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Abstract. This paper develops a functional data analysis framework
to model diffusion tensors along fiber bundles as functional responses
with a set of covariates of interest, such as age, diagnostic status and
gender. This framework has a wide range of clinical applications including
the characterization of normal brain development, the neural bases of
neuropsychiatric disorders, and the joint effects of environmental and
genetic factors on white matter fiber bundles. A challenging statistical
issue is how to appropriately handle diffusion tensors along fiber bundles
as functional data in a Riemannian manifold. We propose a statistical
model with varying coefficient functions,called VCTF to characterize the
dynamic association between functional SPD matrix-valued responses
and covariates. We calculate a weighted least squares estimation of the
varying coefficient functions under the Log-Euclidean metric in the space
of SPD matrices. We also develop a global test statistic to test specific
hypotheses about these coefficient functions. Simulated data are further
used to examine the finite sample performance of VCTF . We apply
our VCTF to study potential gender differences and find statistically
significant aspect of the development of diffusion tensors along the right
internal capsule tract in a clinical study of neurodevelopment.

1 Introduction

Diffusion Tensor Imaging (DTI), which can track the effective diffusion of water
in the human brain in vivo, has been widely used to map the microstructure
and organization of fiber tracts and to assess the integrity of anatomical connec-
tivity in white matter [1]. In DTI, the degree of diffusivity and the directional
dependence of water diffusion in each voxel can be quantified by a 3 × 3 sym-
metric positive definite (SPD) matrix, called a diffusion tensor (DT), and its
three eigenvalue-eigenvector pairs {(λk,vk) : k = 1, 2, 3} with λ1 ≥ λ2 ≥ λ3.
Fiber tracts in white matter can be constructed by consecutively connecting
the principal directions (v1) of DTs in adjacent voxels [2]. Therefore, DTs and
tensor-derived quantities (e.g., fractional anisotropy (FA)) are distributed along
these white matter fiber tracts for each subject. As an illustration, Figure 1 (a)
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presents the right internal capsule tract and Figure 1 (b) presents DTs along
this tract obtained from 10 subject’s, in which each DT is geometrically repre-
sented by an ellipsoid. In this representation, the lengths of the semiaxes of the
ellipsoid equal the square root of the eigenvalues of a DT, while the eigenvectors
define the direction of the three axes. Mathematically, these diffusion tensors
along the fiber tract are functionals of SPD matrices. Our research of interest is
to statistically model SPD functionals as responses with covariates of interest,
such as age and gender, across multiple subjects.

Fig. 1. (a) The right internal capsule tract. (b) The ellipsoidal representation of full
tensors on the fiber tract from 10 selected subjects, colored with FA values.

Statistical approaches have been developed for the statistical analysis of
tensor-derived quantities along fiber tracts. A tract-based spatial statistics frame-
work was developed to construct local diffusion properties along a white matter
skeleton and then perform pointwise hypothesis tests at each grid point of the
skeleton [3]. A model-based framework was developed to construct the medial
manifolds of fiber tracts and then to test pointwise hypotheses based on diffu-
sion properties along the medial manifolds [4]. However, since these two methods
ignore the functional nature of diffusion properties along fiber tracts, they can
suffer from low statistical power in detecting interesting features and in ex-
ploring variability in tract-based diffusion properties. A functional data analysis
framework was used to compare a univariate diffusion property along fiber tracts
across two (or more) populations for a single hypothesis test per tract by using
functional principal component analysis and the Hotelling T 2 statistic [5]. Their
method has two major limitations including only consideration of a univariate
diffusion property and the lack of control for other covariates of interest, such
as age. To address these two limitations, a functional regression framework was
proposed to analyze multiple diffusion properties along fiber tracts as functional
responses with a set of covariates of interest, such as age, diagnostic status and
gender [6]. An alternative approach, called generalized functional linear models,
was developed with a scalar outcome (e.g., diagnostic group) as responses and
fiber bundle diffusion properties as varying covariate functions (or functional
predictors) [7].
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The calculated diffusion properties, which are nonlinear and linear functions
of the estimated three eigenvalues of DT containing inherent bias, may be sub-
stantially different from the true diffusion properties [8]. Numerical simulations
have shown that estimates of the largest eigenvalue in a DT usually overesti-
mate the true value of λ1 and that estimates of the smallest eigenvalue usually
underestimate λ3. These differences between the estimated and true eigenval-
ues subsequently bias the estimation of diffusion properties that are calculated
from the values of these estimated eigenvalues. The sorting bias is pronounced
in three types of degenerate DT including isotropic (λ1 = λ2 = λ3), oblate
(λ1 = λ2 > λ3 ), or prolate ( λ1 > λ2 = λ3). Previous studies have shown that a
major portion of DTs along fiber tracts are prolate tensors [9], and thus directly
comparing these biased diffusion properties along fiber tracts can create ‘statis-
tical artifacts’ including biased parameter estimates and incorrect test statistics
and p−values for hypotheses of interest as shown in Section 3.

To avoid these statistical artifacts, it is important to directly analyze esti-
mated DTs along fiber tracts. There are several advantages of comparing the es-
timated DTs along fiber tracts with covariates. The first one is that the standard
weighted least squared estimates of true DTs are almost unbiased [8]. Moreover,
as shown in Section 3, directly modeling DTs along fiber tracts as a smooth SPD
process allows us to incorporate smoothness constraint to further reduce noise
in the estimated DTs along fiber tracts, which subsequently leads to reduced
noise in estimated diffusion properties along the fiber tracts. Furthermore, the
use of scalar diffusion properties ignores the direction information of DT, and
thus it can lose the statistical power in detecting the differences in DT oriented
in different directions.

There is a growing interest in the DTI literature in developing statistical
methods for direct analysis of DTs in the space of SPD matrices. [10] proposed
several parametric models for SPD matrices and derived the distributions of
several test statistics for comparing differences between the means of the two
(or multiple) groups of SPD matrices. [11] developed a nonparametric estimator
for the common density function of a random sample of positive definite ma-
trices. [12] developed a semi-parametric regression model with SPD matrices as
responses in a Riemannian manifold and covariates in a Euclidean space. [13]
and [14] proposed tensor splines and local constant regressions for interpolating
DTI tensor fields based on the Riemannian metric.

In this paper, we propose a varying coefficient model (VCTF) to use varying
coefficient functions to characterize the association between fiber bundle diffu-
sion tensors and a set of covariates. This model is different from that in [12]
because the former is applicable to DT-valued functional data and consider the
within-subject correlations while the latter is only applicable to data with a DT
response for each subject. Since the space of SPD matrices is a Riemanian man-
ifold, to the best of our knowledge, our VCTF is the first paper for developing
a functional data analysis framework for modeling functional manifold-valued
responses with covariates in Euclidean space. To account for the curved na-
ture of the SPD space, we employ the Log-Euclidean metric in [15] and then
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use a weighted least squares estimation method based on the geodesic distance
under the Log-Euclidean metric to estimate the varying coefficient functions.
Furthermore, we develop global test statistics to test hypotheses on the varying
coefficient functions and use a resampling method for approximating its p-value.

The rest of the paper is organized as follows. Section 2 presents VCTF and
related statistical inference. Section 3 examines the finite sample performance of
VCTF via simulation studies. Section 4 illustrates an application of VCTF in a
clinical study of neurodevelopment. Section 5 presents concluding remarks.

2 Methodologies

In this section, we present our VCTF for the statistical analysis of DTs along
fiber tracts as functional responses with a set of covariates. To compare DTs in
populations of DTIs, we use the DTI atlas building followed by atlas fiber trac-
tography and fiber parametrization as described in [5] to extract DTI fibers and
establish DTI fiber correspondence across all DTI fiber correspondence across
all DTI datasets from different subjects. For the sake of simplicity, we do not
include these image processing steps here, which have been discussed in details
in [5].

Varying Coefficient Model for Functional SPD data Let Sym+(3) and
Sym(3) be, respectively, the set of 3×3 SPD matrices and the set of 3×3 symmet-
ric matrices with real entries. Let vecs(C) = (c1,1, c2,1, c2,2 · · · , cm1,1, · · · , cm1,m1

)T

for any m1 ×m1 symmetric matrix C = (ck,l). Let Ivecs(·) be the inverse oper-
ator of vecs(·) and (al) be a q × 1 vector with the l-th element al. Let C ⊗ D
denote the Kronecker product of two matrices C and D.

Let x ∈ [0, L0] be the arc length of any point on a specific fiber bundle relative
to a fixed end point of the fiber bundle, where L0 is the longest arc length on
the fiber bundle. For the i-th subject, we measure a diffusion tensor, denoted
by Si(xj) ∈ Sym+(3), at the arc length xj ∈ [0, L0] for the j-th location grid
point on the fiber bundle for j = 1, · · · , nG and i = 1, · · · , n, where nG and
n denote the numbers of grid points and subjects, respectively. We consider a
varying coefficient model given as follows:

log(Si(x)) = Ivecs((zTi βl(x))) + Ui(x) + Ei(x) for i = 1, · · · , n, (1)

where log(·) denotes the matrix logarithm, Ei(x) ∈ Sym(3) is a 3 × 3 sym-
metric matrix of measurement errors, and Ui(x) ∈ Sym(3) characterizes both
individual matrix variations from Ivecs((zTi βl(x))) and the correlation struc-
ture between log(Si(x)) and log(Si(x

′)) for different x and x′. Moreover, zi and
βl(x) = (β1l(x), · · · , βrl(x))T are, respectively, a r × 1 vector of covariates of
interest with zi,1 = 1 and its associated vector of varying coefficient functions of
x for l = 1, · · · , 6. Model (1) can be regarded as a generalization of varying co-
efficient models, which have been widely studied and developed for longitudinal,
time series, and functional data.
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Let SP(µ,Σ) denote a stochastic process with mean µ(x) and covariance
matrix function Σ(x, x′) for any x, x′ ∈ [0, L0]. It is also assumed that vecs(Ei(x))
and vecs(Ui(x)) are independent and respectively, independent and identical
copies of SP (0, ΣE) and SP (0, ΣU ). Moreover, vecs(Ei(x)) and vecs(Ei(x′)) for
x 6= x′ are assumed to be independent and thus ΣE(x, x

′) takes the form of
ΣE(x)1x=x′ .

Weighted Least Squares Estimation To estimate the coefficient functions
in β(x) = (βT

1 (x), · · · , βT
q (x))T , we develop a weighted least squares estimation

method based on an adaptive local polynomial kernel (LPK) smoothing tech-
nique [16] and the geodesic distance under the Log-Euclidean metric (see [15]
for details). Specifically, using Taylor’s expansion, we can expand βl(xj) at x to

obtain βl(xj) ≈ βl(x) + β̇l(x)(xj − x),
For a fixed bandwidth h(1), we first calculate a weighted least squares esti-

mate of βl(x), denoted by β̂l(x), which minimizes an objective function given by∑n
i=1

∑nG

j=1Kh(1)(xj−x)tr{[log(Si(xj))−Ivecs((zTi (βl(x)+ β̇l(x)(xj−x))))]⊗2},
where Kh(1)(·) = K(·/h(1))/h(1) is a rescaled kernel function, K(·) be a kernel
function, such as the Gaussian and uniform kernels [16] and a⊗2 = aaT for any
vector or any matrix a. Then with some calculation, we can have

β̂l(x) = (β̂1k(x), · · · , β̂rl(x))T = [Ir ⊗ (1, 0)]Al(x)), (2)

where Ir is an r×r identity matrix, Al(x)) = Σ(h(1), x)−1
∑n

i=1

∑nG

j=1Kh(1)(xj−
x)[zi⊗yh(1)(xj−x)](log(Si(xj)))l andΣ(h(1), x) =

∑n
i=1

∑nG

j=1Kh(1)(xj−x)[z⊗2i ⊗
yh(1)(xj − x)⊗2] with yh(1)(xj − x) = (1, (xj − x)/h(1))T .

We pool the data from all n subjects and select an estimated bandwidth h(1),

denoted by ĥ
(1)
e by minimizing the cross-validation score given by (nnG)−1

∑n
i=1∑nG

j=1 tr{[log(Si(xj))−Ivecs((zTi β̂l(xj , h
(1))(−i)))]⊗2}, where β̂l(x, h

(1))(−i) is the

weighted least squares estimator of βl(x) for the bandwidth h(1) based on ob-
served data with the observations from the i-th subject excluded. Finally, by

substituting ĥ
(1)
e into (2), we can obtain an estimate of βl(x), denoted by β̂l,e(x).

Combining all β̂l,e(x) leads to β̂e(x) = [β̂1,e(x), · · · , β̂q,e(x)].

Smoothing Individual Functions and Estimating Covariance Matrices
To simultaneously construct the individual function Ui(x), we also employ the
local polynomial kernel smoothing technique. Specifically, using Taylor’s expan-
sion, we can expand Ui(xj) at x to obtain Ui(xj) ≈ Ui(x) + U̇i(x)(xj − x). For
each fixed x and each bandwidth h(2), we calculate the weighted least square
estimator of Ui(x), denoted as Ûi(x), by minimizing an objective function given

by
∑nG

j=1Kh(2)(xj − x)tr{[log(Si(xj))− Ivecs((zTi β̂l,e(xj)))−Ui(x) + U̇i(x)(xj −
x)]⊗2}. With some calculation, it can be shown that the weighted least square
estimate of Ui(x), denoted by Ûi(x), given by

vecs(Ûi(x))T =

nG∑
j=1

K̃0
h(2)(xj − x, x)(vecs(log(Si(xj)))− (zTi β̂l,e(xj)))

T , (3)
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where K̃0
h(2)(xj−x, x) = Σ1(h(2), x)−1Kh(2)(xj−x)yh(2)(xj−x) is the empirical

equivalent kernel and Σ1(h(2), x) =
∑nG

j=1Kh(2)(xj − x)yh(2)(xj − x)⊗2 with

yh(2)(xj − x) = (1, (xj − x)/h(2))T

Let Ri be a matrix with the j-th row vecs(log(Si(xj))) − (zTi β̂l,e(xj))
T and

S be a nG × nG smoothing matrix with the (i, j)-th element K̃0
h(2)(xj − xi, xi).

We pool the data from all n subjects and select an estimated bandwidth of h(2),

denoted as ĥ
(2)
e , by minimizing the generalized cross-validation score given by

n−1
∑n

i=1 tr{(Ri−SRi)
⊗2}

(1−n−1tr(S))2 . Based on ĥ
(2)
e , we can use (3) to estimate vecs(Ui(x))

and Ui(x), denoted by vecs(Ûi,e(x)) and Ûi,e(x), respectively, for all i. After

obtaining Ûi,e(x), we can estimate the mean function U(x) and the covariance
function ΣU (x, x′) by using their empirical counterparts.

We construct a nonparametric estimator of the covariance matrix ΣE(x, x)

as follows. Let Êi(xj) = log(Si(xj))− Ivecs((zTi β̂l,e(xj)))−Ûi,e(xj) be estimated
residuals for i = 1, · · · , n and j = 1, · · · , nG. We consider the kernel estimate of
ΣE(x, x) given by

Σ̂E(x, x) = (n− q)−1
n∑

i=1

nG∑
j=1

Kh(3)(xj − x)vecs(Êi(xj))⊗2∑nG

j=1Kh(3)(xj − x)
. (4)

Let Σ̃E(xj , xj) = (n − q)−1
∑n

i=1 vecs(Êi(xj))⊗2. To select an estimated band-

width h(3), denoted by ĥ
(3)
e , we minimize the cross-validation score given by

(nnG)−1
∑n

i=1

∑nG

j=1 tr{[vecs(Êi(xj))⊗2−Σ̂E(xj , xj , h(3))(−i)]⊗2Σ̃E(xj , xj)−1]⊗2},
where Σ̂E(x, x, h

(3))(−i) is the weighted least squares estimator of Σ̂E(x, x) based
on observed data with the observations from the i-th subject excluded. Based

on ĥ
(3)
e , we can use (4) to estimate ΣE(x, x), denoted by Σ̂E,e(x, x).

Hypothesis Test In neuroimaging studies, some scientific questions require
the comparison of fiber bundle diffusion tensors along fiber bundles across two (or
more) diagnostic groups and the assessment of the development of fiber bundle
diffusion properties along time. Such questions can often be formulated as linear
hypotheses of β(x) as follows:

H0 : Rβ(x) = b0(x) for all x vs. H1 : Rβ(x) 6= b0(x), (5)

where R is a t× 6r matrix of full row rank and b0(x) is a given t× 1 vector of
functions .

We propose both local and global test statistics. The local test statistic can
identify the exact location of significant grid point on a specific tract. At a
given grid point xj on a specific tract, we test the local null hypothesis H0(xj) :
Rβ(xj) = b0(xj) against H1(xj) : Rβ(xj) 6= b0(xj). We use a local test statistic
Tn(xj) defined by

Tn(xj) = nd(xj)
T {R(Σ̂U (xj , xj)⊗ Ω̂−1Z )RT }−1d(xj), (6)
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where Ω̂Z = n−1
∑n

i=1 z⊗2i and d(x) = R(β̂o(x)T − bias(β̂o(x)T ))− b0(x). Fol-

lowing [17], a smaller bandwidth leads to a small value of bias(β̂o(x)). Moreover,
according to our simulation studies below, we have found that the effect of drop-
ping bias(β̂o(x)) is negligible and therefore, we drop it from now on.

We test the null hypothesis H0 : Rβ(x) = b0(x) for all x using a global test
statistic Tn defined by

Tn = n

∫ L0

0

d(x)T [R(Σ̂U (x, x)⊗ Ω̂−1X )RT ]−1d(x)dx. (7)

It follows from Theorem 1 [18] along with the continuous mapping theorem
that as both n and nG converges to infinity, we have Tn converges to some
distribution (weighted χ2). Based on this result, we develop a wild bootstrap
method to approximate the p-value of Tn.

3 Simulation Studies

We conducted two sets of Monte Carlo simulations. The first set of simulations
was to evaluate the Type I and II error rates of the global test statistic Tn. The
second set was to compare the power in detecting the group effect using either
whole diffusion tensor or the diffusion properties.

Simulation 1 In the first set of simulations, we evaluated the Type I and II
error rates by simulating diffusion tensors along the right internal capsule tract
(Figure 1 (a) ) according to Si(x) = exp(Ivecs((β1l(x) + β2l(x)×Gi + β3l(x)×
Gagei))+Ui(x)+Ei(x)), where Gagei and Gi, respectively, denote the gestational
age at the scan time and gender of the i-th infant, vecs(Ui(x)) is a Gaussian
process with zero mean and covariance matrix ΣU (x, x′) and vecs(Ei(x)) is a
Gaussian random vector with zero mean and covariance matrix ΣE(x, x)1(x =
x′). To mimic imaging data, we used the diffusion tensors along the right internal

capsule tract from all the 96 infants in our clinical data to estimate β̂(x) of β(x)
via equation (2), Û(x) of U(x) via equation (3), and Ê(x) of E(x) via Ê(x) =

log(Si(x))− Ivecs((β̂l(x)T z))−Û(x). We fixed all the parameters at their values
obtained from our clinical data, except that we assumed (β31(x), · · · , β36(x)) =

c(β̂31(x), · · · , β̂36(x)), where c is a scalar specified below and (β̂31(x), · · · , β̂36(x))
were estimators obtained from our clinical data. Figure 2 displays the estimated
diffusion tensors using VCTF method when c = 1 . Note that the method did
an excellent job of recovering ground truth.

In neuroimaging studies, some scientific questions require the assessment of
the development of fiber bundles diffusion tensors across time. In this simulation
study, the questions were formulated as the hypotheses test H0 : β31(x) = · · · =
β36(x) = 0 for all x along the right internal capsule tract against H1 : β3l(x) 6= 0
for at least one x on the tract for some l = 1, · · · , 6. We first assumed c = 0 to
assess the Type I error rates for the global test statistic Tn, and then we assumed
c = .2, .4, .6, and .8 to examine the Type II error rates for Tn at different effect
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Fig. 2. Ellipsoidal representations of the true (a), simulated (b) and estimated (c)
diffusion tensors along the the right internal capsule tract, colored with FA values.

sizes. To evaluate the Type I and II error rates at different sample sizes, we let
n = 96. The values of gender and gestational age were set the same as all the
96 infants in our clinical study. Note that the number of grid points on the right
internal capsule equals nG = 112 for both cases.

We applied the VCTF procedure to the simulated diffusion tensors. Par-
ticularly, we approximated the p-value of Tn using the wild bootstrap method
described in the hypothesis test section. For each simulation, the significance
levels were set at α = .05 and .01, and 100 replications were used to estimate
the rejection rates. For a fixed α, if the Type I rejection rate is smaller than α,
then the test is conservative, whereas if the Type I rejection rate is greater than
α, then the test is anticonservative, or liberal.

Figure 3(a) displays the rejection rates for Tn based on the resampling
method for sample size 96) and all effect sizes (c = 0, .2, .4, .6, or .8) at both
significance levels (α = .01 or .05) using full diffusion tensors. The statistical
power for rejecting the null hypothesis increases with the effect size and the
significance level, which is consistent with our expectation.

Simulation 2 In the second set of simulations, the diffusion tensors along the
fiber tract were generated as in the first set of simulation. For each simulated
diffusion tensor, we calculated its FA and MD values. Then we applied the VCTF
procedure for multiple measures to the simulated values of FA, MD, joint FA and
MD, respectively, and then tested the significance of the gestational age effect.
It is observed from Fig. 3 (a)-(c) that the statistical power is much higher when
we use the whole tensor instead of FA and MD. The power is a little higher at
small effect size when we use the joint FA and MD values instead of full diffusion
tensors while at higher effect size, they almost have the same power (Fig. 3(a)
and (d)). However, the Type I error is greater than the .05 significance level
when we use the joint FA and MD values (Fig. 3(d)). It means that the test is
liberal. As mentioned in Section 1, this is because there is some inherent bias in
these calculated diffusion properties.
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Fig. 3. Simulation study: Type I and Type II error rates. Rejection rates of Tn based
on the resampling method are calculated at five different values of c for sample sizes
of 96(solid lines) subjects at the (a) .05 and (b) .01 significance levels using diffusion
tensor, FA values, MD values, joint values of FA and MD.

4 A Real Example

We investigate early brain development by using DTI and our VCTF. We con-
sider 96 healthy infants (36 males and 60 females) whose mean gestational age
was 245.6 days with SD: 18.5 days (range: 192-270 days). A 3T Allegra head
only MR system was used to acquire all the images. The system was equipped
with a maximal gradient strength of 40 mT/m and a maximal slew rate of
400 mT/(m·msec). The DTI images were obtained by using a single shot EPI
DTI sequence (TR/TE=5400/73 msec) with eddy current compensation. The
six non-collinear directions at the b-value of 1000 s/mm2 with a reference scan
(b=0) was applied. To improve the signal-to-noise ratio of the images, a total
of five scans were acquired and averaged. A weighted least square estimation
method [1] was used to construct the diffusion tensors. Then DTI atlas building
followed by atlas based tractography procedure was employed to process all 96
DTI datasets. A nonlinear fluid deformation based highdimensional, unbiased
atlas computation method is used to carry out a large deformation non-linear
registration [19]. We chose the right internal capsule tract to illustrate the ap-
plicability of our method. Diffusion tensors were extracted along this fiber tract
for all the 96 infants [5].

In this study, we have two specific aims. The first one is to compare diffu-
sion tensors along the selected fiber bundle across the male and female groups
and thus illuminate the gender effect on the development of these fiber bundle
diffusion tensors. The second one is to delineate the development of fiber bundle
diffusion tensor across the gestational age effect. To statistically test the effects,
we applied our VCTF to diffusion tensors along the fiber tract. For the selected
tract, we fitted the VCTF model (1) to the diffusion tensors from all 96 sub-
jects, in which z = (1, gender,Gage)T . Then, we used equation (2) to estimate
the functional coefficients β(x). For the hypothesis testing, we constructed the
global test statistic Tn via equation (7) to test the gender and age effects for
the diffusion tensors. The p value of Tn was approximated using the resampling
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method with G = 1, 0000 replications. Furthermore, we fitted VCTF model to
FA, MD,joint FA and MD, each of three eigenvalues and three eigenvalues to-
gether values along the fiber tract.

In this study, we statistically test the effects of gender and gestational age
on the diffusion tensors along the right internal capsule tract. To test the gender
effect, we calculated the local test statistics Tn(xj) and their corresponding p
values across all grid points on the right internal capsule tract. It is observed
from Figure 4 (a) that most grid points do not have significant − log10(p) values,
which are less than 1.3. Then, we also computed the p-value of the global test
statistic Tn, p = .335 indicating no gender effect. It is observed from Figure
4 (b) that the − log10(p) values of Tn(xj) for testing the gestational age effect
at some grid points of the right tail are greater than 1.5 while a very high
significant gestational age effect was found with the p− value of the global test
statistic, p = .01. This indicates that diffusion tensors along the right internal
capsule tract do not differ significantly between male and female groups but are
significantly associated with the gestational age.We picked a grid point with the
significant p value of Tn(x) and observed that the diffusion tensors become more
spherical with the gestational age (Figure 5). This indicates a decreasing pattern
of diffusion.
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Fig. 4. The − log10(p) values of test statistics Tn(xj) for testing gender (a) or gesta-
tional age (b) effect of diffusion tensors on the right internal capsule tract.

5 Discussion

We have developed VCTF methods for diffusion tensors along fiber tracts in the
Riemannian manifold of SPD matrices under the log-Euclidean metric. From the
application end, VCTF is demonstrated in a clinical study of neurodevelopment
for revealing the complex inhomogeneous spatiotemporal maturation patterns
as the apparent changes in fiber bundle diffusion tensors. We have shown that
this novel statistical tool leads to new findings in our clinical applications.

Another commonly used metric on the Riemannian manifold of SPD matrices
is the Riemannian metric. In contrast, some operations, e.g. average or interpo-
lation of a set of tensors under the Log-Euclidean and Riemannian metrics, are
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Fig. 5. The ellipsoidal representations of (a) Raw diffusion tensor of all 96 infants and
(b) smoothed diffusion tensors changing with the gestational age at one point on the
right internal capsule tract with significant gestational age effect.

theoretically and practically very similar [15]. Moreover, some statistical meth-
ods based on the two metrics have very similar results. However, the Riemannian
metric is affine invariant. Affine invariance is a desirable feature for imaging pro-
cessing, e.g. segmentation. In this scenario, as shown in [13], the method using
the Riemannian metric outperformed the method using the Log-Euclidean met-
ric. So it is interesting to develop VCTF under the Riemannian metric and then
compare the statistical powers of detecting group differences under these two
different metrics.
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