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Abstract. The growth by random iterated diffeomorphisms (GRID)
model seeks to decompose large deformations, caused by growth, anomaly,
or anatomical differences, into smaller, biologically-meaningful compo-
nents. These components are spatially local and parametric, and are
characterized by radial deformation patterns around randomly-placed
seeds. A sequential composition of these components, using the group
structure of diffeomorphism group, models the cumulative deformation.
The actual decomposition requires estimation of GRID parameters from
observations of large growth, typically from 2D or 3D images. While past
papers have estimated parameters under certain simplifying assump-
tions, including that different components are spatially separated and
non-interacting, we address the problem of parameter estimation under
the original GRID model that advocates sequential composition of ar-
bitrarily interacting components. Using a gradient-based approach, we
present an algorithm for estimation of GRID parameters by minimizing
an energy function and demonstrate its superiority over the past additive
methods.
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1 Introduction

The mathematical and statistical modeling of diffeomorphic deformations over
time is an important problem with a variety of applications ranging from med-
ical diagnostics to evolutionary biology. The use of medical images, especially
the MRI images of human parts, in studying anatomical structures is a growing
area of research by itself. Here one uses 2D and/or 3D images taken across time,
species, or specimens to compare to extract salient differences in anatomical
structures, and to analyze and model their variations both within and across
biological classes. These differences may result from standard biological growth,
abnormalities, inter-specimen variability, or other reasons. In terms of image-
based analysis of anatomical structures, the study of shapes of anatomical parts
has become a central idea. For instance, one can use longitudinal image data for
tracking biological growth [11, 9, 19, 4, 3] in fetus brains and evaluating tumor
growth. A major difficulty in solving such problems is the high dimensional-
ity of image data. The diffeomorphic deformation when estimated from image
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sequences can be very high dimensional and not amenable to standard tools
from multivariate statistics. Some current methods simplify this analysis by us-
ing simplistic measures like lengths, sizes, or areas as indicators of overall shape
changes. Some others use relatively simple geometrical models, such as spheres
or ellipsoids, to represent shapes in parametric forms and to study the evolution
of parameters during growth.

We start with the basic question of how to represent large deformations
in a mathematical framework. There is a large body of work on represent-
ing differences in imaged objects using deformations of background space [2,
12, 7, 20, 1, 13]. This approach utilizes diffeomorphisms of the underlying coor-
dinate systems to represent and measure shape and other differences. Let an
image be I : [0, 1]d → IR, where d = 1, 2, 3. A deformation is then a mapping
Φ : [0, 1]d → [0, 1]d, with the resulting deformed image is I ◦ Φ : [0, 1]d → IR.
Thus, a point on an anatomical landmark is always observed with the same color
intensity; it simply moves to a different location under the deformation. The goal
is to use Φ to model, understand and analyze large deformations. These deforma-
tions are typically very high dimensional and do not permit standard statistical
analysis directly. Therefore, some tools for reducing dimensionality become im-
portant. One can apply some standard dimension reduction algorithms, such
as PCA, but it is difficult to interpret the resulting representation in biological
terms. Durrleman et al. [5] proposed a parametric way of representing large dif-
feomorphisms by forcing the instantaneous velocity fields to take a parametric
form. One starts with a finite number of so-called control points and for each of
them specifies a vector that defines the deformation at that point. The vector
field over the whole domain is obtained using a Kernel-based interpolation. This
approach provides a data-driven sparse parametric method to estimate the large
diffeomorphic deformation.

Motivated by the need for biologically-interpretable decompositions of large
deformations, Grenander [8] introduced the Growth as Random Iterated Dif-
feomorphisms (GRID) model. It highlights the role of gene control in biologi-
cal growths and uses a combination of local, structured deformations to form
the large composite deformations. This model has been studied extensively, but
mostly from a perspective of synthesis and asymptotics. Some authors proposed
a “thermodynamic limit equation” that approximates the growth pattern in a
macroscopic way [16, 15]. Portman et al. [14] further developed the GRID model
by analyzing the growth patterns at microscopic levels. In addition to synthesis,
one is also interested in the inverse problem where we want to decompose large
biological growth into smaller biologically-interpretable units. Grenander et al.
[18, 8] studied this inverse problem albeit in a limited context. The estimation
of growth components was done in two steps: (1) estimate the full deformation
between a pair of images that represents biological growth, (2) estimate parame-
ters for growth components under the GRID model, with a major simplification
that different components are spatially local and do not interact with each other.
With this assumption, the cumulative growth becomes a simple superimposition
of different components and one can use standard projection procedures to esti-
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mate component parameters. In this paper we seek a solution to the problem of
parameter estimation under the original GRID model, without assuming spatial
independence of components. This model is different from Durrleman et al. [5]
in the sense that it is the individual diffeomorphisms that take the parametric
forms, rather than the instantaneous velocity fields. This results in different local
deformations around the focal points. For example, in our method the diffeomor-
phism around a seed is restricted to be radial while in Durrleman et al. [5] there
is no such structure.

The estimation follows the two steps as Grenander et al. [8]. In the first step,
the full deformation Φ is estimated using the shape matching technique of [10].
As for the second step, since there is a concatenation of deformation associated
with different components, the time-ordering of the components becomes im-
portant. Due to the nonlinear effect of compositions, it is not possible to solve
for GRID parameters using linear methods. This general estimation problem
is posed as an optimization problem with a gradient-based minimization of the
cost function. The difficulty of getting trapped in local solutions is handled using
clever initializations of the gradient algorithm.

2 Grenander’s GRID Model

We start by describing the general GRID model as introduced by Grenander
[6]. In this model the overall large deformation is modeled as a composition of
a sequence of local, elementary deformations. At time t, the elementary growth
is a diffeomorphism φt : [0, 1]

d → [0, 1]d such that the point x moves to φt(x).
The full deformation is then expressed in the form of the composition of iterated
diffeomorphisms.

Φtn
t1 ≡ φtn ◦ · · · ◦ φt2 ◦ φt1 (1)

The next step in the GRID model is to simplify diffemorphic components by
expressing each φt in a parametric form. Here the elementary deformation φt is:
(1) assumed to be centered at a point of activation called a growth seed xseed,
and (2) the growth around the seed is assumed to be radial. Therefore, it is
easier to express this local deformation using polar coordinates centered at the
seed xseed: (r, τ) �−→ (ρ (r, τ) , τ) with r = 0 denoting the seed. Furthermore,
the model assumes that the change in radial distance can be decomposed into
two independent parts: ρ (r, τ) = r + R (r)A (τ). Here, A : S1 �→ R is called
the angular deformation function (ADF) and R : IR+ �→ IR+ is called the radial
deformation function (RDF). These individual deformation functions are allowed
to take the following forms:

1. The radial deformation function RDF can be one of the following two types:

R (r) =

{
re−r2/c2 , r ≥ 0, c > 0

(r/c)
p−1

e−(r/c), r ≥ 0, p, c > 0 .
(2)

In both cases the deformation is zero at the seed (r = 0), increases steadily
with r, reaches a peak, and then decreases for a further increase in r. The
“zone” of influence of a seed is determined by the parameter c.
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2. Similarly, the angular deformation function ADF can also take many forms,
including:

A (τ) =

⎧⎪⎨
⎪⎩
a, τ ∈ S

1, a ∈ IR

aeκ cos(τ−τ0)−κ, τ ∈ S
1, a ∈ IR, κ ≥ 0, and τ0 ∈ S

1

α sin
(
2πτ
σ

)
, τ ∈ S

1, α ∈ IR, and σ > 0.

(3)

The first case provides an isotropic deformation, the second provides a uni-
modal deformation with a well-defined growth/decay direction, while the
last one provides a sinusoidal variation.

In this paper we will use R(r) = re−r2/c2 and will study two choices for ADFs:
(1) A(τ) = a, and (2) A(τ) = aeκ cos(τ−τ0). It has been shown that the resulting
φt is a diffeomorphism as long as −1 < A (τ) < 2.2408 [8]. Each such φt is now
characterized by the following set of parameters: θ = [ξ, a, c, κ, τ0] ∈ IR6, where
ξ ∈ IR2 is the seed location.

Problem Statement: Having chosen the model, the estimation problem can
be described as follows. Let Φ represent the observed deformation associated
with a growth experiment, observed over a time interval [0, T ]. The goal now
is to estimate n, the number of diffeomorphism components and the associated
parameters θj ∈ IR6 for each j = 1, 2, . . . , n.

This problem has been studied by several papers in the past. However, a
common simplifying assumption in the past papers is that different seeds are
placed away from each other so that there is no or negligible interaction between
the corresponding deformations. In this case, the total displacement field Ψ(x) =
Φ(x) − x can be written as a superposition of the displacements resulting from
individual seeds:

Ψ tn
t1 ≡ ψtn + · · ·+ ψt2 + ψt1 , (4)

where ψt(x) = φt(x) − x. This is a very restrictive assumption and reduces the
efficacy of the GRID model. The additive model has several problems, including
the fact that the set of diffeomorphisms is not a group under the additive model.
In the context of biological growth, it is difficult to interpret growth components
under the assumption that there is no spatial interaction between them. Also,
as shown in Fig. 1, the results of these different models, composite versus ad-
ditive models are quite different for the same components. It is also illustrated
that, for the composite model, the ordering of components is also important in
determining the cumulative deformation. In this paper, we study the problem
of parameter estimation under the composite model (Eqn. 1) and compare the
results with those obtained under the additive model (Eqn. 4).

3 Our Approach

In this section we formulate the problem of parameter estimation as minimization
of a certain objective function. The goal is to estimate difeomorphic components
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Fig. 1: Cumulative deformation for composite models with: (a) Φ = φ2 ◦ φ1, (b)
Φ

′
= φ1 ◦ φ2, and additive model (c) Φ

′′
= x+ψ1 +ψ2, for the same φ1 and φ2.

In the remaining panels, we show Φ
′ −Φ (4th panel), and Φ

′′ −Φ (5th panel) as
vector fields.

φ1, φ2, . . . , φn such that their order composition is as closed to the given Φ as
possible. In order words, we can use a distance between Φ and (φn ◦ · · · ◦ φ1) as
the objective function. Although the choice of a geodesic distance in the space
of diffeomorphisms (under a suitable Riemannian metric) seems like a natural
choice, the use of the L

2 distance simplifies the problem, by forming an energy

E =

∫
[0,1]2

‖Φ(x) − (φn ◦ · · · ◦ φ1)(x)‖2dx . (5)

We justify the use of L2 distance, over the geodesic distance, with the argument
that minimization under one distance often leads to a minimizer under the other.

It is rather difficult to solve for all the parameters (for all the seeds) simul-
taneously. Indeed, the expression for cumulative deformation with just two local
deformations gets complicated. Therefore, we take a sequential approach and
add one local deformation to the model at a time. Let φ(k) = φk ◦φk−1 ◦ · · · ◦φ1
be the cumulative deformation generated by first k seeds. Define two energy
functions associated with this partial inference problem:

E(k+1) =

∫ ∥∥∥Φ(x) − (φk+1 ◦ φ(k))(x)
∥∥∥2

dx

and

Ẽ(k+1) =

∫ ∥∥∥Φ(x) − φ(k)(x) − ψk+1(x)
∥∥∥2

dx .

E(k+1) denotes the energy under the composite model for k + 1 seeds while
Ẽ(k+1) denotes a similar energy except that the contribution from the last seed
is considered additive. (Since this last seed is additive, it is relatively easier to
solve for its parameters by minimizing Ẽ(k+1).) Our iterative approach is to
solve for the parameters of φk+1 to minimize E(k+1), for k = 1, 2, . . . , n, and
we will do so using a gradient approach. Similar to any gradient-based solution,
the initialization of parameters becomes very important. For the purpose of
improving initialization, we will solve for the parameters of φk+1 under Ẽ(k+1)

first and use these values as initial conditions in optimization of E(k+1).
We summarize the iterative procedure for estimating GRID parameters.
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Algorithm 1 Set k = 0.

1. Given the current estimated parameters for the k-seed composite model, {θj}k =

{(ξj , aj , cj , κj , τ0,j) | j = 1, . . . , k}, compute the cumulative deformation φ(k).
2. Find θk+1 = (ξk+1, ak+1, ck+1, κk+1, τ0,k+1) for the (k + 1)th seed by min-

imizing Ẽ(k+1). Use these values as initial condition for parameters of the
(k + 1)th seed.

3. For each possible permutation group of the set {1, 2, . . . , k+ 1}, perform the
following. Update each set of parameters {θj}k+1 using the gradient method

to minimize E(k+1). Finally, choose the permutation/parameters that result
in the minimum E(k+1).

4. Test the significance of the (k + 1)th seed. If it is found significant, set k =
k + 1 and go to step 1; if not, stop.

Note that even though the complexity of the composed deformation φ(k) and
thus E(k) increases with the number of seeds (or local elementary deformations),
we still have analytical expressions for the gradients using the chain rule. It is
important to note that all the previous seeds are re-estimated/updated as new
seeds are added to the deformation. Thus, although this process is iterative, it
is not incremental.

We have studied two cases for estimating ADFs:

1. Constant ADF: In the first case, we simplify the discussion by first assum-
ing that A(τ) = a for all τ ∈ S

1. In this model, the partial derivatives of
E(k) with respect to different parameters of φj for j = 1, · · · , k are given by:

∂E(k)

∂ξrj
=

n∑
i=1

∂E(k)

∂φ(k)
· ∂φ(k)

∂φ(k−1)
· ∂φ

(k−1)

∂φ(k−2)
· · · · · ∂φ

(j+1)

∂φ(j)
· ∂φ

(j)

∂ξrj
, r = 1, 2 ,

∂E(k)

∂aj
=

n∑
i=1

∂E(k)

∂φ(k)
· ∂φ(k)

∂φ(k−1)
· ∂φ

(k−1)

∂φ(k−2)
· · · · · ∂φ

(j+1)

∂φ(j)
· ∂φ

(j)

∂aj
,

∂E(k)

∂cj
=

n∑
i=1

∂E(k)

∂φ(k)
· ∂φ(k)

∂φ(k−1)
· ∂φ

(k−1)

∂φ(k−2)
· · · · · ∂φ

(j+1)

∂φ(j)
· ∂φ

(j)

∂cj
.

The different terms needed in these expressions, including ∂E(j)

∂φ(j) ,
∂φ(j)

∂φ(j−1) ,

∂φ(j)

∂ξj
, ∂φ(j)

∂aj
, and ∂φ(j)

∂cj
, for j = 1, . . . , k, are given in the appendix. Similar

expressions can also be derived for the gradient of Ẽ(k) wrt the GRID pa-
rameters and those expressions are, as expected, simpler compared to the
gradient given above.

2. Non-isotropic ADF: In the general case where the ADF is non-isotropic,
we represent it using a scaled von-Mises density (the second term in Eqn.
3) and is parameterized by (a, κ, τ0). For every deformation φj , the two
additional parameters κj and τ0,j are initialized in two steps. First, the ADF
is estimated non-parametrically by integrating the deformation along each
direction, as was done in [8]. Then, the parameters κ and τ0 are estimated
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from the nonparametric estimate using moment matching. The estimation is
similar to estimating the parameters of von-Mises density from a sample by
treating the non-parametric estimation as a weighted sample[17]. After these
parameters are initialized, they are estimated using the gradient method,
similar to the other parameters, with the gradient expression given in the
appendix.

The last remaining item in Algorithm 1 is the test of significance of an in-
cremental local deformation. In order to test the significance of the model with
one more seed, several general methods for model selection may apply. Possible
methods includes partial F test, AIC or BIC, and adjusted R2. In this paper,
a model is selected based on the adjusted R2. It is a modification of R2, which
denotes the coefficient of determinant, that adjusts for the number of model
parameters. Given any two estimated models, the model with the larger value
of adjusted R2 is preferred. In the experiments, we add one more seed if the
improvement of adjusted R2 is larger than a small cutoff value.

Since this method is based on a gradient search, it is difficult to claim a global
solution. In principle, the solution obtained in the parameter space is a local one.
However, there are some advantages to using this approach. Firstly, since the
gradients of the energy function are available analytically, the gradient iterations
are computationally fast. Secondly, for relatively small number of seeds in the
model, the search over different orderings is efficient and gets us out of several
local solutions.

4 Experimental Illustrations

Here we demonstrate the use of our framework for decomposing large cumulative
deformations into smaller, parametric components using Algorithm 1. We will
use both the simulated and real data to illustrate the estimation process, and
will compare our results with those obtained using the additive model.

4.1 Synthetic Data

In order to validate estimation method for the composite model, we perform
two experiments on the following types of synthetic data: (1) a 2D deforma-
tion with constant ADF, and (2) 2D deformation with non-constant ADF. In
these experiments, a cumulative deformation is simulated using Eqn. 1 for an
arbitrary number of local deformations, each with arbitrary parameters, and a
white Gaussian noise is added at the end to form the observed deformation Φ.

Example 1: Fig. 2 shows the estimation results for the isotropic model. It
shows the true underlying deformation (a), made up of n = 2 seeds, its noisy
observation Φ (b) and several different GRID estimates from the observed Φ (c-
e). Firstly, we estimate GRID components as described in Algorithm 1, with the
result shown as Φ̂c in (e). Then, we reverse the order of two estimated seeds and
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try to optimize their parameters, with the result shown as Φ̂′
c in (c). The result

of estimated deformation under the additive model is shown as Φ̂a in (d). To
highlight the differences between different estimated deformations we also show
their differences in the remaining panels. The Table 1 provides a quantification
of estimation performance. It compares the energy E and estimated parameters
for the three models, with the true values. Since the energy for Φ̂c is same as
that for true underlying parameters, it shows the superiority of that estimation
process described in Algorithm 1.

1

2

1

2 1

2

(a) (b) (c) (d)

1

2

(e) (f ) (g) (h)

Fig. 2: Experiment with isotropic ADF: (a) synthetic deformation; (b)noisy ob-
servation Φ, and different estimated deformations (c) Φ̂

′
c; (d)Φ̂a, and (e)Φ̂c. The

differences (f) Φ̂c − Φ, (g)Φ̂
′
c − Φ, and (h)Φ̂a − Φ

Model E ξ
(1)
1 ξ

(2)
1 a1 c1 ξ

(1)
2 ξ

(2)
2 a2 c2

True 0.0334 0.6500 0.4500 1.0000 0.1500 0.5000 0.6000 0.8000 0.1000

Estimated Φ̂c 0.0334 0.6500 0.4502 1.0045 0.1498 0.4995 0.6006 0.7947 0.0998

Reverse order Φ̂′
c 0.0576 0.5070 0.5930 0.7072 0.0956 0.6478 0.4525 1.0108 0.1527

Additive Φ̂a 0.0548 0.6496 0.4507 1.0262 0.1501 0.5172 0.5827 0.7352 0.1004

Table 1: Estimation results for Example 1.

Example 2: Similarly, Fig. 3(a) shows an experiment involving seeds with non-
isotropic ADFs. In this case we show the synthetic deformation (a) , its noisy
version Φ (b), and the estimated deformation under the composite model Φ̂c

(c). For further evaluation of this estimation, we show the true displacement
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Ψ(x) = Φ(x) − x (d) and the estimated displacement Ψ̂ (e).

1

2

1

2

1

2

(a) (b) (c) (d) (e)

Fig. 3: Experiment with non-isotropic ADF: (a)synthetic deformation; (b) noisy
observation Φ; (c) estimated deformation map Φ̂; (d)true displacement field Ψ ;
(e)estimated displacement field Ψ̂

Model E ξ
(1)
1 ξ

(2)
1 a1 c1 ξ

(1)
2 ξ

(2)
2 a2 c2

True 0.0330 0.6700 0.4000 1.0000 0.2000 0.3200 0.6000 1.0000 0.2000
Composite 0.0333 0.6677 0.4014 1.0004 0.1975 0.3233 0.5980 1.0248 0.1948

κ1 τ0,1 κ2 τ0,2
True 2.0000 2.3562 5.0000 5.4978
Composite 1.9200 2.3379 4.9050 5.4865

Table 2: Estimation Results for Example 2.

Ensemble Results: Beyond individual examples, we have exhaustively com-
pared performances of the composite and the additive models using many real-
izations. Here we use 20 sets of data that are simulated from the 2D composite
model with constant ADF and the parameters are then estimated using both
the models. The results are summarized in Fig. 4. Panel (a) is a histogram of
which model, composite or additive, is closer to the true deformation. Positive
number indicates that the composite model outperforms the additive one, and
vice-versa. We can see that for most data sets the composite model outperforms
the additive model. Panel (b) presents a close up view of the parameter biases
and variances. Each line represents the bias for one parameter. If the estimates
equals the true parameters, the line will be all horizontal lines with y = 0. The
top plot shows the biases from the additive model and the bottom one is for the
composite model. The lines for composite model are all around zero with the
ones for additive model having larger variation.
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Fig. 4: (a) Relative errors under two models:
‖Φ̂a−Φ‖−‖Φ̂c−Φ‖

‖Φ̂a−Φ‖ ; (b) Parameter

estimation bias: top: θ̂a − θ, bottom: θ̂c − θ.

4.2 Estimation of GRID Component for Image Data

This method is applied to analysis of differences in human brains observed using
MRI scans. In this case we perform the following experiment. We take two image
scans as I and J , which are two slices of MRI of the same z coordinates from
different subjects, and use a shape-based technique [10] to estimate a cumulative

deformation Φ from I to J . This Φ is in the set of diffeomorphisms from [0, 1]2

to itself and minimizes a certain cost function involving I ◦ Φ and J . Then, we
use Algorithm 1, to estimate components of this deformation under the GRID
model. We present two examples of this idea.

Example 1: Fig. 5 shows an example of images I and J and the deformation Φ
that deforms I to match with J . In addition to plotting the maps x �→ Φ(x) as
a surface mesh, one can also plot the displacement vector field Ψ(x) = Φ(x) −
x for better visualization. Shown in the remaining panels are the estimated
displacement vector Ψ̂ , showing the ordered sequence of displacement fields with
the GRID components that were found using Algorithm 1, and a couple of ways
of comparing the estimated deformations with the true deformations.
Example 2: Fig. 6 shows another example of estimating GRID parameters for
deformation estimated from MRI images.

5 Conclusion

In this paper we have proposed a method to decompose and estimate the pa-
rameters in GRID based decomposition of anatomical deformations. The method
preserves the iterative structure of the GRID model and gives an analytical form
of the gradient for parameter estimation. Experimental results show that impacts
from faraway seeds can be approximated by additive seeds model and composite
model can not add much to it; however, as for seeds that are close to each other
and have interaction, our method improves the estimation for large deformation
as well as the model parameters.
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Fig. 5: Estimation of GRID components for deformation between MRI images.
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Fig. 6: Estimation of GRID components for deformation between MRI images.
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A Gradient Expressions

The terms, ∂E(j)

∂φ(j) ∈ R1×d, ∂φ(j)

∂φ(j−1) ∈ Rd×d, ∂φ(j)

∂ξj
∈ Rd×d, ∂φ(j)

∂aj
, and ∂φ(j)

∂cj
∈ Rd×1,

that are required in gradient computation are given as follows.
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∂E(j)

∂φ(j)
= 2

(
φ(j) − Φ

)
,

∂φ(j)

∂φ(j−1)
= aj−1 · exp

(
−
(
φ(j−1) − ξj−1

)2

/c2j−1

)
−

2aj−1 · (φ(j−1) − ξj−1)
2/c2j−1 · exp

(
−
(
φ(j−1) − ξj−1

)2

/c2j−1

)
+ 1 ,

∂φ(j)

∂ξj
= aj · exp

(
−
(
φ(j−1) − ξj

)2

/c2j

)
·
(
2
(
φ(j−1) − ξj

)2

/c2j − 1

)
,

∂φ(j)

∂aj
= (φ(j−1) − ξj) · exp

(
−
(
φ(j−1) − ξj

)2

/c2j

)
,

∂φ(j)

∂cj
= 2aj · exp

(
−
(
φ(j−1) − ξj

)2

/c2j

)
·
(
φ(j−1) − ξj

)3

/c3j .

When the ADF takes parametric forms of the second type, the gradient of the
energy function with respect to the two parameters κj and τ0,j for j = 1, · · · , k
is calculated in the similar way as the other parameters. The partial derivatives
from the one time deformation is shown as below.

∂φ(j)

∂κj
= aj · exp (κj cos (τ − τ0,j)− κj) ·
(
φ(j−1) − ξj

)
· exp

(
−
(
φ(j−1) − ξj

)2

/c2j

)
· (cos(τ − τ0,j)− 1) ,

∂φ(j)

∂τ0,j
= aj · exp (κj cos (τ − τ0,j)− κj) ·
(
φ(j−1) − ξj

)
· exp

(
−
(
φ(j−1) − ξj

)2

/c2j

)
· κj · sin (τ − τ0,j) .


