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Abstract. We present a mathematical airway tree-shape framework
where airway trees are compared using geodesic distances. The frame-
work consists of a rigorously defined shape space for treelike shapes,
endowed with a metric such that the shape space is a geodesic metric
space. This means that the distance between two tree-shapes can be re-
alized as the length of the geodesic, or shortest deformation, connecting
the two shapes. By computing geodesics between airway trees, as well as
the corresponding airway deformation, we generate airway branch corre-
spondences. Correspondences between an unlabeled airway tree and a set
of labeled airway trees are combined with a voting scheme to perform
automatic branch labeling of segmented airways from the challenging
EXACT’09 test set. In spite of the varying quality of the data, we obtain
robust labeling results.

Keywords: Airway branch registration, tree-shape model, airway shape
model, tree metric, tree matching

1 Introduction

Medical imaging is an important diagnostic tool, and along with this tool comes
a need for automatic analysis of medical images. Tree-structures are important
in this context due to their roles as delivery systems for fluids and gases, which
ties them directly and indirectly to a number of diseases. For instance, chronic
obstructive pulmonary disease (COPD) is tied to properties of the airway, such
as the airway wall thickness [11,14].

In order to monitor progression of diseases and determine the range of nor-
mal variation in healthy anatomical trees, we need to compare measures between
scans with varying characteristics. For instance, one needs to be able to com-
pare measurements of airway dimensions, made at specified sites in the airway,
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(a) (b) (c)

Fig. 1. ((a-b) Examples of segmented airways (CASE31 and CASE32 in the EXACT’09
dataset). The topological structures of the two trees are different, especially the cir-
cled ”trifurcation-like” regions in the (image) left hand side, shown as trifurcations in
fig. 3(a). c) By tracing points (illustrated by the circle, square and star) through the
geodesic deformation between two tree-shapes, we obtain a registration of points and
branches of the two endpoint tree-shapes. Branches which are collapsed during the tree
deformation, are not traced further, as illustrated by the square.

between several patients. In this paper, we provide a robust way to make such
comparisons for airway trees by giving anatomical labels to branches in the
airway based on the shape of the airway centerline tree. The technique uses a
model of airway tree-shape which incorporates two notions: tree topology (i.e.,
parent/child connectivity) and geometry, defined by branch shapes (e.g., through
landmark points).

Branch matching is, indeed, both a tree-topological and a geometric problem.
Topological differences are particularly problematic for comparison and match-
ing of anatomical trees such as the airways. These differences can come from
noise in terms of spurious or missing branches, due to problems in the image
recording and processing procedures. Topological differences can also come from
anatomical variation between different patients, see figs. 1(a) and 1(b). Most cur-
rent anatomical tree labeling methods focus, however, either on branch geometry
or on tree topology. In this article we perform matching based on geodesics in
an airway tree-space based on the tree-shape framework developed by Feragen
et al. [3], where a varying tree topology becomes an integral part of the shape
geometry. Not only is this framework geometrically very natural; it also handles
tree-topological differences in a continuous, morphological way.

The airway tree model proposed in this paper consists of a shape space
construction for treelike shapes, endowed with a geodesic metric. Any two treelike
shapes are connected by a shortest possible deformation, or tree-space path
(geodesic), whose length defines a distance between the shapes. Throughout the
deformation, the initial tree changes its tree-topological structure to obtain an
optimal match with the second tree. This makes the tree-shape framework well
suited for branch registration in both inter- and intra-patient pairs of airways.
The deformation, which is unique for sufficiently local data, induces a matching
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of points along the tree-shape branches as illustrated in fig. 1(c). In a leave-one-
out fashion, we generate automatic branch labels on any given airway tree by
matching it with the other airway trees, which have been manually labeled by
an expert. The geodesic matching is combined with a branchwise vote among
anatomical labels induced by the matches, giving a robust automatic branch
labeling.

The main contributions of this paper are i) the adaptation of the tree-shape
framework of [3] to airway trees, giving a new version of the shape space; ii) a
thorough explanation of the underlying geometric ideas, making the tree-shape
model available for a broader community; iii) turning the computed geodesics
into an actual branch matching; and iv) the fusion of several branch matchings
through a voting scheme in order to obtain branch labelings.

The airway shape model has potential for applications beyond branch match-
ing and labeling. Labels or geodesic distances could be used to classify airways
into shape- and structure-dependent phenotypes, and the shape space frame-
work also opens for defining new biomarkers based on the whole airway shape
– topology and geometry combined. Moreover, the shape space framework used
here is very general, and can be transferred to other types of data, e.g., vascular
trees or medial axes, with little effort.

1.1 Related work.

Registration, branch matching and branch labeling in anatomical trees have been
studied in various ways for the past decade. Some of the most successful methods
are based on using association graphs [5,9,12]. Given two initial trees or graphs,
their association graph is a larger graph, which contains information from both
initial graphs. Branch matchings are induced by maximal cliques in the associ-
ation graph. The association graph and its maximal clique are predominantly
combinatorial constructions, although they can depend on geometric properties
of the initial trees. Separating the analysis of geometric and combinatorial prop-
erties like this is somewhat artificial, as the geometric and topological structures
play together in defining the efficiency of an anatomical tree as a space-filling
structure [8,15]. Moreover, finding the maximal clique is NP hard, making exact
computation intractable.

A more basic labeling method is given by van Ginneken et al. [13], where
an airway tree branch labeling is made recursively, starting at the trachea, as
part of the segmentation process. Labels are assigned using measures such as
radius, orientation and bifurcation angle. Such a labeling approach is likely to
be vulnerable to differences in topological structure, as is also noted by the
authors. A different approach is that of Kaftan et al. [4], who match tree paths
rather than branches. They avoid the difficulty with different tree-topological
structures, but also lose all information stored in the topological structure. Their
model does not seem to have applications beyond matching, and in particular
does not generate branch labels. Smeets et al. [10] match branches from lung
vessel trees using pairwise distances between nodes both in 3D Euclidean space
and along the tree to generate distance matrix ”fingerprints”, which are matched



126 Feragen, Lo, Gorbunova, Nielsen, Dirksen, Reinhardt, Lauze, de Bruijne

in order to generate a matching. Bülow et al. [2] match airway tree branches
without connectivity information, using only branch shape.

These methods all focus on one out of two properties of a tree-shape: tree
topology [5, 9, 12], or branch-wise geometry [2, 4, 10]. However, the airway tree
is both topology and branch geometry. This duality is precisely what makes
matching and labeling difficult. Our airway tree-shape model is ideal for model-
ing airway trees because it considers topology and geometry simultaneously.

The rest of the paper is organized as follows: The airway tree-shape
model and the tree-shape metric are presented in sec. 2; experimental details
and results are presented in sec. 3, which are discussed in sec. 4 and concluded
in sec. 5.

2 The tree-shape space

The proposed method uses airway centerlines as input. Each branch centerline is
associated with an edge in a combinatorial airway tree, endowed with a hierar-
chical tree structure (parent/child) which describes branch connectivity. Shape
information is represented by edgewise attributes, in this case a fixed number of
equally spaced landmark points along each branch centerline (the equal spacing
length varies from branch to branch).

We build a space of airway tree-shapes based on the tree-shape model de-
fined by Feragen et al. [3]. Any tree-shape, such as an airway tree-shape, is
represented as a pair (T, f) of a combinatorial tree-structure T with edgewise
shape attributes f , see fig. 2. Here T = (V,E, r) is a tree with vertices V , edges
E ⊂ V × V , and a root r. The shape attributes given by n landmark points per
edge are specified by a function f : E → R3n.

Fig. 2. A tree-shape is represented mathematically as a pair (T, f) where T is a binary,
combinatorial tree and f : E → R3n assigns a shape-descriptor from R3n to each edge.

2.1 Intuitive description of a geodesic tree-shape space

Our goal is to construct a continuous space of deformable trees, and this goal
poses some constraints on the possible geometric structure of the space of tree-
like shapes. To see this, first consider airway trees with a single fixed topological
structure T = (V,E, r). All such trees are described by a point in the same
Euclidean product space

∏
E R3n, where each edge e ∈ E has an associated

attribute vector in R3n describing its shape. Next, divide the set of all airway
trees into classes with fixed topological structure. Each airway tree class lives
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within its own Euclidean space
∏

Ei
R3n, and the space of all airway tree-shapes

is a disjoint union X =
⊔(∏

Ei
R3n

)
of shape spaces, one for each topological

structure. We consider each
∏

Ei
R3n as a component of the larger space of

all airway tree-shapes. We should tie these components together into a large
shape space that connects all airway trees. In order to understand how to tie
the components together, we consider how the tree-topological structure changes
throughout deformations.

(a) (b)

Fig. 3. (a) This figure is best viewed in color. In the first generations of the airways,
the branching structure is fairly pre-determined due to anatomy, and the branches have
names. (b) The tree-shape T can be obtained as a limit of a sequence where a branch
is disappearing – for instance, T can be obtained by shrinking a branch in either T1

or T2, or a number of other tree-shapes Ti. This illustrates how trifurcations can be
interpreted as pairs of bifurcations; their combinatorial representations are shown in
the bottom row. This causes some problems in the representation space X defined in
sec. 2.2, since, for instance, the path from T1 to T to T2 is impossible in X. Passing
from T1 or T2 to T is easy, but the two representations of T correspond to different
points in X, and the path T1 → T → T2 is not possible in X. This path is, however,
possible in the quotient space X̄, where different representations of the same tree are
glued together in one point. We define X̄ to be the space of treelike shapes.

For example, in fig. 3(a), the LMB branch is shown as the parent of a tri-
furcation, with the LUL, LLB6 and LB6 branches emanating from it. In reality,
one will not find a trifurcation, but a pair of bifurcations, e.g., as seen in the
two airway subtrees T1 and T2 in fig. 3(b). A geodesic deformation from T1 to T2

should interchange the order of the LUL and LB6 branches by passing through
a tree of the type T shown in fig. 3(b). This tree can be obtained as a limit
of a sequence of trees with a fixed structure. For instance, such a sequence can
start at T1 or T2 and successively shrink the small branch until collapsing onto
one of the representations of T . Similar sequences can be found for many differ-
ent topological structures, represented by tree-shapes Ti, where slowly deleting
certain edges in Ti converges towards a tree of type T . By following sequences
within different components of the tree-space, where all the tree-shapes in the ith
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component have the same structure as Ti, we reach the same tree-shape T . This
must mean that in order to have a tree-space where the trees can continuously
deform from one topological structure to another, as in fig. 3(b), the tree-space
components of the Ti must all intersect along the component of T . In the next
section, we shall see how such a tree-space can be defined mathematically.

Fig. 4. Trees which are not binary, or which are smaller than T , are represented by
cancelling extra edges, endowing them with the attribute zero (dotted lines). This
leads to several representations of the same tree-shape. By identifying those different
representations that represent the same shape, we construct our shape space as the
quotient space X̄.

2.2 Mathematical definition of the tree-shape space

Having established an intuitive understanding of the geometry of the tree-space,
we shall give a more concrete definition. Recall that any tree-shape is represented
by a pair (T, f) consisting of a combinatorial tree T and edge shape attributes
f . In order to study trees of different sizes and topologies in one unified setting,
all shapes are represented by a fixed combinatorial tree T = (V,E, r), which
is large enough; e.g., if all the tree-shapes have depth N , then T could be the
full binary tree of depth N . Smaller trees are represented in the tree-space by
endowing extra edges with zero attributes, see fig. 3(b). All trees are represented
by a point in the Euclidean representation space

X =
∏
e∈E

R3n. (1)

Assume, moreover, that T is binary. All non-binary tree-shapes can be repre-
sented using a binary combinatorial tree by collapsing internal branches, as de-
scribed in fig. 4. The space X =

∏
e∈E R3n contains every tree-shape represented

at least once. Some tree-shapes are even represented at several points in X, and
as a consequence, some natural tree-shape deformations cannot be represented
as paths in X, see fig. 3(b). This problem is solved by generating an equivalence
relation ∼ on X where different representations of the same shape are identified;
now the space of tree-shapes is defined as the quotient space X̄ = X/ ∼.

Definition 1. We say that two representations in X define the ”same tree-
shape” when the following holds: Starting with the two tree-shape representatives
x1 = (T, f1) and x2 = (T, f2), remove all branches with zero attribute, and con-
sider the resulting (possibly no longer binary) tree-shape representations (T1, f̃1)
and (T2, f̃2). Here, T1 and T2 are ordered, combinatorial, rooted trees. If, up to
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a topology-preserving reordering of the branches, these two attributed trees are
exactly the same, then the tree-shapes are the same and the two representations
are defined to be equivalent. We write x1 ∼ x2.

All equivalent points are identified by forming the quotient space X̄ of the
equivalence relation [1], that is:

X̄ = X/ ∼= {x̄|x ∈ X}, (2)

where

x̄ = {z ∈ X|z ∼ x}. (3)

The points in X̄ are equivalence classes x̄ in X – by abuse of notation we use x̄
to denote both points in X̄ and subsets of X. Geometrically, this construction
corresponds to gluing together those points in the representation space X that
represent the same tree-shape. As most of the points only have one represen-
tative, this creates a new space X̄ with self intersections at points with several
representatives. Many geometric properties of X are inherited by X̄. The quo-
tient space X̄ is the space of treelike shapes.

2.3 Metrics on the shape space

The Euclidean metric on X induces a standard quotient metric d on X̄ [1], called
Quotient Euclidean Distance (QED), defined as follows:

d(x̄, ȳ) = inf
k∈N

{
k∑

i=1

‖ai − bi‖ : a1 ∈ x̄, bi equivalent to ai+1, bk ∈ ȳ

}
. (4)

Here, the norm ‖ · ‖ denotes the Euclidean norm on X, and x̄ is the equivalence
class of the point x ∈ X. Thus, when we write a1 ∈ x̄, this means that a1 is
a point belonging to the equivalence class x̄ as a subset of X, or equivalently,
a1 ∼ x.

One interpretation of eq. 4 is that a QED geodesic consists of a sequence
of k Euclidean lines, which are cut and concatenated whenever the geodesic
deformation switches between two representations bi and ai+1 of the same tree.
Typically, these identified points correspond to internal topological transitions in
the tree-shape structure. The infimum is taken over all possible concatenations
of lines for any k. E.g., the geodesic from T1 to T2 in fig. 3(b) consists of the
Euclidean line from T1 to the first representative of T , concatenated with the
Euclidean line from the second representative of T , to T2.

The QED metric is locally very well-behaved. In particular, geodesics between
data points and various forms of average shapes will exist and be unique [3].
This makes the tree-shape space and its geodesic deformations well suited for
registration. The tree-space construction described above is completely general,
and applies to any trees with continuous edge attributes, not only shapes.
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2.4 Airway tree-shape space

In order to compute the geodesic connecting two 3D tree-shapes such as air-
ways, we consider all possible branch orders on the trees in order to find an
optimal branch alignment. The number of possible orders grows exponentially
with the size of the trees, resulting in computational difficulties. In the case
of airway trees, however, some branches are easy to identify, e.g., the main
bronchi and some of the lobar bronchi seen in fig. 3(a). We significantly re-
duce computational complexity by identifying and fixing the branches Efixed =
{RMB, LMB, RUL, BronchInt, LB6, LLB6, LUL}, which are present and easy
to identify in most data trees. In this way, we consider topological variation only
in the lobar subtrees TRUL, TLUL, TBronchInt, TLLB6, TLB6 following these, shown
in colors in fig. 3(a). The airway shape space is then( ∏

e∈Efixed

R3n

)
⊕

( ∏
e∈ERUL

R3n

)
⊕ · · · ⊕

( ∏
e∈ELLB6

R3n,

)
(5)

where the first component is Euclidean and the others are quotient spaces. The
symbol ⊕ denotes direct sum, or Cartesian product.

2.5 Computing geodesics

Computing the geodesics from eq. 4 is generally NP hard. The number k of
Euclidean concatenations that need to be checked will, in practice, be bounded
for any given pair of trees, but it will grow exponentially with the number of
edges in the trees. We make an approximation by bounding k in eq. 4 for each
lobar subtree. That is, we fix some number K ∈ N, and approximate the distance
in eq. 4 by computing

d(x̄, ȳ) = inf
k≤K

{
k∑

i=1

‖ai − bi‖ : a1 ∈ x̄, bi equivalent to ai+1, bk ∈ ȳ

}
. (6)

This corresponds to assuming that the tree-shape represented throughout geodesic
will undergo at most K internal topological changes. In order to compute the
approximated distance, a naive implementation is to list all the allowed combi-
nations of topological changes, to compute the shortest version of a path going
through each of those particular changes, and choose the shortest among the
resulting paths. This is equivalent to Algorithm 1 from [3].

2.6 Branch label extraction

Using a geodesic deformation from a labeled airway tree to an unlabeled one, as
seen in fig. 1(c), labels from a labeled tree can be propagated to the branches of
an unlabeled tree.

For data with large variation in topology, we would normally need to choose a
rather high bound K on k in eq. 6, in order to obtain the true geodesics between
data points. This is punished by a large increase in computation time. We avoid
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Fig. 5. The centerline trees of CASE26, CASE34 and CASE39, respectively. Note the
large variation in size and topological structure; in particular CASE39 is missing the
upper lobar trees.

this problem by matching with multiple labeled trees, and thus extracting a
number of candidate labels for each branch. This is followed by a voting scheme,
where nearby trees, for which the approximation is good, are expected to win
the vote. Given a training set of airway trees with manually assigned labels, a
new airway tree is first matched with all the trees in the training set, and sets
of labels are propagated to the branches of the unlabeled tree. Each branch is
assigned a pool of labels, among which the majority vote is selected as a new,
automatically extracted branch label.

3 Experimental validation

Experiments were made on airways from the EXACT’09 challenge test set [7],
consisting of 20 CT scans from 15 different subjects, labeled as CASE21 -
CASE40. The EXACT’09 challenge was a segmentation competition, and the
CT scans come from a wide range of sources, states of breathing, and are pro-
cessed using different methods [7]. As a result, the segmented airway trees display
great variation in size, shape and noise level.

The airway trees were segmented from the CT scans using a voxel classifica-
tion based airway tree segmentation algorithm by Lo et al. [6]. The centerlines
were extracted from the segmented airway trees using a modified fast marching
algorithm, directly giving a tree structure. Due to the segmentation method, the
centerline trees are not connected, but have gaps at each bifurcation, as seen
in fig. 5. This is not a problem, as the proposed matching method relies on the
edge shapes, which are sufficiently well described in the disconnected model,
along with parent/child connectivity information.

Leaves with segmented volume less than 10 mm3 were assumed to be noise
and pruned away, and the centerlines were sampled with 6 equidistant landmark
points along each edge. For each edge, the landmark points were translated so
that the first landmark point was aligned with the origin. In this way, large
differences in edges of low generation do not affect the whole subtree following
them. To account for variation in size, each airway tree was normalized by the
constant scaling factor 1/length(LMB), chosen since the LMB branch is present
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CASE 21 22 23 24 25 26 27 28 29 30

% correct 75 88.2 92.9 80 77.8 86.7 88.9 94.4 66.7 89.5
# correct 12 15 13 12 14 13 16 17 14 17

CASE 31 32 33 34 35 36 37 38 39 40

% correct 90 76.5 88.9 100 83.3 78.9 66.7 80 30 76.5
# correct 18 13 16 13 15 15 12 8 4 13

Table 1. Results from the branch labeling; the percentage of correctly labeled branches
among all branches labeled by the algorithm, and the number of branches correctly
labeled by the algorithm. CASE39 is an outlier: both upper lobes were missing from
the segmentation, making the algorithm fail. When the outlier is left out, we correctly
label 83% of the branches on average.

and easy to measure in all segmentations. The trachea was left out in the ex-
periment due to varying cut-off points. The next few branches (RMB, LMB,
RUL, BronchInt, LB6, LLB6, LUL) were detected based on the orientation and
extent of their subtrees. Branches from the first 6−7 generations were matched,
whenever they were present in the segmentation.

3.1 Branch labeling

Each airway tree was aligned with all other airway trees in the dataset through
computing geodesics with K = 2 for each lobar subtree (that is, permitting one
structural transition in each of the five lobar subtrees). When computing the
distances, not only the length of the geodesic from one tree to another, but also
the geodesic from the first tree to the second were recorded. Using the geodesic
we obtained a branch-wise matching by recording which edges are mapped where.

The reference airway trees from EXACT’09 were labeled manually by a
trained image analyst. Up to 34 labels were assigned according to a standard
nomenclature used in bronchoscopy. All cases were reviewed by a pulmonologist
after labeling. For each pair of airway trees, a ground truth branch matching was
induced from the anatomical labels. Several branches found by the registration
were not labeled by the human experts, and were left out in evaluation.

The voting scheme was made based on the 20-airway dataset in a leave-one-
out fashion, where each airway tree was matched with the remaining 19 and
given a branch labeling based on the majority vote. In this way, labels down
to the sixth generation of each airway tree were computed using the rest of the
airway trees as training set. The best label for any given branch was obtained
by voting among the labels. Branch labels with less than 55% voting consensus
or less than 4 votes in total were discarded. The results are found in table 1; the
overall success rate is 83%. We can obtain better scores by insisting on a higher
majority vote; however, this implies labeling fewer branches.

4 Discussion

Tschirren et al. [12], van Ginneken et al. [13] and Bülow et al. [2] performed
labeling on airway trees with success rates of 97%, 90% and 69%/40% (using
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different features), respectively. Our success rate is 83%, which – taking the level
of variation in the dataset into account – is high. Since the datasets used are all
different, a direct comparison of percentages is not possible.

The large variance in our results is natural since the EXACT’09 data come
from a wide range of sources, and are made with different subjects, scanners,
scan- and reconstruction protocols etc, as described in [7, table 1]. This poses
a great challenge: the structural differences between the segmented airway trees
are very large, as illustrated in figs. 5 and 6, and the amount of noise is very
different from tree to tree. We might have dealt with this problem by making a
better approximation of the QED metric. Instead, based on the hypothesis that
trees which are close together will be topologically similar, we choose to use a
coarse but efficient approximation combined with a voting scheme.

Fig. 6. The number of detected branches in the EXACT’09 airway trees is very variable.
Note also that this number is affected by the level of structural noise, and might not
directly correspond to the number of anatomical branches.

5 Conclusion

Based on a geometric model for shapes with a treelike structure, we have de-
veloped a technique for automatic inter- and intra-patient registration of airway
tree centerlines. The method has been evaluated by performing an airway branch
labeling on the EXACT’09 dataset. In spite of the variation in the dataset, our
labeling results are good, illustrating the potential of the shape framework.

The shape space framework is very general, and the tree-space can be en-
riched with additional attributes if wanted. There are very few airway and vessel
tree labeling algorithms available, most of which are ad hoc, specialized heuris-
tics. In contrast, our proposed method takes a principled approach, which is
easy to generalize to other biological tree-structures, e.g.,vascular structures.
This makes the proposed method both novel and important.

The airway shape model has potential for many applications beyond branch
matching and labeling. The shape space has good properties for statistical anal-
ysis such as computation of means and modes of variation. Geodesic distances
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could be used to classify airways into shape- and structure-dependent pheno-
types, and the shape space framework also opens for defining new imaging
biomarkers based on the whole airway shape – topology and geometry com-
bined. These extensions are, however, by no means straightforward, as we are
working in the non-smooth domain of tree-shape space. Further development
of the shape space, numerical methods for tree-shape computations, and their
applications are all topics of future work.
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