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Abstract. This paper introduces a regression method for modeling the
relationship between a manifold-valued random variable and a real-valued
independent parameter. The principle is to fit a geodesic curve, param-
eterized by the independent parameter, that best fits the data. Error in
the model is evaluated as the sum-of-squared geodesic distances from
the model to the data, and this provides an intrinsic least squares crite-
rion. Geodesic regression is, in some sense, the simplest parametric model
that one could choose, and it provides a direct generalization of linear
regression to the manifold setting. A hypothesis test for determining the
significance of the estimated trend is also developed. While the method
can be generally applied to data on any manifold, specific examples are
given for a set of synthetically generated rotation data and an application
to analyzing shape changes in the corpus callosum due to age.

1 Introduction

Regression analysis is a fundamental statistical tool for determining how a mea-
sured variable is related to one or more potential explanatory variables. The most
widely used regression model is linear regression, due to its simplicity, ease of
interpretation, and ability to model many phenomena. However, if the response
variable takes values on a nonlinear manifold, a linear model is not applicable.
Such manifold-valued measurements arise in many applications, including those
involving directional data, transformations, tensors, and shape. For example, in
biology and medicine it is often critical to understand processes that change
the shape of anatomy. The difficulty is that shape variability is inherently high-
dimensional and nonlinear. An effective approach to capturing this variability
has been to parameterize shape as a manifold, or shape space.

Several works have studied the regression problem on manifolds. Jupp and
Kent [6] propose an unrolling method on shape spaces. Regression analysis on
the group of diffeomorphisms has been proposed as growth models by Miller [10],
nonparametric regression by Davis, et al. [3], and second order splines by Trouvé
and Vialard [12]. Finally, Shi, et al. [11] proposed a semiparametric model with
multiple covariates for manifold response data. None of these methods provide a
direct generalization of linear regression to manifolds. The purpose of this paper
is to develop such a generalization, called geodesic regression, which models the
relationship between an independent scalar variable with a dependent manifold-
valued random variable as a geodesic curve. Like linear regression, the advantages
of this model are its simplicity and ease of interpretation. As will be shown, the
geodesic regression model also leads to a straightforward generalization of the R2

statistic and a hypothesis test for significance of the estimated geodesic trend.
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2 Multiple Linear Regression

Before formulating geodesic regression on general manifolds, we begin by review-
ing multiple linear regression in Rn. Here we are interested in the relationship
between a non-random independent variable X ∈ R and a random dependent
variable Y taking values in Rn. A multiple linear model of this relationship is
given by

Y = α+Xβ + ε, (1)

where α ∈ Rn is an unobservable intercept parameter, β ∈ Rn is an unob-
servable slope parameter, and ε is an Rn-valued, unobservable random variable
representing the error. Geometrically, this is the equation of a one-dimensional
line through Rn (plus noise), parameterized by the scalar variable X. For the
purposes of generalizing to the manifold case, it is useful to think of α as the
starting point of the line and β as a velocity vector.

Given realizations of the above model, i.e., data (xi, yi) ∈ R × Rn, for

i = 1, . . . , N , the least squares estimates, α̂, β̂, for the intercept and slope are
computed by solving the minimization problem

(α̂, β̂) = arg min
(α,β)

N∑
i=1

‖yi − α− xiβ‖2 . (2)

This equation can be solved analytically, yielding

β̂ =
1
N

∑
xi yi − x̄ ȳ∑
x2i − x̄2

,

α̂ = ȳ − x̄ β̂,

where x̄ and ȳ are the sample means of the xi and yi, respectively. If the errors
in the model are drawn from distributions with zero mean and finite variance,
then these estimators are unbiased and consistent.

M
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(x f ) = Exp(p, xv) 

p

v

Fig. 1. Schematic of the geodesic regression model.
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3 Geodesic Regression

Let y1, . . . , yN be points on a smooth Riemannian manifold M , with associated
scalar values x1, . . . , xN ∈ R. The goal of geodesic regression is to find a geodesic
curve γ on M that best models the relationship between the xi and the yi. Just
as in linear regression, the speed of the geodesic will be proportional to the in-
dependent parameter corresponding to the xi. Estimation will be set up as a
least-squares problem, where we want to minimize the sum-of-squared Rieman-
nian distances between the model and the data. A schematic of the geodesic
regression model is shown in Figure 1.

Before formulating the model, we review a few basic concepts of Riemannian
geometry. We will write an element of the tangent bundle as the pair (p, v) ∈ TM ,
where p is a point in M and v ∈ TpM is a tangent vector at p. Recall that for any
(p, v) ∈ TM there is a unique geodesic curve γ, with initial conditions γ(0) = p
and γ′(0) = v. This geodesic is only guaranteed to exist locally. When γ is defined
over the interval [0, 1], the exponential map at p is defined as Expp(v) = γ(1).
In other words, the exponential map takes a position and velocity as input and
returns the point at time 1 along the geodesic with these initial conditions. The
exponential map is locally diffeomorphic onto a neighborhood of p. Let V (p) be
the largest such neighborhood. Then within V (p) the exponential map has an
inverse, the Riemannian log map, Logp : V (p) → TpM . For any point q ∈ V (p)
the Riemannian distance function is given by d(p, q) = ‖Logp(q)‖. It will be
convenient to include the point p as a parameter in the exponential and log
maps, i.e., define Exp(p, v) = Expp(v) and Log(p, q) = Logp(q).

Notice that the tangent bundle TM serves as a convenient parameterization
of the set of possible geodesics on M . An element (p, v) ∈ TM provides an
intercept p and a slope v, analogous to the α and β parameters in the multiple
linear regression model (1). In fact, β is a vector in the tangent space TαRn ∼= Rn,
and thus (α, β) is an element of the tangent bundle TRn. Now consider an M -
valued random variable Y and a non-random variable X ∈ R. The generalization
of the multiple linear model to the manifold setting is the geodesic model,

Y = Exp(Exp(p,Xv), ε), (3)

where ε is a random variable taking values in the tangent space at Exp(p,Xv).
Notice that for Euclidean space, the exponential map is simply addition, i.e.,
Exp(p, v) = p+ v. Thus, the geodesic model coincides with (1) when M = Rn.

3.1 Least Squares Estimation

Consider a realization of the model (3): (xi, yi) ∈ R×M , for i = 1, . . . , N . Given
this data, we wish to find estimates of the parameters (p, v) ∈ TM . First, define
the sum-of-squared error of the data from the geodesic given by (p, v) as

E(p, v) =
1

2

N∑
i=1

d(Exp(p, xiv), yi)
2. (4)
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Following the ordinary least squares minimization problem given by (2), we
formulate a least squares estimator of the geodesic model as a minimizer of the
above sum-of-squares energy, i.e.,

(p̂, v̂) = arg min
(p,v)

E(p, v). (5)

Again, notice that this problem coincides with the ordinary least squares problem
when M = Rn.

Unlike the linear setting, the least squares problem in (5) for a general mani-
fold M will typically not yield an analytic solution. Instead we derive a gradient
descent algorithm. Computation of the gradient of (4) will require two parts:
the derivative of the Riemannian distance function and the derivative of the
exponential map. Fixing a point p ∈ M , the gradient of the squared distance
function is ∇xd(p, x)2 = −2 Logx(p) for x ∈ V (p).

Mp

vu1

J(x)

Mp

v

u2
J(x)

dp Exp dv Exp

Fig. 2. Jacobi fields as derivatives of the exponential map.

The derivative of the exponential map Exp(p, v) can be separated into a
derivative with respect to the initial point p and a derivative with respect to
the initial velocity v. To do this, first consider a variation of geodesics given by
c1(s, t) = Exp(Exp(p, su1), tv(s)), where u1 ∈ TpM defines a variation of the
initial point along the geodesic η(s) = Exp(p, su1). Here we have also extended
v ∈ TpM to a vector field v(s) along η via parallel translation. This variation
is illustrated on the left side of Figure 2. Next consider a variation of geodesics
c2(s, t) = Exp(p, su2 + tv), where u2 ∈ TpM . (Technically, u2 is a tangent to the
tangent space, i.e., an element of Tv(TpM), but there is a natural isomorphism
Tv(TpM) ∼= TpM .) The variation c2 produces a “fan” of geodesics as seen on the
right side of Figure 2.

Now the derivatives of Exp(p, v) with respect to p and v are given by

dp Exp(p, v) · u1 =
d

ds
c1(s, t)

∣∣∣
s=0

= J1(1)

dv Exp(p, v) · u2 =
d

ds
c2(s, t)

∣∣∣
s=0

= J2(1),
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where Ji(t) are Jacobi fields along the geodesic γ(t) = Exp(p, tv). Jacobi fields
are solutions to the second order equation

D2

dt2
J(t) +R(J(t), γ′(t)) γ′(t) = 0, (6)

where R is the Riemannian curvature tensor. For more details on the derivation
of the Jacobi field equation and the curvature tensor, see for instance [2]. The
initial conditions for the two Jacobi fields above are J1(0) = u1, J

′
1(0) = 0 and

J2(0) = 0, J ′2(0) = u2, respectively. If we decompose the Jacobi field into a
component tangential to γ and a component orthogonal, i.e., J = J> + J⊥, the
tangential component is linear: J>(t) = u>1 + tu>2 . Therefore, the only challenge
is to solve for the orthogonal component.

Finally, the gradient of the sum-of-squares energy in (4) is given by

∇pE(p, v) = −
N∑
i=1

dp Exp(p, xiv)† Log(Exp(p, xiv), yi),

∇v E(p, v) = −
N∑
i=1

xi dv Exp(p, xiv)† Log(Exp(p, xiv), yi),

where we have taken the adjoint of the exponential map derivative, e.g., defined
by 〈dp Exp(p, v)u,w〉 = 〈u, dp Exp(p, v)†w〉. As we will see in the next section,
formulas for Jacobi fields and their respective adjoint operators can often be
derived analytically for many useful manifolds.

3.2 R2 Statistics and Hypothesis Testing

In regression analysis the most basic question one would like to answer is whether
the relationship between the independent and dependent variables is significant.
A common way to test this is to see if the amount of variance explained by the
model is high. For geodesic regression we will measure the amount of explained
variance using a generalization of the R2 statistic, or coefficient of determination,
to the manifold setting. To do this, we first define predicted values of yi and the
errors εi as

ŷi = Exp(p̂, xiv̂),

ε̂i = Log(ŷi, yi),

where (p̂, v̂) are the least squares estimates of the geodesic parameters defined
above. Note that the ŷi are points along the estimated geodesic that are the best
predictions of the yi given only the xi. The ε̂i are the residuals from the model
predictions to the true data.

Now to define the total variance of data, y1, . . . , yN ∈M , we use the Fréchet
variance, intrinsically defined by

var(yi) = min
y∈M

1

N

N∑
i=1

d(y, yi)
2.
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The unexplained variance is the variance of the residuals, var(ε̂i) = 1
N

∑
‖ε̂i‖2.

From the definition of the residuals, it can be seen that the unexplained vari-
ance is the mean squared distance of the data to the model, i.e., var(ε̂i) =
1
N

∑
d(ŷi, yi)

2. Using these two variance definitions, the generalization of the
R2 statistic is then given by

R2 = 1− unexplained variance

total variance
= 1− var(ε̂i)

var(yi)
. (7)

Fréchet variance coincides with the standard definition of variance when M =
Rn. Therefore, it follows that the definition of R2 in (7) coincides with the R2

for linear regression when M = Rn. Also, because Fréchet variance is always
nonnegative, we see that R2 ≤ 1, and that R2 = 1 if and only if the residuals
to the model are exactly zero, i.e., the model perfectly fits the data. Finally, it
is clear that the residual variance is always smaller than the total variance, i.e.,
var(ε̂i) ≤ var(yi). This is because we could always choose p̂ to be the Fréchet
mean and v = 0 to achieve var(ε̂i) = var(yi). Therefore, R2 ≥ 0, and it must lie
in the interval [0, 1], as is the case for linear models.

We now describe a permutation test for testing the significance of the esti-
mated slope term, v̂. Notice that if we constrain v to be zero in (5), then the
resulting least squares estimate of the intercept, p̂, will be the Fréchet mean
of the yi. The desired hypothesis test is whether the fraction of unexplained
variance is significantly decreased by also estimating v. The null hypothesis is
H0 : R2 = 0, which is the case if the unexplained variance in the geodesic model
is equal to the total variance. Under the null hypothesis, there is no relationship
between the X variable and the Y variable. Therefore, the xi are exchangeable
under the null hypothesis, and a permutation test may randomly reorder the
xi data, keeping the yi fixed. Estimating the geodesic regression parameters for
each random permutation of the xi, we can calculate a sequence of R2 values,
R2

1, . . . , R
2
m, which approximate the sampling distribution of the R2 statistic un-

der the null hypothesis. Computing the fraction of the R2
k that are greater than

the R2 estimated from the unpermuted data gives us a p-value.

4 Results

4.1 Regression of 3D Rotations

Overview of Unit Quaternions We represent 3D rotations as the unit quater-
nions, Q1. A quaternion is denoted as q = (a, v), where a is the “real” compo-
nent and v = bi + cj + dk. Geodesics in the rotation group are given simply
by constant speed rotations about a fixed axis. Let e = (1, 0) be the identity
quaternion. The tangent space TeQ1 is the vector space of quaternions of the
form (0, v). The tangent space at an arbitrary point q ∈ Q1 is given by right
multiplication of TeQ1 by q. The Riemannian exponential map is Expq((0, v) ·
q) = (cos(θ/2), 2v · sin(θ/2)/θ) · q, where θ = 2‖v‖. The log map is given by
Logq((a, v) · q) = (0, θv/‖v‖) · q, where θ = arccos(a).

Being a unit sphere, Q1 has constant sectional curvature K = 1. In this case
the orthogonal component of the Jacobi field equation (6) along a geodesic γ(t)
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Fig. 3. Results for simulated rotation data: MSE of the geodesic regression estimates
for the intercept (left) and slope (right) as a function of sample size.

has the analytic solution

J(t)⊥ = u1(t) cos (Lt) + u2(t) sin (Lt) ,

where u1, u2 are parallel vector fields along γ, with initial conditions u1(0) =
J(0)⊥ and u2(0) = J ′(0)⊥, and L = ‖γ′‖. While the Jacobi field equation gives
us the differential of the exponential map, we really need the adjoint of this
operator for geodesic regression. However, from the above equation it is clear
that dp Exp and dv Exp are both self-adjoint operators. That is, the above Jacobi
field equation provides us both the differential and its adjoint.

Geodesic Regression of Simulated Rotation Data To test the geodesic
regression least squares estimation on Q1, synthetic rotation data was simulated
according to the geodesic model (3). The intercept was the identity rotation:
p = (1, 0, 0, 0), and the slope was a rotation about the z-axis: v = (0, 0, 0, π/4).
The xi data were drawn from a uniform distribution on [0, 1]. The errors in the
model were generated from an isotropic Gaussian distribution in the tangent
space, with σ = π/8. The resulting data (xi, yi) were used to compute estimates
of the parameters (p̂, v̂). This experiment was repeated 1,000 times each for
sample sizes N = 2k, k = 1, . . . , 8. We would expect that as the sample size
increases, the mean squared error (MSE) in the estimates (p̂, v̂), relative to the
true parameters, would approach zero. The MSE is defined as

MSE(p̂) =
1

M

M∑
i=1

d(p̂i, p)
2, MSE(v̂) =

1

M

M∑
i=1

‖v̂i · (p̂−1i p)− v‖2,

where M = 1,000 is the number of repeated trials, and (p̂i, v̂i) is the estimate
from the ith trial. Notice the multiplication by (p̂−1i p) in the second equation
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is a right-translation of v̂i to the tangent space of p. Figure 3 shows plots of
the resulting MSE for the slope and intercept estimates. As expected, the MSE
approaches zero as sample size increases, indicating at least empirically that the
least squares estimates are consistent.

4.2 Regression in Shape Spaces

One area of medical image analysis and computer vision that finds the most
widespread use of Riemannian geometry is the analysis of shape. Dating back
to the groundbreaking work of Kendall [7] and Bookstein [1], modern shape
analysis is concerned with the geometry of objects that is invariant to rotation,
translation, and scale. This typically results in representing an object’s shape as
a point in a nonlinear Riemannian manifold, or shape space. Recently, there has
been a great amount of interest in Riemannian shape analysis, and several shape
spaces for 2D and 3D objects have been proposed [5, 8, 9, 13]. We choose here to
use Kendall’s shape space, but geodesic regression is applicable to other shape
spaces as well. It could also be applied to spaces of diffeomorphisms, using the
Jacobi field calculations given by Younes [14].

Overview of Kendall’s Shape Space We begin with derivations of the nec-
essary computations for geodesic regression on Kendall’s shape space. A config-
uration of k points in the 2D plane is considered as a complex k-vector, z ∈ Ck.
Removing translation, by requiring the centroid to be zero, projects this point
to the linear complex subspace V = {z ∈ Ck :

∑
zi = 0}, which is equivalent

to the space Ck−1. Next, points in this subspace are deemed equivalent if they
are a rotation and scaling of each other, which can be represented as multipli-
cation by a complex number, ρeiθ, where ρ is the scaling factor and θ is the
rotation angle. The set of such equivalence classes forms the complex projective
space, CP k−2. As Kendall points out, there is no unique way to identify a shape
with a specific point in complex projective space. However, if we consider that
the geodesic regression problem only requires computation of exponential/log
maps and Jacobi fields, we can formulate these computations without making
an explicit identification of shapes with points in CP k−2.

Thus, we think of a centered shape x ∈ V as representing the complex line
Lx = {z · x : z ∈ C\{0} }, i.e., Lx consists of all point configurations with the
same shape as x. A tangent vector at Lx ∈ V is a complex vector, v ∈ V , such
that 〈x, v〉 = 0. The exponential map is given by rotating (within V ) the complex
line Lx by the initial velocity v, that is,

Expx(v) = cos θ · x+
‖x‖ sin θ

θ
· v, θ = ‖v‖. (8)

Likewise, the log map between two shapes x, y ∈ V is given by finding the
initial velocity of the rotation between the two complex lines Lx and Ly. Let
πx(y) = x · 〈x, y〉/‖x‖2 denote the projection of the vector y onto x. Then the
log map is given by

Logx(y) =
θ · (y − πx(y))

‖y − πx(y)‖
, θ = arccos

|〈x, y〉|
‖x‖‖y‖

. (9)
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Fig. 4. Corpus callosum segmentation and boundary point model for one subject.

Notice that we never explicitly project a shape onto CP k−2. This has the effect
that shapes computed via the exponential map (8) will have the same orientation
and scale as the base point x. Also, tangent vectors computed via the log map
(9) are valid only at the particular representation x (and not at a rotated or
scaled version of x). This works nicely for our purposes and implies that shapes
along the estimated geodesic will have the same orientation and scale as the
intercept shape, p̂.

The sectional curvature of CP k−2 can be computed as follows. Let u,w be
orthonormal vectors at a point p ∈ CP k−2. These vectors may be thought of as
vectors in Ck−1 ∼= R2k−2. Writing the vector w as w = (w1, . . . , w2k−2), define
the operator

j(w) = (−wk, . . . ,−w2k−2, w1, . . . , wk−1).

(This is just multiplication by i =
√
−1 if we take w as a complex vector with the

k − 1 real coordinates listed first.) Using this operator, the sectional curvature
is given by

K(u,w) = 1 + 3〈u, j(w)〉2.
When k = 3, CP 1 is the space of triangle shapes and is isomorphic to the sphere,
S2, and thus has constant sectional curvature, K = 1. For k > 3, CP k−2 has sec-
tional curvature in the interval K ∈ [1, 4]. Furthermore, let u ∈ TpCP k−2 be any
unit length vector. If we decompose the tangent space into an orthonormal basis
e1, . . . , e2k−2, such that e1 = j(u), then we have K(u, e1) = 4 and K(u, ei) = 1
for i > 1. This leads to the following procedure for computing the Jacobi field
equation on CP k−2 along a geodesic γ. Given initial conditions for J(0)⊥ and
J ′(0)⊥, decompose J(0)⊥ = u1 +w1, so that u1 is orthogonal to j(γ′) and w1 is
tangential to j(γ′). Do the same for J ′(0)⊥ = u2 + w2. As before, extend these
vectors to parallel fields, ui(t), wi(t), along γ. Then the orthogonal component
of the Jacobi field along γ is given by

J(t)⊥ = u1(t) cos (Lt) + u2(t) sin (Lt) + w1(t)
cos (2Lt)

2
+ w2(t)

sin (2Lt)

2
.

As was the case for rotations, both dp Exp and dv Exp are self-adjoint operators.

Application to Corpus Callosum Aging The corpus callosum is the major
white matter bundle connecting the two hemispheres of the brain. A midsagittal
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Fig. 5. The input corpus callosum shape data and corresponding subject ages in years.

slice from a magnetic resonance image (MRI) with segmented corpus callosum
is shown in Figure 4. Several studies have shown that the volume of the corpus
callosum decreases with normal aging [4]. However, less is known about how the
shape of the corpus callosum changes with age. Understanding shape changes
may provide a deeper understanding of the anatomical and biological processes
underlying aging. For example, does the corpus callosum shrink uniformly in
size, or do certain regions deteriorate faster than others? This type of question
can be answered by geodesic regression in shape spaces.

To understand age-related changes in the shape of the corpus callosum,
geodesic regression was applied to corpus callosum shape data derived from
the OASIS brain database (www.oasis-brains.org). The data consisted of
MRI from 32 subjects with ages ranging from 19-90 years old. The corpus
callosum was segmented in a midsagittal slice using the ITK SNAP program
(www.itksnap.org). These boundaries of these segmentations were sampled with
128 points using ShapeWorks (www.sci.utah.edu/software.html). This algo-
rithm generates a sampling of a set of shape boundaries while enforcing corre-
spondences between different point models within the population. An example of
a segmented corpus callosum and the resulting boundary point model is shown in
Figure 4. The entire collection of input shapes and their ages is shown in Figure 5
(boundary points have been connected into a boundary curve for visualization
purposes). Each of these preprocessing steps were done without consideration of
the subject age, to avoid any bias in the data generation.

Geodesic regression was applied to the data (xi, yi), where xi was the ith
subject’s age, and yi was the ith subject’s corpus callosum, generated as above
and represented as a point in Kendall’s shape space. First, the average age of the
group, x̄, was subtracted from each xi, which was done to make the intercept
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Fig. 6. Geodesic regression of the corpus callosum. The estimated geodesic is shown
as a sequence of shapes from age 19 (blue) to age 90 (red).

term correspond to the shape at the mean age, rather than the shape at age
zero, which would be far outside the data range. Least squares estimates (p̂, v̂)
were generated according to (5), and using the above calculations for CP k−2.
The resulting estimated geodesic is shown in Figure 6 as a sequence of shapes:
γ̂(tk) = Exp(p̂, (tk−x̄)v̂), for tk = 19, 36, 54, 72, 90. The shape trend shows a very
clear thinning of the corpus callosum, with the largest effects in the posterior
part of the body and in the genu (anterior end).

Finally, the statistical significance of the estimated trend was tested using
the permutation test described in Section 3.2, using 10,000 permutations. The p-
value for the significance of the slope estimate, v̂, was p = 0.009. The coefficient
of determination (for the unpermuted data) was R2 = 0.12. The low R2 value
must be interpreted carefully. It says that age only describes a small fraction of
the shape variability in the corpus callosum. This is not surprising: we would
expect the intersubject variability in corpus callosum shape to be difficult to
fully describe with a single variable (age). However, this does not mean that the
age effects are not important. In fact, the low p-value says that the estimated
age changes are highly unlikely to have been found by random chance.

5 Conclusion

We introduced a geodesic regression analysis method for Riemannian manifolds.
The geodesic regression model is the natural generalization of linear regression
and is parameterized by an intercept and slope term. We also developed a gen-
eralization of the R2 statistic and a permutation test for the significance of the
estimated geodesic trend. There are several avenues for future work. First, the
hypothesis test presented here could be extended to test for group differences,
for example, to test if age-related anatomical changes are different in a disease
population compared to controls. Second, theoretical properties of geodesic re-
gression, such as unbiasedness and consistency, would be of interest. Finally,
regression diagnostics and model selection procedures need to be developed to
assess the appropriateness of a geodesic model for a particular data set.
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