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Abstract. This work provides a framework for modeling and extracting the Cin-
gulum Bundle (CB) from Diffusion-Weighted Imagery (DW-MRI) of the brain.
The CB is a tube-like structure in the brain that is of potentially of tremendous im-
portance to clinicians since it may be helpful in diagnosing Schizophrenia.This
structure consists of a collection of fibers in the brain that have locally similar
diffusion patterns, but vary globally. Standard region-based segmentation tech-
niques adapted to DW-MRI are not suitable here because the diffusion pattern
of the CB cannot be described by aglobal set of simple statistics. Active sur-
face models extended to DW-MRI are not suitable since they allow for arbitrary
deformations that give rise to unlikelyshapes, which do not respect the tubular
geometry of the CB. In this work, we explicitly model the CB as a tube-like sur-
face and construct a general class of energies defined on tube-like surfaces. An
example energy of our framework is optimized by a tube that encloses a region
that haslocally similar diffusion patterns, which differ from the diffusion patterns
immediately outside. Modeling the CB as a tube-like surface is anatural shape
prior. Since a tube is characterized by a center-line and a radius function, the
method is reduced to a 4D (center-line plus radius) curve evolution that is com-
putationally much less costly than an arbitrary surface evolution. The method also
provides the center-line of CB, which is potentially of clinical significance.

1 Introduction

In this work, we are interested in extracting a structure in the brain called thecingulum
bundle(CB) from diffusion-weighted magnetic resonance imagery (DW-MRI)of the
brain. DW-MRI is imagery that at each voxel indicates the diffusion of water molecules
at each particular samplingdirection in 3D space. Adding an extra dimension, direc-
tionality, to the data is necessary to discriminate our structure of interest - the cingulum
bundle. The CB has recently become the subject of interest asan anatomical structure
which may display quantifiable differences between schizophrenic and normal control
populations, and studying it may aid in the diagnosis of schizophrenia [1, 2].

The Cingulum Bundle is athin, highly curvedstructure that consists of a collec-
tion of neural fibers, which are mostly disjoint possibly intersecting, roughly aligned
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and centered around a fiber. The collection of fibers approximately form a tube-like
structure. The diffusion pattern in the CB varies in orientation and anisotropy smoothly
along the structure, and it has a distinct diffusion patternfrom surrounding areas of the
brain (see Fig. 2 for a sagittal slice of the CB). The CB possesses a challenge to seg-
ment because of inhomogeneity of its diffusion patterngloballyand the noisy nature of
DW-MRI makes it difficult to detect edges separating the CB from the rest of the image.

There has been much research in detecting and characterizing neural connections
between brain structures in DW-MRI. Early methods for detecting fibers, i.e.,tractog-
raphy, are based on streamlines where the fiber path is constructedby following the
direction of the principal eigenvector of diffusion tensors from an initial seed point,
e.g., [3, 4]. These methods have been shown to perform poorlyin noisy situations and
they often terminate prematurely before the fiber ending. Toalleviate these problems,
there has been a number of works, e.g., [5–11], where an optimal path, in some sense,
is constructed from seed region(s). The procedure is repeated to detect all fibers of a
bundle. These methods, however, do not explicitly provide asegmentation of the entire
fiber bundle.

We are interested in segmenting the entire fiber bundle as a surface. Standard active
surface techniques, e.g. [12, 13], adapted to DW-MRI are typically difficult to segment
the CB since the DW-MRI of the brain are extremely noisy and contain many local
features that trap the active surface in unlikely configurations that are not representative
of the CB. Indeed, the CB is difficult to segment without ashape priorfavoring its thin
tube-like geometry. Standard region-based techniques adapted to DW-MRI or DT-MRI,
e.g. [14], are generally not applicable to the segmentationof the CB since the statistics
of the DW-MRI inside the CB cannot be described by a fewglobal parameters (e.g.
mean). The Mumford-Shah energy extended to DT-MRI, [15], which assumes piece-
wise smooth image data inside the surface, is applicable to the CB, but the technique
needs a shape prior for the CB and is computationally costly since smooth functions
must be determined at each update of the evolving surface. In[16], the authors model
the probability distribution of the CB and design an algorithm to classify voxels of the
image, and the method could benefit greatly modeling the CB geometry. Noticing that
standard region-based techniques are not applicable to theCB, an edge-based active
surface method for segmenting the CB is considered by [17]. However, the method is
sensitive to the noise in the DW-MRI, and the method does not incorporate the tube-like
geometry into the segmentation. The work [18] designs an energy on volumetric regions
that incorporates “local region-based” information and a prior favoring regions that are
close to an initially detected center-line curve. However,the energy is highly dependent
on the correct placement of the detected center-line, whichis often not exactly in the
center of the CB. Moreover, the method does not enforce the tube-like geometry of the
CB.

In this work,we explicitly model the CB as a tubular surface, andconstruct a gen-
eral class of energies defined on these tubular surfaces. This enforces a tubular ge-
ometry during the segmentation process. Since the tubular surfaces we consider are
determined by a center-line in 3D space and a radius functiondefined at each point of
the center-line (see Fig. 1), the problem is reduced to optimizing an energy defined on
4D curves.This significantly reduces the computational cost of the optimization proce-
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dure when compared to an unconstrained surface optimization. Further,we show how
to construct energies that are tailored to the varying nature of the diffusion pattern in
the CB.

Our method is inspired by the work of [19] in which the authorsmodel vessels as
tubular regions formed by the union of spheres along a center-line. Energies are con-
structed on 4D curves that represent tubes, and these energies are globally minimized
using the minimal path technique [20]. The energies we construct cannot be optimized
using the minimal path technique since our energies are directionally dependent - they
depend on the position of the 4D curve and itstangent. Moreover, for the energies we
consider, we are not interested in a global minimum but rather certain local minima.
As we shall see (in Section 4), the optimization of our energyof interest using gradient
descent requires special consideration, and this interestingly ties to the metric structure
on the space of 4D curves.

2 The Cingulum Bundle
The cingulum bundle is a 5-7 mm in diameter fiber bundle that interconnects all parts
of the limbic system. It originates within the white matter of the temporal pole, and
runs posterior and superior into the parietal lobe, then turns, forming a “ring-like belt”
around the corpus callosum, into the frontal lobe, terminating anterior and inferior to the
genu of the corpus callosum in the orbital-frontal cortex [21]. Moreover, the CB con-
sists of long, association fibers that directly connect temporal and frontal lobes, as well
as shorter fibers radiating into their own gyri. The CB also includes most afferent and
efferent cortical connections of cingulate cortex, including those of prefrontal, parietal
and temporal areas, and the thalamostriatae bundle. In addition, lesion studies docu-
ment a variety of neurobehavioral deficits resulting from a lesion located in this area,
including akinetic mutism, apathy, transient motor aphasia, emotional disturbances, at-
tentional deficits, motor activation, and memory deficits. Because of its involvement
in executive control and emotional processing, the CB has been investigated in several
clinical populations, including depression and schizophrenia. Previous studies, using
DTI, in schizophrenia, demonstrated decrease of FA in anterior part of the cingulum
bundle [1, 2], at the same time pointing to the technical limitations restricting these
investigations from following the entire fiber tract.

3 Proposed Framework
In this section, we model the cingulum bundle (CB) as a tubular surface inR

3. We
show that the tubular surface is completely determined by its center-line and the radius
function of the discs along the center-line, and therefore,the tubular surface inR3 can be
effectively reduced to a curve inR4. We formulate a general class of energies directly on
curves living inR

4, and then observe that special consideration of the metric structure
on curves is needed to optimize the energy.

3.1 Modeling the Cingulum Bundle (CB) as a Tubular Surface

We are interested in tubular surfaces since these surfaces naturally model the CB. These
surfaces have the additional advantage that they may be represented as space curves thus
significantly reducing the computational complexity of ouralgorithm.
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Fig. 1. Illustration of Tubular Surface model

The tubular surfaces we consider are determined by a center line, which is an open
curve lying inR

3, and a radius function defined at each point of the center-line. Given
an open curvec : [0, 1] → R

3, the center line, and a functionr : [0, 1] → R
+, the

radius function, we can define the tubular surface,S : S
1 × [0, 1] → R

3 (S1 is [0, 2π]
with endpoints identified) as follows:

S(θ, u) = c(u) + r(u)[n1(u) cos θ + n2(u) sin θ] (1)

wheren1, n2 : [0, 1] → R
3 are normals to the curvec defined to be orthonormal,

smooth, and such that the dot productsc′(u) ·ni(u) vanish. See Fig. 1 for an illustration
of a tubular surface. The idea is simply that the tubular surface is represented as a
collection of circles each of which lie in the plane perpendicular to the center line. Note
that the surface in (1) may thus be identified with a 4D space curve, c̃ : [0, 1] → R

4,
defined as a cross-product:

c̃(u) = (c(u), r(u))T . (2)

3.2 Variational Approach for Detecting the Cingulum Bundle

We now define a general class of energy functionals defined directly on 4D curves (2)
that when optimized result in the 4D curve that represents the CB from DW-MRI of the
brain.

Let S
2 ⊂ R

3 denote the 2D sphere, which is to represent the set of all possible
angular acquisition directions of the scanning device for DW-MRI. Let I : R

3 × S2 →
R

+ be the diffusion image. We are interested in weighted lengthfunctionals on 4D
curves as energy functionals of interest. Indeed, letΨ : R

4 × S2 → R
+ (Ψ(x, r, v) ∈

R
+) be a weighting function, which we call thepotentialto be chosen, and define the

energy as

E(c̃) =

∫

c̃

Ψ(c̃(s̃),
c′(s̃)

|c′(s̃)|
) ds̃, c̃ = (c, r) (3)

where ds̃ = |c̃′(u)|du =
√

(r′(u))2 + |c′(u)|2 du is the arclength measure of the 4D
curve, andc′(s̃)/|c′(s̃)| is the unit tangent toc, the center line. When (3) is minimized,
the term ds̃ penalizes the non-smoothness of the center line and the radius function.
The energy (3) is related to the length of a curve in a Finsler manifold [22].
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The goal is to chooseΨ so that the energy is optimized by ac̃ which determines
a surface enclosing the diffusion pattern of the CB in the DW-MRI of the brain. The
diffusion pattern in the cingulum varies in orientation andanisotropy across the length
of the bundle, althoughlocally similar (see Fig. 2), and that pattern differs from the pat-
tern immediately outside the CB. This fact precludes the useof traditional region-based
techniques adapted to DT-MRI since these techniques assumehomogeneous statistics
within theentireregion enclosed by the surface, whereas we will assume homogeneity
within local regions. In the next section, we show howΨ may be chosen so that the
energy can capture the varying diffusion pattern of the CB. The idea is to chooseΨ at
a particular coordinate(x, r, p) to incorporate statistics of the DT-MRIlocal to the disc
determined by(x, r, p) rather than using statistics global to the entire structureas in
traditional region based methods.

3.3 Example Potentials,Ψ

In this section, we give two choices ofΨ that are meaningful for extracting the CB from
DW-MRI, both based onlocal region-based statistics.

The first potentialΨ1 at a coordinate(x, r, v) ∈ R
3 × R

+ × S
2 is constructed so as

to be small when themean diffusion profileinside the disc,D(x, r, v), differs greatly
from the mean diffusion profile inside the annular region,D(x, αr, v)\D(x, r, v) where
α > 1, outsideD(x, r, p). This is given by the following expressions:

Ψ1(p̃, v) =
1

1 + ‖µD(p̃,v) − µD((p,αr),v)\D(p̃,v)‖2
(4)

where theµ’s are means:

µD(p̃,v)(v̂) =
1

r2

∫

D(p̃,v)

I(x, v̂) dA(x) (5)

µD((p,αr),v)\D(p̃,v)(v̂) =
1

(α2 − 1)r2

∫

D((p,αr),v)\D(p̃,v)

I(x, v̂) dA(x), (6)

where dA is the area element and‖ · ‖ is a suitable norm on functions of the form
f : S

2 → R
+, e.g.,

‖f1 − f2‖
2 =

∫

S2

|f1(v) − f2(v)|2 dS(v), (7)

wheredS is the surface area element. The energy corresponding toΨ1 is minimized.
Another example potential is chosen such that the corresponding energy is related

to a weighted surface area:

Ψ2(x, r, p) = r

∫ 2π

0

φ(x + rp⊥(θ)) dθ, and p⊥(θ) = n1 cos θ + n2 sin θ (8)

wheren1, n2 are orthonormal vectors perpendicular top, andφ : R
3 → R

+ is large
near the boundary of differing diffusion regions, e.g.,

φ(x) =
1

|B(x,R)|

∫

B(x,R)

‖I(y, ·) − µB(x,R)(·)‖
2 dy (9)
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whereB(x,R) is the ball centered atx of chosen radiusR, |B(x,R)| denotes the
volume, and the norm is defined as in (7). For this choice of potential, we are interested
in maximizingthe corresponding energy. The objective is to initialize the tubular surface
inside the CB, and then increase surface area until the surface reaches the boundary of
differing diffusion patterns.

4 Energy Optimization
In this section, we construct a steepest descent flow to minimize the energy of inter-
est (3). A steepest descent is considered since we are not necessarily interested in the
global maximizer or minimizer; indeed, the energy corresponding to (8) does not have
a global maximizer. We begin with a tubular surface initialization (see Section 5 for the
procedure), i.e., an initial 4D curve, and follow the gradient or its opposite depending
on the whether we want to maximize or minimize the energy.

4.1 Gradient Descent: Fixed Endpoints

The standard technique for calculating the gradient of an energy defined on curves,
which is based on a geometrizedL

2 metric on the space of curves, cannot be applied to
our energy of interest. This is because of the fact that when minimizing (3) usingL

2,
Ψ must satisfy a certain positivity condition (see [22]) thatwe cannot guarantee for our
choices ofΨ otherwise the gradient descent is ill-posed. Moreover, when maximizing
(3), we are indeed maximizing a weighted length, which with respect to the standard
geometrizedL2 curve metric, leads to anunstable reverse diffusion. As shown in [23],
such weighted length functionals may be optimized in astablemanner by moving in
the gradient direction of the energy (3) with respect to ageometrized Sobolev metric:

Definition 1. Let c̃ : [0, 1] → R
4 be such that̃c(0), c̃(1) are fixed. Leth, k : [0, 1] →

R
4 be perturbations of̃c then

〈h, k〉
L2

:=
1

L

∫

c̃

h(s̃) · k(s̃) ds̃,

〈h, k〉
Sob

:= L

∫

c̃

h′(s̃) · k′(s̃) ds̃,

whereL is the length of of the curvẽc, ds̃ is arclength element of̃c, and the derivatives
are with respect to the arclength parameters̃.

It can be shown that the gradient of (3) with respect to the Sobolev metric above is

1

L
∇SobE(c̃) = K(Ψp̃) + ∂ŝK(Ψ̂v

√

1 + (rs̃/|cs̃|)2 + Ψc̃s̃), (10)

where

K(f) :=

∫ L

0

K(·, s̃)f(s̃) ds̃, K(s̃1, s̃2) =
1

L

{

s̃2

L
(1 − s̃1

L
) 0 ≤ s̃2 ≤ s̃1

s̃1

L
(1 − s̃2

L
) s̃1 ≤ s̃2 ≤ L

. (11)

The expression has the additional numerical advantage thatonly first order derivatives
are required in comparison to the standardL

2 gradient, which needs second order in-
formation, and simply cannot be used anyway since it resultsin an unstable flow. Note
that as stated in [23], the expression (10) may be computed efficiently in orderN com-
plexity, whereN is the number of sample points of the curve.
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4.2 Evolving Endpoints

In the previous subsection, we derived a gradient descent flow for (3) provided the
endpoints of the4D curve (i.e., the end cross sections of the tube) are fixed. We now
describe how to evolve the endpoints so as to reduce the energy. This is useful for some
choices ofΨ in (3), for example,Ψ2 defined in (8). To determine the evolution of the
endpoints, we compute the variation with respect to the endpoints. This results in

c̃t(0) = ∓Ψ̂v

√

1 +

(

rs̃

|cs̃|

)2

∓ Ψc̃s̃, c̃t(1) = ±Ψ̂v

√

1 +

(

rs̃

|cs̃|

)2

± Ψc̃s̃, (12)

which will minimize/maximize the energy (depending on the sign chosen above). There-
fore, the algorithm to reduce the energy is to alternativelyevolve the endpoints by (12)
and then evolve the 4D curve by (10).

Fig. 2. Selected slice-wise views of CB Segmentation results from proposed framework. The top
row shows the DWI data and the bottom row shows the DWI data with the extracted surface
rendered in 3D.

5 Experiments and Results
The algorithm was applied to DWI data of the brain from a data set that included
schizophrenic and normal control subjects, with the DWI being acquired for 54 sam-
pling directions. Results are included for the data from 2 subjects, and show the CB
extracted for both the right and left bundles in each case.

In this paper, a perturbation of the anchor tract is used as the initial centerline curve
and the smallest possible radius of 0.5 is used, with the surface essentially growing out
from this initial radius. There are also other options to perform this initialization. Since
we are given seed regions determined by an expert, an alternative initialization would
be to connect the two seed regions with a streamline that passed above the Corpus
Callosum (which is easy to segment). This initialization isbeing explored for future
work.

The results included in this paper show the application of the proposed framework to
the data sets, using the energy (3) using the potentialΨ1 (4). Figure 2 shows slice-wise
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views of the CB segmentation results obtained from the proposed framework indicating
the homogeneity of the discs within the captured volume. TheFigures, 3, and 4 show
the tubular surface extracted by the proposed algorithm. Itis to be noted that the surfaces
are accurate while the boundaries shown in Figure 2 are the boundary locations rounded
off to the grid points by the visualization process.

Fig. 3. CB Segmentation Results for Brain data set 1. Yellow shows the left CB and magenta
shows the right CB.

6 Conclusions and Future work
We have proposed a novel technique to extract the cingulum bundle, which is of in-
terest in the medical community because of its ties to schizophrenia, from DW-MRI
of the brain. Unlike other standard techniques for extracting fiber bundles in the brain,
we are able toextract the entire bundle as a region at once ratherthan detecting in-
dividual fibers and then combining them to form the bundle, which is laborious and
prone to errors, while also performing this as a curve evolution rather than a surface
evolution thus avoiding the computational disadvantages of a levelset implementation.
We havemodeled the cingulum bundle as a tubular surfaceand constructed a varia-
tional approach to detect the optimum tubular surface from DW-MRI, which represents
the CB. Tubular surfaces provide a natural and accurateshape priorfor the cingulum
bundle, and such a shape prior is necessary due to the noisy nature of the imagery and
the fact that data is not very visible or highly corrupted in certain slices. As we have
shown, the tubular surface can be represented as a 4D curve, and thus, we were able to
significantly reduce the computational costof the algorithm compared to extracting an
arbitrary surface. The proposed model was shown to yield good segmentations of the
Cingulum Bundle upon visual inspection; unfortunately, there is no expert ground truth
data available since it is laborious to hand segment an entire volume and certain slices
do not even display the CB diffusion pattern accurately.

In future work, the authors plan to explore different choices of Ψ in the energy
functional(3), and explore smoothness terms for the tubes in the energy. We will also
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Fig. 4. CB Segmentation Results for Brain data set 2. Yellow shows the left CB and magenta
shows the right CB.

implement the evolution of endpoints, which will be useful since the initialization will
have to only be a single seed point. Further, the use of the extracted Cingulum Bundles
will be explored in population studies for the discrimination of Schizophrenia. We are
also interested in applying the framework other tubular structures such as the Uncinate
Fasciculus in the brain.

This work was supported in part by grants from NSF, AFOSR, ARO, MURI, as well as
by a grant from NIH (NAC P41 RR-13218) through Brigham and Women’s Hospital.
This work is part of the National Alliance for Medical Image Computing (NAMIC),
funded by the National Institutes of Health through the NIH Roadmap for Medical
Research, Grant U54 EB005149. Information on the National Centers for Biomedical
Computing can be obtained fromhttp://nihroadmap.nih.gov/bioinformatics.
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