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Abstract. Quantitative motion analysis from echocardiography is an
important yet challenging problem. We develop a motion estimation al-
gorithm for echocardiographic image sequences based on diffeomorphic
image registration in which the velocity field is spatiotemporally smooth.
The novelty of this work is that instead of optimizing a functional of
velocity field which consists of similarity metrics between a reference
image to each of the following images (first-to-follow), we optimize a
functional which is a sum of similarity metrics of each two consecutive
images (frame-to-frame). This method can reduce the bias effect of us-
ing a single image as reference. It also improves registration accuracy
since consecutive frames usually have higher dependency than frames
far away. We validate our method by using both simulated images with
known ground truth and in vivo pig heart images with sonomicrome-
try. Tests indicate that our frame-to-frame motion estimation method is
more accurate than first-to-follow method.

1 Introduction

Quantitative analysis of cardiac deformation and motion is important for study-
ing heart function. Many illnesses related to ischemia or infarct can be recognized
from the motion and deformation abnormalities [1]. Techniques to discriminate
the abnormal motion and accurately locate regions with motion abnormality are
critical to identify the disease and to evaluate the treatment. Echocardiography
(echo) is the most widely used image modality because it is non-ionizing, real-
time, cost-effective and convenient. With the development of the new transducer
array technology, 3D echo can now provide real-time images of the whole heart
[2]. However, due to the low signal-noise-ratio, general methods for motion es-
timation do not work well on echo images. In addition, the 4D (3D+t) data is
acquired with a compromise that both the spatial and temporal resolutions are
reduced comparing to 2D+t sequences. As a result, 3D motion analysis from
echo sequences remains a challenging problem.

Cardiac motion analysis algorithms can be classified into three categories:
model-based, feature-based and voxel-based methods. Lots of cardiac models



16 Zhang, Sahn, Song

have been proposed for motion analysis and segmentations [3]. Surface models
such as super-quadrics are used for motion analysis by fitting the model with
a sequence of images [4, 5], however, these models only estimate the deforma-
tion on the model surfaces. Comaniciu et al. [6] proposed a Kalman filter based
shape tracking method by using information fusion framework with a probabilis-
tic subspace model constraint. In this work, a shape model needs to be learned
and the motion estimation is limited along the contour points. Volumetric mod-
els such as dynamic finite elements have been used to estimate the deformation
inside the myocardium [7, 8]. Wang et al. [9] tracked myocardial surface points
by maximizing the likelihood of a combined surface and a two-steps motion
prediction model. Both the initial myocardial surface detector and the motion
prediction model need to be learned in advance. Generally speaking, deformable
model based methods needs prior knowledge related to the models and their
generation needs some sort of human interaction. Feature-based methods use
landmarks such as the tagged lines to fit the deformable model such as 4D B-
spline [10]. However, in echocardiography due to lack of stable landmarks in
the myocardium and artificial features such as the tagged line are not available,
feature-based method is difficult to estimate the deformation by using trustable
correspondence. Voxel-based methods require no manual intervention, they esti-
mate spatially dense transformations from all image voxels directly. This method
can be implemented as an automatic method and we focus our work on this ap-
proach. Voxel based image registration methods such as optical-flow [11] and
B-spline based methods [12, 13] have been proposed for cardiac motion analy-
sis from echo images. However, the motion analysis problem is simplified into
a series of independent pairwise image registrations and the temporal motion
smoothness is not considered. To enforce the temporal consistency of particle
motion, many temporal models have been used. Carbayo et al. [14] proposed a
spatiotemporal deformation model for cardiac motion tracking. A 2D+t B-spline
transformation with spatiotemporal smoothness is used with the first frame as
the reference. A 3D+t extension is proposed by Metz et al. [15] and the average
image is used as the reference. Particle trajectory constraint such as polynomial
modeling has been used to regularize the spatiotemporal motion smoothness
[16]. Diffeomorphic image registration is a method which the transformation
is implicitly spatiotemporally smooth. The transformation between two images
is defined as the end point of a velocity field flow which will be obtained by
optimization of an energy functional of it. It has a very useful characteristic
in computational anatomy that the transformation is one-to-one mapping and
topology preserving [17]. This large deformation topology preserving property
is preferred in cardiac motion analysis because of the fact that the deformation
from the reference frame (usually the end of diastolic) to the mostly contracted
frame (the end of systolic) is so large that deformation models without topology
preserving constraint may cause the transformation to fold over or tear apart,
which is not physically plausible. Beg et al. [18] proposed a large deformation
diffeomorphic metric mapping algorithm (LDDMM) in which the smooth veloc-
ity field is estimated by optimizing a sum of squared difference (SSD) energy.
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Khan et al. [19] extended the LDDMM method to analyze the anatomical shape
evolution in an image sequence. De Craene et al. [20] proposed a method in
which the velocity field is defined as temporal piecewise continuous 3D B-spline
functions and the B-spline control parameters are estimated by optimization
of a parameterized energy function. In a following work [21], the velocity field
is defined as a 3D+t spatiotemporal B-spline model to reduce B-spline control
points in temporal direction. In both methods, the optimal velocity field mini-
mizes the summed dissimilarity metrics between the first frame and each of the
unwarped subsequent frames, which we call them first-to-follow methods. It has
been presented theoretically and experimentally that speckle pattern will change
under large deformation [22] and that registration of frames further away from
the reference is less accurate due to speckle de-correlation [12]. We propose a
diffeomorphic registration method with a spatiotemporally smooth velocity field
which minimizes the summed SSDs of the unwarped consecutive frames (frame-
to-frame method). Our registration method is tested with simulated and in-vivo
pig datasets, the results show that the accuracy is improved over first-to-follow
method.

2 Method

2.1 Diffeomorphic Image Sequence Registration

A diffeomorphism flow is a dynamic system with each of the diffeomorphism
to be a state in a differentiable manifold [23]. We define a flow φ(x, t), t ∈
[0, T ],x ∈ Ω ⊂ Rd(d = 2, 3) with its smooth velocity field v(x, t) by using the
differential equation of dφ

dt = v(φ(x, t), t). It has been proven in [24] that if
v(x, t) is smooth enough with a differential operator L in a Sobolev space V ,
then the transformation φ(x, t) will be a group of diffeomorphisms with t varying
from 0 to T . The diffeomorphic image registration is stated as a variational
problem, that given two images I0 and I1, to find an optimal velocity field v̂
which minimizes an energy functional consisting of a sum of squared difference
(SSD) and a geodesic distance metric between φ(x, 0) and φ(x, T ) [18]:

v̂ = arg inf
v∈V

λ

∫ T

0

||v(x, t)||2V dt+
∫
(I0(x)− I1(φ(x, T )))

2dx, (1)

with λ being the weight to balance these two energies. If we have a sequence
of Nf images to be registered, the similarity metric consists of the SSD of the
difference between a reference frame I0 and each of the deformed subsequent
frames Ik(φ(x, tk)), k = 1, 2, ..., Nf . Then the mathematical form can be in a
similar form as [19]:

v̂ = arg inf
v∈V

λ

∫ T

0

||v(x, t)||2V dt+
k=Nf∑
k=1

∫
(I0(x)− Ik(φ(x, tk)))

2dx. (2)

This scheme has two disadvantages: first, the speckle de-correlation between
far away frames are high which may cause correspondence ambiguity between
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the two images; second, it take longer time to converge since the difference
between reference frame to far away frames is bigger than that of the consecutive
frames. Instead of optimizing each deformed subsequent frames to be similar
to the reference frame, we propose a variational energy which minimizes the
difference between every two deformed consecutive frames Ik−1(φ(x, tk−1)) and
Ik(φ(x, tk)):

v̂ = arg inf
v∈V

λ

∫ T

0

||v(x, t)||2V dt+
k=Nf∑
k=1

∫
(Ik−1(φ(x, tk−1))− Ik(φ(x, tk)))

2dx,

(3)
we denote the two energy terms in Eqn.(3) as Ereg and Essd respectively. This
method will find a flow of diffeomorphisms which have the shortest geodesic
path in the manifold and simultaneously minimizes summed errors of each two
neighboring images. This will improve the accuracy of the transformation since
the neighboring frames generally have higher intensity correlation than those
which are not neighbors. It can also reduce the chance that the transformation
is biased due to noise in the reference images. Our frame-to-frame method is
different from the method which simply estimates the diffeomorphisms between
consecutive frames and then composites together. In our method, minimizing
the difference between two consecutive frames jointly optimizes all the velocity
field before and between the time of these two frames.

The direct solution for this variational framework is expensive. Alternatively,
a parameterized representation of the velocity field is used [25], where the ve-
locity field is represented as a series of B-spline functions and the displacement
field can be expressed as the forward Euler integral of velocity field. We use a
spatiotemporally smooth B-spline function to represent the velocity field. It is
defined as v(x, tk) =

∑
ci;kβ(x−xi), with ci;k being the B-spline control vectors

at tk located on a uniform grid of xi, β(x−xi) is the 3D B-spline kernel function
which is the tensor product of the 1-D B-spline functions. Define φk = φ(x, tk)
the transformation at time step tk, we assume the velocity is piecewise constant
within a time step, then we have φk = φk−1+v(φk−1, tk−1)Δt, with φ0(x) = x,
k = 1, 2, ..., Nt, with Nt being the total number of time steps of the velocity field.
Without loss of generality, we can have Δt = 1. In our test, we use one time step
in velocity field between two neighboring frames since the deformation between
them is usually small, that is Nt = Nf . However, our method easily generalizes
to multiple time steps between frames if the deformation between two consecu-
tive frames is large. The energy functional will be a parameterized function of
ci;k and it can be optimized by using a steepest descent method.

2.2 Regularization

In order to assure the φ(x, t) to be diffeomorphic, we need to define v(x, t) to
be spatiotemporally smooth under a differential operator L. The linear operator
we choose is: L = ∇2v + wt

dv
dt , with ∇2(·) being a Laplacian operator and wt a



Frame to Frame Diffeomorphic Motion Analysis from Echo Sequences 19

constant weight. In the discrete time form of velocity field, the time integral of the

norm in V space of Eqn.(3) will be: Ereg =
Nt∑
k=1

∑
x
(∇2vk)

2 + wt

Nt∑
k=2

∑
x
|vk(x +

vk−1Δt) − vk−1|2, with vk = v(x, k). The first term makes the velocity field
spatially smooth which is denoted as Esr . The second term keeps the particle
velocity smooth and it is denoted as Etr. The overall effect is to keep the velocity
field spatiotemporally smooth.

2.3 Optimization

We use a steepest descent method to optimize the parameterized function. The
derivative of the total registration energy with respect to the transformation
parameters will be calculated analytically. The derivative of the similarity metric
with respect to the B-spline parameters ci;k′ is:

∂Essd

∂ci;k′
=

Nf∑
k=1

(Ik(φk)− Ik+1(φk+1))(∇Ik(φk)
∂φk

∂ci;k′
−∇Ik+1(φk+1)

∂φk+1

∂ci;k′
), (4)

with ∂φk

∂ci;k′ being the Jacobian matrix of transformation at time step k with

respect to the ith B-spline coefficient in k′th frame. It can be calculated with
chain rule and it is zero when k′ � k. For detailed computation refer to [21].

For the derivative of the spatial and temporal regularization energies with
respect to the mth component of ci;k, we have:

∂Esr

∂ci,m;k
=

∑
x∈Ω′

β
′′
m(x − xi), (5)

with Ω′ being the local support of the B-spline kernel function, and β
′′
m(·) being

the second derivative of the B-spline function with respect to mth component.
Considering that the displacement between two time step is small, we have:

∂Etr

∂ci,m;k
≈ wt

∑
x∈Ω′

(2 ∗ vi,m;k − vi,m;k−1 − vi,m;k+1)β(x − xi). (6)

The registration energy can be optimized by starting from initial position and
descending along the negative gradient direction at each iteration until there is
no significant decrease.

2.4 Implementation

In our implementation, we use a series of B-spline transformations with grid
spacing of 10 in each dimension to represent the velocity field. The values of λ
and wt are set to be 0.1 and 0.5. The algorithm is implemented with Matlab
under a windows XP 64 bit system on a machine with 2.13GHz Xeon 8 cores
CPU and 6GB memory. It takes about 1 hour to register a 3D (3 minutes for a
2D) sequence with 20 frames.
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3 Experiment and Data

We use both simulated and real data to validate our algorithm. In the simulated
data experiment, a longitudinal view of a diastolic left ventricle (LV) image with
size of 274 × 192 is used as the reference image. This frame is then deformed
with a series of continuous displacement field functions. The deformations are
symmetrical along the long axis of the LV to simulate the myocardial contraction
effect along radial and longitudinal directions. The displacement functions are

in form of: fx(i)=axsin
π(x−xc)

2rd
sin( iπ

Nf
) and fy(i)=aysin

π(y−yapex)
2(ybase−yapex)

(sin( iπ
Nf

+
π
16 )− sin π

16 ), with xc, rd the axis center coordinate and the average axial radius
of LV, yapex and ybase the height of base and apex planes, Nf and i the number
of frames and the frame index, and ax, ay are the magnitudes of displacement
fields. An image sequence with Nf + 1 frames is generated when i varies from 0
to Nf to simulate the cardiac motion in one cycle.

We carry out two experiments for the simulated data. In the first experiment,
three sequences with 20 frames each are simulated with multiplicative speckle
noise of variance 0.06, 0.08 and 0.10 added. The reference frame and the 10th
frame with speckle noise variance 0.10 are shown together with the ground truth
displacement field in Fig.1. In the second simulated experiment, we first generate
20 frames without deformation by adding independent speckle noise of variance
0.10 to the reference frame. Then each of the frame Ii will have a percentage p
pixels replaced with the intensity at the same position in frame Ii−1. By updating
noisy image one by one we assure that the two consecutive frames to have noise
overlap ratio of p. Each frames will then be deformed by using the ground truth
displacement fields. We simulate two sequences with overlap ratio of 0.2 and 0.4
respectively.
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Fig. 1. The reference frame and the 10th frame in speckle variance 0.1 test and the
displacement field (only displacement field inside a bell-shaped mask is displayed).

A real world dataset is acquired from an open-chest pig by using a Philips
IE33 system. For validation, we installed six sonomicrometers in the heart wall.
The distances between each pair of the sonomicrometers are recorded with the
image sequences and are used as ground truth to compare with the tracked
distance in the echo images. The images are resampled into volume sequences of
160 × 100 × 128 with voxel size 1mm×1mm×1mm. The crystal coordinates in
the reference frame are manually denoted.
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4 Result

In the first simulated experiment, we compare our frame-to-frame method with
the first-to-follow method by tracking the trajectories of the points in the my-
ocardial wall during the motion process. The estimated trajectories of four ex-
ample points from a small region of the myocardium for speckle noise variance
0.06 test are shown in Fig.2, where the ground truth trajectories are overlaid
for comparison. We can see generally coordinates of the points in each time step
in our method are closer to the ground truth position than the first-to-follow
method.

98 100 102 104 106 108 110 112

115

120

125

130

98 100 102 104 106 108 110 112

115

120

125

130

Fig. 2. Points trajectories in the first-to-follow method (left) and the frame-to-frame
method (right). The ground truth trajectories (blue) are overlaid with the estimated
curves (multiple color) for comparison. The arrow shows the velocity at each time step.

In Fig.3 we illustrate the motion estimation errors in both x and y coordinates
in noise level 0.08 dataset. We can see that the motion estimation errors of x and
y coordinates in most of frames in our method are closer to zero than those of
the first-to-follow method. The figure also shows that our method has a smaller
error variance in both coordinates. The mean of magnitude of errors in the three
noise variance levels in frame-to-frame method are 0.23, 0.26 and 0.32, while in
first-to-follow method they are 0.38, 0.45 and 0.56 respectively.

In the second test, the motion estimation errors in y coordinates for two
methods are shown in Fig.4. The results are similar for x coordinate errors. We
can see the results of frame-to-frame method are better than those in first-to-
follow method in means and standard deviations of errors. We can see for the
frame-to-frame method, when the intensity correlation between two images is
increased, the mean and variance of the registration error are decreased. In the
results of first-to-follow methods, the error mean does not change obviously when
the correlation between consecutive frames are increased.

In the in-vivo open-chest pig test, we compare the performance of the two al-
gorithms by computing the correlations over time between the algorithm-derived
pair-wise distances with sonomicrometry, shown in Table.1. Sonomicrometry pro-



22 Zhang, Sahn, Song

0 2 4 6 8 10 12 14 16 18 20
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Frames

E
rr

o
rs

Motion Estimation Error of X Coordinates

 

 

Frame−to−frame method
First−to−follow method

0 2 4 6 8 10 12 14 16 18 20
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Frames

E
rr

o
rs

Motion Estimation Error of Y Coordinates

 

 

Frame−to−frame method
First−to−follow method

Fig. 3. The motion estimation errors in x (left) and y (right) coordinates of frame-to-
frame method and first-to-follow method. The error bars shows the standard deviation
of the errors in each frames. The horizontal lines represent the curves of zero mean
transformation errors to help comparison.
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Fig. 4. The motion estimation errors in y coordinates of frame-to-frame method and
first-to-follow method. The left and right figures show the results of 20 and 40 percent
noise overlap tests. The horizontal lines show the zeros mean transformation errors.
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vide the ground truth distances between each two of the crystals. We can clearly
see the improvement of our proposed method.

Table 1. The correlations between the estimated pair-wise distances and those from
the sonomicrometry, with frame-to-frame method (numbers to the left) and the first-
to-follow method (numbers to the right). Numbers 1-6 index the six sonomicrometry
markers.

1 2 3 4 5 6

1 1.0/1.0 0.936/0.907 0.901/0.885 0.913/0.902 0.948/0.923 0.859/0.831

2 0.936/0.907 1.0/1.0 0.881/0.856 0.927/0.904 0.887/0.838 0.951/0.916

3 0.901/0.885 0.881/0.856 1.0/1.0 0.825/0.786 0.902/0.905 0.819/0.788

4 0.913/0.902 0.927/0.904 0.825/0.786 1.0/1.0 0.937/0.919 0.934/0.902

5 0.948/0.923 0.887/0.838 0.902/0.905 0.937/0.919 1.0/1.0 0.918/0.873

6 0.859/0.831 0.951/0.916 0.819/0.788 0.934/0.902 0.918/0.873 1.0/1.0

5 Conclusion

We propose a large deformation diffeomorphic registration method by minimiz-
ing the difference between every consecutive images. Simulation test shows that
our frame-to-frame method has a higher estimation accuracy of motion than
the first-to-follow method. Validation with sonomicrometry also shows that our
motion estimation result has higher consistency with real data.
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