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Abstract. This paper proposes a geometric approach for comparing
tensor-valued images (tensor fields) that is based on the idea of matching
intrinsically low-dimensional shapes embedded in a higher-dimensional
ambient space. More specifically, instead of regarding the tensor fields as
tensor-valued functions defined on a given (image) domain, we consider
their image graphs. These tensorial image graphs can naturally be re-
garded as submanifolds (shapes) in an ambient space that is the cartesian
product of their domain and the space of tensors. With this viewpoint,
comparisons between tensor fields can naturally be formulated as com-
parisons between their corresponding shapes, and an intrinsic compari-
son measure can be developed based on matching these low-dimensional
shapes. The proposed approach offers great conceptual clarity and trans-
parency, and thorny issues such as parametric invariance and symmetric
registration can be handled effortlessly in this novel framework. Further-
more, we show that the resulting variational framework can be satisfacto-
rily optimized using a gradient descent-based method, and the computed
similarities can be used as the affinity measures in a supervised learning
framework to yield competitive results on challenging classification prob-
lems. In particular, experimental results have shown that the proposed
approach is capable of producing impressive results on several classifica-
tion problems using the OASIS image database, which include classifying
the MR brain images of Alzheimer’s disease patients.

1 Introduction

A central application of computational anatomy is to quantify the difference
between normal anatomy and pathology. In many application problems, this fre-
quently requires comparisons between 3D volumetric images or shapes extracted
from these images. In particular, the difference is often characterized via a sim-
ilarity measure computed by first registering the two different images/shapes
followed by an integration step that sums over the measured difference at cor-
responding pixels/voxels or surfels (surface elements). Due to its simplicity, this
L2-based approach is very popular in the literature, especially for comparing
images and shapes. However, for many applications, tensor fields derived from
the scalar-valued images usually contain more useful information that have fre-
quently been under-utilized until now, and for these applications, comparisons
between tensor fields are important and fundamental. The examples include the
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metric tensor for shape comparison, deformation tensor for morphometry [1],
the diffusivity tensor [2] for diffusion MRI and many others. Therefore, there is
an increasing need for developing a sound and principled approach for comparing
tensor fields, and in this paper we will present one such approach.

The approach taken in this paper is entirely geometrical and it is based on
the fundamental idea of comparing the intrinsic shapes of the tensor fields. More
precisely, suppose Ti, and Tj are P(n)-valued tensor fields defined over an im-
age domain Ω considered as a subset in R

n, where P(n) denotes the space of
symmetric positive-definite n×n matrices (Figure 1). The tensor fields can nat-
urally be regarded as submanifolds in the product space Ω×P(n). Once we have
equipped Ω×P(n) with a Riemannian metric, the geometries of Ti, and Tj are
then naturally defined using the induced metrics. In other words, each tensor
field is considered as a kind of high-dimensional (tensorial) image graph [5]. For
a grey-scale image, its image graph is a submanifold in R

3; however, for a tensor
field, its tensorial image graph is contained in a the (nonlinear) ambient space
that typically has dimension greater than three. With this particular viewpoint,
comparisons between tensor fields can be formulated intrinsically as compar-
isons between their corresponding tensorial image graphs, and the method of [4]
can be generalized directly to this higher-dimensional context by computing the
registration between two shapes embedded in the ambient space.

(a) (b)

Fig. 1. Left: The tensorial image graph of a tensor field defined on R
3. The ambient

space is the cartesian product R3 ×P(3). Right: Comparing shapes in R
3 ×P(3) can

be realized via a registration map X defined between the two shapes.

The approach outlined above offers several important advantages over the rel-
atively straightforward L2-based approach. First, it is conceptually transparent
and by comparing the shapes (instead of tensor fields) directly on the tensorial
image graphs, the issue of parametrization invariance becomes irrelevant and the
complicated procedures of finding a parametrically invariant representation [2]
can be completely bypassed. Second, the issue of symmetric comparison and reg-
istration [3] is naturally incorporated through the use of intrinsic volume forms
defined on the shapes. Third, while the mathematics is more involved when com-
pared with the L2-based methods, it is still tractable and we have developed a
gradient descent-based method to efficiently optimize the objective function. Fi-



Matching and Classification of Images Using The Space of Image Graphs 101

nally, the proposed approach is also flexible in that it permits different metrics
to define different shapes for a given tensor field. For example, the ambient space
Ω×P(n) can be equipped with several different metrics (for example, the usual
Frobenius metric and affine-invariant metric on P(n)), and our approach can
easily accommodate these different choices.

For validation, we apply the proposed method to classify brain MRI from dif-
ferent population groups contained in the OASIS database [10] which includes
the challenging problem of classifying MR brain scans of patients suffering from
the alzheimer’s disease and that of normal healthy old adults. The MR brain
images are first converted into their corresponding tensor representations, and
pairwise similarities between the resulting tensor fields are computed using the
proposed method. Nonlinear dimensionality reduction of the data is achieved
using a diffusion map [11] with the pairwise similarities as the basic affinity
measures, and the final classification step is carried out efficiently and accu-
rately in a low-dimensional Euclidean space. In terms of better and stronger
classification results, the experimental results reported in section 4 validate the
two novel points advocated in this paper that the tensor field comparisons are
fundamental and important in many applications, and a sound and principled
approach to tensor field comparison can form the basis of algorithmic solutions
to challenging classification problems.

2 Cost Function for Shapes Matching

Shapes can be represented as Rn-dimensional point clouds, triangular meshes,
or parametric or implicit surfaces. In this paper, shapes are considered as para-
metric surfaces. For instance, surfaces in 3-D are represented parameterically by
: f : Ω → R3 ,where Ω is a domain. If we represent images as image graphs in
order to represent images as shapes, the desired parameterization is f : (u, v) →
(x, y, I(x, y)) for 2-D gray scale images or f : (u, v) → (x, y, P (3)(x, y)) for 2-D
3-by-3 symmetric positive definite (SPD) tensor-valued images. More precisely,
an image can be considered as a section of a fiber bundle [5]. Then for a pair of
shapes (S1, S2), a matching problem can be formulated as follows :

D((S1, S2), γ) = min
γ

∫
Dist(S1, S2 ◦ γ)√κdΩ, (1)

where S1 and S2 share common domain Ω. On this stage we assume that shapes
are already globally registered. In Eq.(2), Dist(S1, S2) is a point-wise distance
defined in the ambient space between two shapes and

√
κdΩ is volumeform

defined as ||dfp(u) × dfp(v)|| where f : (u, v) → p and
√
κ is invariant under

re-parametrization.
For shape comparison, D((S1, S2), γ) is required to be invariant under re-

parametrization, and symmetric between S1 and S2. Recently, [2] introduces the
notion of q − map as a novel representation for shapes in R

3 with the aim of
achieving re-parametrization invariance ofD((S1, S2), γ). However if the ambient
space is not Euclidean, e.g., P(3), it is not clear how to complete the centering
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step in the construction of the q−map in [2]. A similar cost function as Eq.(2)
was proposed earlier in [4] which is designed for matching 3-D face meshes. How-
ever, the proposed matching algorithm is not symmetric and nor is it designed
for matching tensorial image graphs.

In this paper, we introduce a novel symmetric matching framework for low-
dimensional shapes embedded in an ambient space X that generally has dimen-
sion greater than three. Such shapes will be represented by their parameteri-
zations with domains in R

2 or R
3. Let S1 and S2 be two such surfaces with

parameterizations f1 and f2 defined on two domains Ω1 and Ω2 respectively. We
will use the following cost function to define a similarity measure between these
two shapes

E((S1, S2), γ) = min
γ

∫
(Dist(f1, f2 ◦ γ))2(√κ1 +

√
κ2(Ω2 ◦ γ)Jγ)dΩ, (2)

where
√
κ1dΩ1 and

√
κ2dΩ2 are the pull-backs of the volume form on S1, S2

under f1 and f2, respectively. Ω = Ω1, and Jγ is the determinant of the Jacobian
of γ. The details of derivation of Eq.(2) is given in the appendix.

2.1 Tensorial Image Graphs

In this section, we apply our matching framework to tensor-valued images, specif-
ically 3-by-3 3-D SPD tensor-valued images. For this purpose, each tensor-valued
image is represented as a section of a fiber bundle [5] with the map X : R3 →
R

3 × P(3) or X : (u, v, w) → (x(u, v, w), y(u, v, w), z(u, v, w), I(x, y, z)). In this
map, x = u,y = v,z = w and I(x, y, z) ∈ P(3) at each voxel. This parametriza-
tion was introduced by Gur et. al [5] to achieve anisotropic smoothing of 2-D
DTI. In this appplication, the volume form is

√
κdudvdw where κ is the deter-

minant of

K =

⎛
⎝< Xu,Xu > < Xu,Xv > < Xu,Xw >
< Xu,Xv > < Xv,Xv > < Xv,Xw >
< Xu,Xw > < Xv,Xw > < Xw,Xw >

⎞
⎠ , (3)

or

K =

⎛
⎝ λ+ Tr((I−1Ix)

2) Tr((I−1Ix)(I
−1Iy)) Tr((I

−1Ix)(I
−1Iz))

Tr((I−1Ix)(I
−1Iy)) λ+ Tr((I−1Iy)

2) Tr((I−1Iy)(I
−1Iz))

Tr((I−1Ix)(I
−1Iz)) Tr((I

−1Iy)(I
−1Iz)) λ+ Tr((I−1Iy)

2)

⎞
⎠ , (4)

and the metric in the ambient space is given by:

G =

⎛
⎜⎜⎝
λ 0 0 0
0 λ 0 0
0 0 λ 0
0 0 0 P

⎞
⎟⎟⎠ , (5)

where P is the metric in P(3) space. We will call the shapes (submanifolds)
represented by the parametrizationX as the tensorial image graph of the tensor-
valued images I. Representing the tensorial image graphs S1 and S2 by (x1, y1, z1, I1)
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and (x2, y2, z2, I2) respectively, we define Dist((S1, S2), γ) in Eq.(2) by:

Dist((S1, S2), γ) = λ((x1 − x2)
2 + (y1 − y2)

2 + (z1 − z2)
2) + dist(I1, I2), (6)

and
dist(I1, I2) = Trace(log(I

−1/2
1 R†(I2 ◦ γ)RI−1/2

1 )2). (7)

Eq.(7) is voxel-wise Riemannian distance between tensors [6], with R the ma-
trix used to re-orient the tensors (as they undergo a registration). When we
choose Ω as the common domain, (x1, y1, z1) = (u, v, w) and (x2, y2, z2) = (u+
U(u, v, w), v+ V (u, v, w), w+W (u, v, w)), where U, V,W are the components of
the deformation field. In Eq.(7), R is reoriented with respect to the deformation
vector field γ (or U, V,W ) at each voxel. Reorientation of tensors must be carried
out during optimization to and the reorientation transformation is derived from
the deformation field [7, 8]. Also, recall that Trace((log(A)2) =

∑3
i=1(log(Λi))

2,
where Λi’s are the eigenvalues of A.

To smooth the vector field, (U, V,W ), we add the regularization term to
Eq.(2) :

Ereg =

∫
|∇U |2 + |∇V |2 + |∇W |2dΩ, (8)

and the final cost function, Etot((S1, S2), γ) is given as:

Etot((S1, S2), γ) = (1− α)E((S1, S2), γ) + αEreg , (9)

where α is a small positive scalar.
To efficiently solve the resulting optimization problem, we first discretize the

cost function to get,

Etot(U,V,W) =
∑
i∈Ω

[(1 − α)Dist(Ui, Vi,Wj)(
√
κ1i +

√
κ2iJγi) (10)

+ α
∑

k={x,y,z}
(U2

ki + V 2
ki +W 2

ki)]

where Ui, Vi,Wj , Uki, Vki,Wki are the values of U, V,W at the given discrete
points. We optimize the above cost function with respect to U, V,W using non-
linear conjugate gradient (NCG) method following [9]. To simplify the steps,
we evaluate the gradient vector and the Hessian matrix of Eq.(10) with fixed
(
√
κ1i +

√
κ2iJγi) in each NCG iteration, and in turn, (

√
κ1i +

√
κ2iJγi) is com-

puted using the most recently updated deformation vector field, (Ui, Vi,Wi).

3 Application : Classification of MRI data

To apply our matching framework to classification of tensor-valued image data
set, we first convert the input images into their associated tensor-valued images
(tensor fields) and compute pairwise matching. In the second step, we use the
L2 norms of the deformation vector fields, d(Si, Sj) between the two tensorial
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image graphs Si and Sj to build a data graph with Gaussian weights e−d(Si,Sj)/ε

according to [11]. The corresponding Markov matrix is used to compute the
diffusion maps [11], which provides a dimensionality reduction of the input image
data. The nearest neighbor classifier is then used for classification using the
diffusion distances in the low-dimensional feature space.

3.1 Data Preparation

To create 3-D tensor images from a 3D gray-scale images, we used the OASIS
MRI database [10]. The images in the database are the MR human brain scans of
subjects aged between 18-96 of 416. Each image has a resolution of 208×176×176
voxels. Our goal is to classify the MR image data into different age groups, and
we have chosen the ventricle as the ROI (region of interest) as it captures the
part of brain showing the most significant difference across ages. Fig.2 shows
ROIs from sagittal and longitudinal MR slices acquired from brains of 18, 43
and 81 year old subjects respectively.

Our tensor-valued images are the first fundamental forms (metric tensors) of
image graphs of the 3-D intensity values with map f : R3 → R3 ×R,⎛

⎝< fu, fu > < fu, fv > < fu, fw >
< fu, fv > < fv, fv > < fv, fw >
< fu, fw > < fv, fw > < fw, fw >

⎞
⎠ , (11)

and we consider these tensor fields as tensorial image graphs. Fig.3 shows the
tensor-valued images from subjects in Fig.2 according to Eq.11.

3.2 Diffusion Map and Diffusion Distance for Classification

In this paper, we represent the SPD tensor-valued images as sections of a fiber
bundle, therefore we need to find a meaningful geometric description of the
space of sections for classification purposes and diffusion maps can generate
efficient representation of desired geometric structures based on the diffusion
processes.[11] Once we build a graph with Gaussian weights e−d(Si,Sj)/ε and
construct the corresponding Markov matrix, M, then the family of diffusion
maps {Ψt}t∈N and diffusion distance Dt(Si, Sj) are defined as follows :

Ψt(Si) =

⎛
⎜⎜⎜⎝
Λt1Ψ1(Si)
Λt2Ψ2(Si)

...
ΛtsΨs(Si)

⎞
⎟⎟⎟⎠ , (12)

and

Dt(Si, Sj) =

(
s∑
l=1

Λ2t
l (Ψl(Si)− Ψl(Sj))

2

)1/2

, (13)
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where {Λl}l≥0 and {Ψl}l≥0 are eigenvalues and eigenvectors of M respectively
such that 1 = Λ0 > |Λ1| ≥ |Λ2| ≥ . . . and MΨl = ΛlΨl (Ref.), and

s = max{l ∈ N such that|Λl|t > δ|Λ1|t}. (14)

The diffusion map Ψt embeds all data in the set, {Si} into the Euclidean space
Rs and Dt reflects the connectivity in the graph of the data in the set, {Si}
defining the Euclidean distance in Rs : points in the set {Si} are closer if they
are highly connected in the graph.

We set d(Si, Sj) as L2 norm of deformation vector fields, or
∫
(|U |2 + |V |2 +

|W |2)dΩ, after matching and use the diffusion distance as feature of nearest
neighbor classifier in the low dimensional space.

Fig.4 shows Ψ1 vs. Ψ2 plots for classifications between groups. The details of
classification results are reported in next section.

4 Experimental Results

In this section, we report the experimental results on classifications of MR brain
images from the OASIS data set. We divided the subjects into three groups :
the young group with age below 40, the old group with age 60 or above and the
middle-aged group between 41-60. In these experiments, we use a four-fold cross-
validation and leave-one-out validation to determine the classification scores.
In the four-fold cross-validation, the subgroups are randomly selected 50 times
and the maximum, minimum and average classification scores together with
the variances are reported in the first three columns in Table 1. We also test
our method to classify Alzheimer’s disease (AD). We take 70 subjects from old
age group and in the subgroup, 35 of them are diagnosed as AD and rest of
them are control, and we use four-fold and leave-one-out validation tests within
the subgroup[13]. The classifier used in the reduced dimension is the nearest-
neighbor classifier, and the diffusion distance is used as distance measure. The
criterion for determining the dimension of the diffusion map in these experiments
is given by δ = 0.07 in Eq.(14) with t = 1. The metric used for the ambient space
R

3 × P(3) is the product metric of the Euclidean metric on R
3 and the affine-

invariant metric on P(3). Furthermore, tensor reorientation [7],[8] is applied to
reorient the tensors after transformation. We note that for three different sets of
classification, the classification rates are uniformly high.

In the second set of experiments, we test the effects of using tensor field
(compared with only scalar field) and the choice of different metric on P(3).
First, we change the metric on P(3) from the affine-invariant metric to the
Frobenius norm (i.e., L2-norm), and four-fold cross-validation results between
young and old age group are reported in the first two columns in Table 2. In
these two columns, we test the effect of tensor reorientation on classifications,
and the results show that for Frobenius norm, the effect is generally small. In the
third column, the images are represented by their image graphs and the shape
comparisons are carried out in the ambient space R3×R instead of R3×P(3). In
this experiment, distances between image graphs are the Riemannian distances
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and λ = 0.000001 in Eq.(6) and α = 0.02 in Eq.(9). We remark that the result
clearly demonstrates that the classification result using only scalar-valued images
(image graphs in R

3) is inferior to the one using tensor fields and the affine-
invariant metric on P(3) provide superior classification result compared with
the Frobenius metric.

In Table 3, we show the comparisons between our method and several pre-
viously published classification results on the OASIS database. [12] uses the de-
formation tensor field (computed from registering the image to an atlas) as the
main feature for each image. Submanifold of each age group is constructed from
the training samples and the geodesic distances between subjects and the sub-
manifolds are used as the main discriminative feature for classification. In [13],
alternatively, histograms of deformation vector fields have been used as features,
and the CAVIAR method proposed in [13] takes a adaboost-like approach to in-
tegrate the results from a collection of weak classifiers into a strong classification
result. We remark that our method compared favorably with these methods in
terms of classification rates, and in particular, for the more challenging problem
of classifying brain images of Alzheimer’s disease patients, our method demon-
strates a small but real improvement over these two methods.

Table 1. Scores of leave-one-out and four-fold cross-validation test of four subgroups
randomly selected 50 times. The metric used for the ambient space R

3 × P(3) is the
product metric of the Euclidean metric on R

3 and the affine-invariant metric on P(3).

Old vs. Young Old vs. Middle Middle vs. Young AD vs. Control

Maximum 100% 100% 100% 100%

Minimum 97.72% 90.77% 87.27% 75.0%

Average 99.25 % 97.6% 94.36 % 94.87%

Standard deviation 0.8384% 2.46% 3.09% 5.55%

Leave-one-out 99.15 % 98.46 % 96.36% 95.32%

Table 2. Scores of leave-one-out and four-fold cross-validation test of four subgroups
randomly selected 50 times between Young and Old samples using Frobenius metric
on P(3) with and without tensor re-orientation. Last column gives the classification
result of using only gray-scale images.

Methods Frobenius with reo. Frobenius without reo. Image Graph

Maximum 100% 100% 98.86%

Minimum 88% 88.63% 88.63%

Average 94.96 % 96.52% 94.29 %

Standard deviation 2.57% 2.15% 2.29%

Leave-one-out validation 97.03% 98.01% 94.89%
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Table 3. Comparison of classification scores with 4-fold validation between classifica-
tion methods

Old vs. Young Old vs. Middle Middle vs. Young AD vs. Control

Image Graphs 99.25% 97.6% 94.36% 94.87%

CAVIAR [13] 99.14 % 98.36 % 97.76% 88.0%

Adaboost [13] 98.75 % 96.80 % 96.0% 90.25 %

Submanifold projection [12] 96.43% 90.23% 84.32% 88.57%

Nearest Neighbor in PCA [12] 92.43% 87.74 % 78.42 % 84.29 %

5 Conclusion

We have proposed a novel geometric approach for comparing tensor-valued im-
ages (tensor fields) that is based on the simple idea of matching the low-dimensional
tensorial image graphs formed by the tensor fields. Our framework provides
a registration method that is both symmetric and invariant under different
parametrization, and the resulting cost function can be satisfactorily optimized
using a gradient descent-based method. We have reported four different classifi-
cation experiments using the OASIS image database, and our method has pro-
duced results that are in par or exceeding the current state-of-the-art results.
In particular, our experiments have shown that tensor fields do indeed contain
subtle information that can be useful for challenging classification problems, and
the experimental results have demonstrated that the proposed method, although
more elaborat and involved compared with L2-based method, is able to access
and utilize this information to obtain good classification results.
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Appendix. Cost Function for Symmetric Matching

If we have two parameterized shapes, S1 and S2 with domain Ω1 and Ω2, then
the cost function for symmetric matching problem is formulated as following :

E((S1, S2), φ, ψ) = min
φ

∫
Ω1

Dist(S1, S2◦φ)√κ1dΩ1+min
ψ

∫
Ω2

Dist(S2, S1◦ψ)√κ2dΩ2,

(A-1)
where φ : Ω1 → Ω2 and ψ : Ω2 → Ω1, and

√
κdΩ is volumeform. If The second

term in the left hand side of Eq(A-1) can be rewritten as following :∫
Ω1

Dist(S2 ◦ ψ−1, S1)
√
κ2(Ω2 ◦ ψ−1)Jψ−1dΩ1, (A-2)

and if we require that Eq(A-1) is symmetric matching, ψ−1 should be φ and
Jψ−1 = Jφ which is determinant of Jacobian such as

Det

⎛
⎜⎝

∂u2

∂u1

∂u2

∂v1
∂u2

∂w1
∂v2
∂u1

∂v2
∂v1

∂v2
∂w1

∂w2

∂u1

∂w2

∂v1
∂w2

∂w1

⎞
⎟⎠ (A-3)

And κ2 is determinant of K2 given as following :

K2 =

⎛
⎝< S2u2

, S2u2
> < S2u2

, S2v2 > < S2u2
, S2w2

>
< S2u2

, S2v2 > < S2v2 , S2v2 > < S2v2 , S2w2
>

< S2u2
, S2w2

> < S2v2 , S2w2
> < S2w2

, S2w2
>

⎞
⎠ (A-4)

= (J−1
φ )2K

′
2, (A-5)
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and

K
′
2 =

⎛
⎝< S2u1

, S2u1
> < S2u1

, S2v1 > < S2u1
, S2w1

>
< S2u1

, S2v1 > < S2v1 , S2v1 > < S2v1 , S2w1
>

< S2u1
, S2w1

> < S2v1 , S2w1
> < S2w1

, S2w1
>

⎞
⎠ (A-6)

Finally the cost function is given as following :

E((S1, S2), φ, ψ) = min
φ

∫
Ω1

Dist(S1, S2 ◦ φ)(√κ1 +
√
κ

′
2)dΩ1, (A-7)

where κ
′
2 is the determinant of K

′
2.

(a) (b) (c) (d) (e) (f)

Fig. 2. Slices of 3-D MRI images. (a)-(c) : Cross-sectional images of ventricles of 18,
43, and 81 years old respectively. (d)-(f): Longitudinal images of ventricles in the same
order.
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(a) (b) (c)

Fig. 3. Slices of 3-D tensor images of ventricles created by Eq.(11). (a)-(c) : 18, 43,
and 81 years old respectively.
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Fig. 4. 2-D plots of diffusion maps: (a) young vs. old, (b) young vs. middle, and (c)
middle vs. old. In each plot, x-axis and y-axis are Ψ1 and Ψ2, respectively


