(x) = bg(z) for all = using a global test
statistic T,, defined by

Lo . .
T, = n/o d(z)"[R(Zy(z,z) @ 2R d(2)dz. (7)

It follows from Theorem 1 [18] along with the continuous mapping theorem
that as both n and ng converges to infinity, we have T,, converges to some
distribution (weighted x2). Based on this result, we develop a wild bootstrap
method to approximate the p-value of Tj,.

3 Simulation Studies

We conducted two sets of Monte Carlo simulations. The first set of simulations
was to evaluate the Type I and II error rates of the global test statistic 7,,. The
second set was to compare the power in detecting the group effect using either
whole diffusion tensor or the diffusion properties.

Simulation 1 In the first set of simulations, we evaluated the Type I and II
error rates by simulating diffusion tensors along the right internal capsule tract
(Figure 1 (a) ) according to S;(x) = exp(Ivecs((S1(x) + Ba(z) X G; + Bai(x) %
Gage;))+U;(z)+&;(x)), where Gage; and G;, respectively, denote the gestational
age at the scan time and gender of the i-th infant, vecs(U;(z)) is a Gaussian
process with zero mean and covariance matrix Xy (z,2’) and vecs(&;(x)) is a
Gaussian random vector with zero mean and covariance matrix X¢(z,z)1(z =
2’). To mimic imaging data, we used the diffusion tensors along the right internal
capsule tract from all the 96 infants in our clinical data to estimate 3(z) of 8(z)
via equation (2), U(x) of U(z) via equation (3), and E(z) of E(x) via E(z) =
log(S;i(x)) — Ivecs((Bi(z)Tz)) —U(x). We fixed all the parameters at their values
obtained from our clinical data, except that we assumed (fs31(x), -, B36(z)) =
c(Bs1(x), -, Bas(x)), where ¢ is a scalar specified below and (Bs1 (), - - -, fa6())
were estimators obtained from our clinical data. Figure 2 displays the estimated
diffusion tensors using VCTF method when ¢ = 1 . Note that the method did
an excellent job of recovering ground truth.

In neuroimaging studies, some scientific questions require the assessment of
the development of fiber bundles diffusion tensors across time. In this simulation
study, the questions were formulated as the hypotheses test Hy : f31(x) = -+ =
Bss(z) = 0 for all x along the right internal capsule tract against Hy : 85;(z) # 0
for at least one x on the tract for some [ = 1,--- ;6. We first assumed ¢ = 0 to
assess the Type I error rates for the global test statistic T},, and then we assumed
c=.2,.4,.6, and .8 to examine the Type II error rates for T}, at different effect
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Fig. 2. Ellipsoidal representations of the true (a), simulated (b) and estimated (c)
diffusion tensors along the the right internal capsule tract, colored with FA values.

sizes. To evaluate the Type I and II error rates at different sample sizes, we let
n = 96. The values of gender and gestational age were set the same as all the
96 infants in our clinical study. Note that the number of grid points on the right
internal capsule equals ng = 112 for both cases.

We applied the VCTF procedure to the simulated diffusion tensors. Par-
ticularly, we approximated the p-value of T;, using the wild bootstrap method
described in the hypothesis test section. For each simulation, the significance
levels were set at @ = .05 and .01, and 100 replications were used to estimate
the rejection rates. For a fixed «, if the Type I rejection rate is smaller than «,
then the test is conservative, whereas if the Type I rejection rate is greater than
a, then the test is anticonservative, or liberal.

Figure 3(a) displays the rejection rates for T, based on the resampling
method for sample size 96) and all effect sizes (¢ = 0, .2, .4,.6, or .8) at both
significance levels (o = .01 or .05) using full diffusion tensors. The statistical
power for rejecting the null hypothesis increases with the effect size and the
significance level, which is consistent with our expectation.

Simulation 2 In the second set of simulations, the diffusion tensors along the
fiber tract were generated as in the first set of simulation. For each simulated
diffusion tensor, we calculated its FA and MD values. Then we applied the VCTF
procedure for multiple measures to the simulated values of FA, MD, joint FA and
MD, respectively, and then tested the significance of the gestational age effect.
It is observed from Fig. 3 (a)-(c) that the statistical power is much higher when
we use the whole tensor instead of FA and MD. The power is a little higher at
small effect size when we use the joint FA and MD values instead of full diffusion
tensors while at higher effect size, they almost have the same power (Fig. 3(a)
and (d)). However, the Type I error is greater than the .05 significance level
when we use the joint FA and MD values (Fig. 3(d)). It means that the test is
liberal. As mentioned in Section 1, this is because there is some inherent bias in
these calculated diffusion properties.
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Fig. 3. Simulation study: Type I and Type II error rates. Rejection rates of T,, based
on the resampling method are calculated at five different values of ¢ for sample sizes
of 96(solid lines) subjects at the (a) .05 and (b) .01 significance levels using diffusion
tensor, FA values, MD values, joint values of FA and MD.

4 A Real Example

We investigate early brain development by using DTI and our VCTF. We con-
sider 96 healthy infants (36 males and 60 females) whose mean gestational age
was 245.6 days with SD: 18.5 days (range: 192-270 days). A 3T Allegra head
only MR system was used to acquire all the images. The system was equipped
with a maximal gradient strength of 40 mT/m and a maximal slew rate of
400 mT/(m-msec). The DTT images were obtained by using a single shot EPI
DTT sequence (TR/TE=5400/73 msec) with eddy current compensation. The
six non-collinear directions at the b-value of 1000 s/mm? with a reference scan
(b=0) was applied. To improve the signal-to-noise ratio of the images, a total
of five scans were acquired and averaged. A weighted least square estimation
method [1] was used to construct the diffusion tensors. Then DTI atlas building
followed by atlas based tractography procedure was employed to process all 96
DTTI datasets. A nonlinear fluid deformation based highdimensional, unbiased
atlas computation method is used to carry out a large deformation non-linear
registration [19]. We chose the right internal capsule tract to illustrate the ap-
plicability of our method. Diffusion tensors were extracted along this fiber tract
for all the 96 infants [5].

In this study, we have two specific aims. The first one is to compare diffu-
sion tensors along the selected fiber bundle across the male and female groups
and thus illuminate the gender effect on the development of these fiber bundle
diffusion tensors. The second one is to delineate the development of fiber bundle
diffusion tensor acros