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Abstract. By solving the Yamabe equation with the discrete surface
Ricci flow method, we can conformally parameterize a multiple bound-
ary surface by a multi-hole disk. The resulting parameterizations do not
have any singularities and they are intrinsic and stable. For applications
in brain mapping research, first, we convert a cortical surface model
into a multiple boundary surface by cutting along selected anatomical
landmark curves. Secondly, we conformally parameterize each cortical
surface using a multi-hole disk. Inter-subject cortical surface matching
is performed by solving a constrained harmonic map in the canonical
parameter domain. To map group differences in cortical morphometry,
we then compute a manifold version of Hotelling’s T

2 test on the Ja-
cobian matrices. Permutation testing was used to estimate statistical
significance. We studied brain morphology in 21 patients with Williams
Syndrome (WE) and 21 matched healthy control subjects with the pro-
posed method. The results demonstrate our algorithm’s potential power
to effectively detect group differences on cortical surfaces.

1 Introduction

Surface-based modeling is valuable in brain imaging to help analyze anatomical
shape, to detect abnormalities of cortical surface folding, and to statistically com-
bine or compare 3D anatomical models across subjects. Even so, a direct mapping
between two 3D surfaces from different subjects is challenging to compute. Of-
ten, higher order correspondences must be enforced between specific anatomical
points, curved landmarks, or subregions lying within the two surfaces. This is
often achieved by first mapping each of the 3D surfaces to canonical parameter
spaces such as a sphere [1, 2] or a planar domain [3]. A flow, computed in the
parameter space of the two surfaces [4, 5], then induces a correspondence field
in 3D. This flow can be constrained using anatomic landmark points or curves,
by constraining the mapping of surface regions represented implicitly using level
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sets [3], or by using currents to represent anatomical variation [6] Feature cor-
respondence between two surfaces can be optimized by using the L2-norm to
measure differences in curvature profiles or convexity [1] or by using mutual
information to align scalar fields of various differential geometric parameters de-
fined on the surface [7]. Artificial neural networks may also be used to rule out or
favor certain types of feature matches [8]. Finally, correspondences may be de-
termined by using a minimum description length (MDL) principle, based on the
compactness of the covariance of the resulting shape model [9]. Anatomically
homologous points can then be forced to match across a dataset. Thodberg [10]
identified problems with early MDL approaches and extended them to an MDL
appearance model, when performing unsupervised image segmentation.

All oriented surfaces have conformal structures. The conformal structure is, in
some respects, more flexible than the Riemannian metric but places more restric-
tions on the the surface morphology than the topological structure. The Ricci
flow method can conformally map an open boundary surface to a multi-hole
disk [11]. Compared with other conformal parameterization methods [12–15],
the Ricci flow method can handle cortical surfaces with complicated topologies
without singularities. The continuous Ricci flow conformally deforms a Rieman-
nian metric on a smooth surface such that the Gaussian curvature evolves like
a heat diffusion process. In the discrete case, with the circle packing metric, the
Ricci flow can be formulated in a variational setting and solved by the Newton
method [11].

Tensor-based morphometry is widely used in computational anatomy as a
means to understand shape variation between structural brain images. Tech-
niques based on Riemannian manifolds to compare deformation tensors or strain
matrices were introduced in [16–18]. In [19], the full deformation tensors were
used in the context of tensor-based morphometry. In a conformal parameteri-
zation, the original metric tensor is preserved up to a constant. The conformal
parametrization provides an ideal framework to apply tensor based morphom-
etry on surfaces, to help understand shape variation between structural brain
images.

In this paper, we use the Ricci flow method to compute a conformal mapping
between cortical surfaces and a multi-hole surface. Then we compute a direct
cortical surface correspondence by computing a constrained harmonic map on
the parameter domain. We apply multivariate statistics to the Jacobian matrices
to study cortical surface variation between a group of patients with Williams
syndrome (WS) and a group of healthy control subjects. WS is a genetic disorder
in which the cortex develops abnormally, but the scope and type of systematic
differences is unknown [20]. In our experimental results, we identified several
significantly different areas on the left and right cortical surfaces between WS
patients and control subjects.
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2 Ricci Flow Conformal Parameterization

In this section, we introduce the theory of Ricci flow in the continuous setting,
and then generalize it to the discrete setting.

2.1 Ricci Flow on Continuous Surfaces

Riemannian Metric and Gaussian Curvature All the concepts used here
may be found, with detailed explanations, in [21]. Suppose S is a C2 smooth
surface embedded in R

3 with local parameters (u1, u2). Let r(u1, u2) be a point
on S and dr = r1du1 + r2du2 be the tangent vector defined at that point, where
r1, r2 are the partial derivatives of r with respect to u1 and u2, respectively. The
Riemannian metric or the first fundamental form is:

< dr, dr >=
∑

< ri, rj > duiduj , i, j = 1, 2. (1)

The Gauss map G : S → S
2 from the surface S to the unit sphere S

2 maps
each point p on the surface to its normal n(p). The Gaussian curvature K(p) is

defined as the Jacobian of the Gauss map. Intuitively, it is the ratio between the
infinitesimal area of the image of the Gauss map and the infinitesimal area on
the original surface.

The total curvature of a compact surface is determined by the topology of
the surface:

∫

S
KdA +

∫

∂S
kgds = 2πχ(S), where ∂S is the boundary of the

surface S, kg is the geodesic curvature, and χ(S) is the Euler characteristic of
the surface (an integer).

Fig. 1. Properties of Conformal Mapping: Conformal mappings transform in-
finitesimal circles to infinitesimal circles and preserve the intersection angles among
the circles. Here, infinitesimal circles are approximated by finite ones.

Conformal deformation Let S be a surface embedded in R
3. S has a

Riemannian metric induced from the Euclidean metric of R
3, denoted by g.

Suppose u : S → R is a scalar function defined on S. It can be verified that
ḡ = e2ug is also a Riemannian metric on S, and angles measured by g are equal
to those measured by ḡ. We say ḡ is a conformal deformation from g. Figure
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1 shows that a conformal deformation maps infinitesimal circles to infinitesimal
circles and preserves their intersection angles.

When the Riemannian metric is conformally deformed, curvatures will also be
changed accordingly. Suppose g is changed to ḡ = e2ug, the Gaussian curvature
will become K̄ = e−2u(−∆gu+K), where ∆g is the Laplacian-Beltrami operator
under the original metric g. The geodesic curvature will become k̄ = e−u(∂ru +
k), where r is the tangent vector orthogonal to the boundary.

Smooth Surface Ricci Flow Suppose S is a smooth surface with a Rieman-
nian metric g. The Ricci flow deforms the metric g(t) according to the Gaussian
curvature K(t) (induced by g(t) itself), where t is the time parameter

dgij(t)

dt
= −2K(t)gij(t). (2)

If we replace the metric in Eq. 2 with g(t) = e2u(t)g(0), then the Ricci flow can
be simplified as du(t)/dt = −2K(t), which states that the metric should change
according to the curvature.

The Ricci flow can be easily modified to compute a metric with a user-defined

curvature K̄ : du(t)/dt = 2(K̄ − K). The resulting metric g(∞) will induce the
user-defined curvature K̄.

The Ricci flow has been proven to converge. For surfaces with non-positive
and positive Euler numbers, the proofs were given by Hamilton [22] and Chow
[23] respectively. For a closed surface, if the total area is preserved during the
flow, the Ricci flow will converge to a metric such that the Gaussian curvature
is constant everywhere.

2.2 Ricci Flow on Discrete Surfaces

In engineering fields, smooth surfaces are often approximated by simplicial com-
plexes (triangle meshes). Key concepts, such as the metric, curvature, and con-
formal deformation in the continuous setting can be generalized to the discrete
setting. We denote a triangle mesh as Σ, the mesh boundary as ∂Σ, a vertex set
as V , an edge set as E, and a face set as F . eij represents the edge connecting
vertices vi and vj , and fijk denotes the face formed by vi, vj , and vk.

Discrete Riemannian Metric and Gaussian Curvature A Riemannian
metric on a mesh Σ is a piecewise constant metric with cone singularities at
vertices.

The edge lengths of a mesh Σ are sufficient to define the Riemannian metric,
l : E → R

+, as long as for each face fijk, the edge lengths satisfy the triangle
inequality: lij + ljk > lki.

The discrete Gaussian curvature Ki on a vertex vi ∈ Σ can be computed
from the angle deficit,

Ki =

{

2π −
∑

fijk∈F θjk
i , vi 6∈ ∂Σ

π −
∑

fijk∈F θjk
i , vi ∈ ∂Σ

(3)
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Fig. 2. Circle Packing Metric (a) Flat circle packing metric (b) Circle packing
metric on a triangle.

where θjk
i represents the corner angle attached to vertex vi in the face fijk. The

discrete Gaussian curvatures are determined by the discrete metrics. And the
total discrete curvature is, similar to the smooth case, a topological invariant:
∑

vi∈V Ki = 2πχ(M).

Discrete Conformal Deformation In the discrete setting, conformal de-
formation is carried out using the concept of circle packing metric, which was
introduced by Thurston in [24].

By approximating infinitesimal circles using circles with finite radii, a circle

packing metric of Σ can be denoted as (Γ,Φ), where Γ is a vertex function,
Γ : V → R

+, which assigns a radius γi to the vertex vi; Φ is an edge weight
function, Φ : E → [0, π

2 ], which assigns an acute angle (i.e. weight) Φ(eij) to
each edge eij . Figure 2 illustrates the circle packing metric. Each vertex vi has a
circle whose radius is γi. For each edge eij , the intersection angle φij is defined
through two circles around vi and vj , which either intersect or are tangent.

Two circle packing metrics (Γ1, Φ1) and (Γ2, Φ2) on the same mesh are con-

formally equivalent if Φ1 ≡ Φ2. A conformal deformation of a circle packing
metric only modifies the vertex radii and preserves the intersection angles of the
edges.

Discrete Surface Ricci Flow Suppose (Σ,Φ) is a weighted mesh with
an initial circle packing metric. Similar to the smooth setting, if we set k̄ =
(K̄1, K̄2, · · · , K̄n)T to be the user-defined target curvature, the discrete Ricci
flow can be defined as :

dui(t)

dt
= (K̄i − Ki), (4)

The Discrete Ricci flow can be formulated in the variational setting; namely,
it is a negative gradient flow of a special energy form. Let (Σ,Φ) be a weighted
mesh with spherical (Euclidean or hyperbolic) background geometry. For arbi-
trary two vertices vi and vj , the following symmetric relation holds: ∂Ki/∂uj =
∂Kj/∂ui. Let ω =

∑n
i=1 Kidui be a differential one-form [25]; the symmetric

relation guarantees that this one-form is closed (curl free) in the metric space:
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dω = 0. Then by Stokes theorem, the following integration is path independent:

f(u) =

∫ u

u0

n
∑

i=1

(K̄i − Ki)dui, (5)

where n is the number of vertices, ui = log(γi), γi is the radius associated with
edge i, and u0 is an arbitrary initial metric.

The above integration (Eq. 5) is called the discrete Ricci energy, which is well-
defined. The discrete Ricci energy has been proved to be strictly convex (i.e., its
Hessian is positive definite) in [26]. The global minimum uniquely exists, which
gives the desired discrete metric that induces k̄. The discrete Ricci flow is the
negative gradient flow of this energy, and it converges to the global minimum.

As in [11], the discrete surface Ricci flow method was used to solve the
Yamabe equation [11] and conformally map an open boundary cortical surface
to a multi-hole disk.

3 Multivariate Statistics on Deformation Tensors

3.1 Derivative Map

Suppose φ : S1 → S2 is a map from the surface S1 to the surface S2. In order
to simplify the formulation, we use the isothermal coordinates of both surfaces
for the arguments. Let (u1, v1), (u2, v2) be the isothermal coordinates of S1 and
S2 respectively. The Riemannian metric of Si is represented as gi = e2λi(du2

i +
dv2

i ), i = 1, 2.
On the local parameters, the map φ can be represented as φ(u1, v1) =

(φ1(u1, v1), φ2(u1, v1)). The derivative map of φ is the linear map between the
tangent spaces, dφ : TM(p) → TM(φ(p)), induced by the map φ. In the local
parameter domain, the derivative map is the Jacobian of φ,

dφ =

(

∂φ1

∂u1

∂φ1

∂v1

∂φ2

∂u1

∂φ2

∂v1

)

.

Let the position vector of S1 be r(u1, v1). Denote the tangent vector fields as
∂

∂u1

= ∂r
∂u1

, ∂
∂v1

= ∂r
∂v1

. Because (u1, v1) are isothermal coordinates, ∂
∂u1

and
∂

∂v1

only differ by a rotation of π/2. Therefore, we can construct an orthonor-

mal frame on the tangent plane on S1 as {e−λ1 ∂
∂u1

, e−λ1 ∂
∂v1

}. Similarly, we can

construct an orthonormal frame on S2 as {e−λ2 ∂
∂u2

, e−λ2 ∂
∂v2

}.
The derivative map under the orthonormal frames is represented as

dφ = eλ2−λ1

(

∂φ1

∂u1

∂φ1

∂v1

∂φ2

∂u1

∂φ2

∂v1

)

.

In practice, smooth surfaces are approximated by triangle meshes. The map
φ is approximated by a simplicial map, which maps vertices to vertices, edges to
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edges and faces to faces. The derivative map dφ is approximated by the linear
map from one face [v1, v2, v3] to another one [w1, w2, w3]. First, we isometrically
embed the triangle [v1, v2, v3],[w1, w2, w3] onto the plane R

2, the planar coordi-
nates of the vertices of vi, wj are denoted using the same symbol vi, wj . Then
we explicitly compute the linear matrix for the derivative map dφ,

dφ = [w3 − w1, w2 − w1][v3 − v1, v2 − v1]
−1.

In our work, we use multivariate statistics on deformation tensors [19], but
adapt the concept to surface tensors. Let J be the derivative map and define
the deformation tensors as S = (JT J)1/2. Instead of analyzing shape change
based on the eigenvalues of the deformation tensor, we consider a new family of
metrics, the “Log-Euclidean metrics” [18]. These metrics make computations on
tensors easier to perform, as they are chosen such that the transformed values
form a vector space, and statistical parameters can then be computed easily
using standard formulae for Euclidean spaces.

We apply Hotelling’s T 2 test on the log-Euclidean space of the deformation
tensors. Given two groups of n-dimensional vectors Si, i = 1, ..., p, Tj , j = 1, ..., q,
we use the Mahalanobis distance M to measure the group mean difference,

M = (logS̄ − logT̄ )Σ−1(logS̄ − logT̄ )

where S̄ and T̄ are the means of the two groups and Σ is the combined covariance
matrix of the two groups.

4 Experimental Results

We tested our algorithm on brain anatomic surfaces extracted from 3D MRI
scans of a group of 21 WS individuals and a group of 21 healthy control sub-
jects. The cerebral cortex and landmark data are the same ones used in [20]. We
tested our algorithm with different landmark sets. The first set included four se-
lected landmark curves per hemisphere: the Central Sulcus, Superior Temporal
Sulcus, Primary Intermediate Sulcus and Middle Frontal Control Line. A second
set of constraint curves included seven selected landmark curves (the three new
landmarks are the Precentral Sulcus, Paracentral Sulcus and Subparietal Sul-
cus). After we cut a cortical surface open along the selected landmark curves,
the cortical surface becomes topologically equivalent to an open boundary genus
3 (4 landmarks) or genus 6 (7 landmarks) surface. So the cortical surface can
be conformally mapped to a multi-hole disks with 4 and 7 boundaries, respec-
tively. Examples of cortical surfaces with landmark curves overlaid (after cuts
introduced) and their parameterization results are shown in Figure 3.

Because of the shape difference between different cortices, the centers and the
radii of the inner circles are different. By computing a constrained harmonic map
from each individual conformal map to a canonical multi-hole disk in the param-
eter domain, we can easily compute a direct surface correspondence between each
of the cortical surfaces [11]. Currently, the reference canonical multi-hole disk
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is arbitrarily chosen. For landmark curve matching, we guaranteed the match-
ing of both curve ends. For other parts, we match curves based on unit speed
parameterization on both curves.

Based on the surface matching results, the Jacobian matrices were computed
as described in Section 3. For each point on the cortical surface, we ran permu-
tation test with 5000 random assignments of subjects to groups to estimate the
statistical significance of the areas with group differences in surface morphom-
etry. Figure 4 and 5 illustrates our experimental results. We compared left and
right cortical surface morphology between 21 control subjects and 21 WS pa-
tients with mappings constrained by a total of 4 and 7 selected landmark curves.
Different sets of landmarks were used as anchors to evaluate the impact of the
choice of anatomical constraints on the results. The significance maps, for the
left and right hemispheres, show group differences at the voxel level, between WS
patients and control subjects. Mappings with 4 and 7 selected landmark curves
were computed. We detected few significant shape differences between left and
right cortical surfaces (i.e., anatomical asymmetries) in both the control group
and the WS group. Even so, we did find significant shape differences for both
left and right cortical surfaces between WS and control subjects. We also found
the regions with differences detected at the voxel level were consistent for the
mappings computed with 4 and 7 selected landmark curves. However, detection
power was not as high as expected in regions around the landmarks. Our future
research will examine the statistics in the vicinity of the chosen landmarks, and
multiple comparison correction methods, for example based on controlling the
false discovery rate, will be used to assess the overall significance of the group
differences.

Fig. 3. Cortical surfaces with landmark curves and their conformal parameterization
results. The first row shows a cortex with 4 landmarks and the second row shows a
cortex with 7 landmarks (one landmark is not visible in this view).
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5 Conclusions and Future Work

We applied the Ricci flow conformal parameterization for brain cortical sur-
face registration. Based on the derivative map between two matching surfaces,
a multivariate statistic on the Jacobian matrices was used to study surface mor-
phometry in WS. Experimental results suggest that the significantly different
areas were consistent with respect to the choice of landmark constraints and the
algorithm has the potential to detect systematic surface abnormalities associ-
ated with disease. In the future, we will further study other possible statistics
on the Jacobian matrices and find the optimal statistics for analyzing deforma-
tions computed using our Ricci flow conformal parameterization-based surface
matching method. We will also validate our algorithm on larger databases of
anatomical models.
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Fig. 4. Brain morphology study in 21 Williams Syndrome patients and 21 matched
control subjects (intra group study).
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Fig. 5. Brain morphology study in 21 Williams Syndrome patients and 21 matched
control subjects (inter group study).


