

Univ. Côte d'Azur and Inria, France

http://www-sop.inria.fr/asclepios/cours/Peyresq_2019/

Geometric Statistics

Mathematical foundations and applications in computational anatomy

Freely adapted from "Women teaching geometry", in Adelard of Bath translation of Euclid's elements, 1310.

5/ Advanced Stats: empirical estimation and generalized PCA

Ecole d'été de Peyresq, Jul 1-5 2019

Geometric Statistics: Mathematical foundations and applications in computational anatomy

Intrinsic Statistics on Riemannian Manifolds Manifold-Valued Image Processing Metric and Affine Geometric Settings for Lie Groups Parallel Transport to Analyze Longitudinal Deformations

Advances Statistics: CLT & PCA

- Estimation of the empirical Fréchet mean & CLT
- Principal component analysis in manifolds
- Natural subspaces in manifolds: barycentric subspaces
- Rephrasing PCA with flags of subspaces

Several definitions of the mean Tensor moments of a random point on M

□ $\mathfrak{M}_1(x) = \int_M \overline{xz} \, dP(z)$ Tangent mean: (0,1) tensor field □ $\mathfrak{M}_2(x) = \int_M \overline{xz} \otimes \overline{xz} \, dP(z)$ Covariance: (0,2) tensor field □ $\mathfrak{M}_k(x) = \int_M \overline{xz} \otimes \overline{xz} \otimes \cdots \otimes \overline{xz} \, dP(z)$ k-contravariant tensor field □ $\sigma^2(x) = Tr_g(\mathfrak{M}_2(x)) = \int_M dist^2(x, z) \, dP(z)$ Variance function

Mean value = optimum of the variance

- □ **Frechet mean** [1944] = (global) minima of p-variance (includes median)
- □ Karcher mean [1977] = local minima
- **Exponential barycenters** = critical points (P(C) = 0) \overline{D}

$$\mathfrak{M}_1(\overline{x}) = \int_M \overline{\overline{x}z} dP(z) = 0$$
 (implicit definition)

Covariance at the mean

$$\square \mathfrak{M}_2(\bar{x}) = \int_M \overline{\bar{x}z} \otimes \overline{\bar{x}z} \, dP(z)$$

xy 🔊

 $T_{\bar{\mathbf{x}}} S_{2}$

Algorithms to compute the mean

Karcher flow (gradient descent)

$$\bar{x}_{t+1} = \exp_{\bar{x}_t}(\epsilon_t v_t) \text{ with } v_t = E(\overline{y}\overline{x}) = \frac{1}{n} \sum_i \log_{\bar{x}_t}(x_i)$$

□ Usual algorithm with $\epsilon_t = 1$ can diverge on SPD matrices [Bini & Iannazzo, Linear Algebra Appl., 438:4, 2013]

 Convergence for non-negative curvature (p-means) [Afsari, Tron and Vidal, SICON 2013]

Inductive / incremental weighted means

$$\Box \ \bar{x}_{k+1} = \exp_{\bar{x}_k} \left(\frac{1}{k} \ v_k \right) \ with \ v_k = \log_{\bar{x}_k} (x_{k+1})$$

 On negatively curved spaces [Sturm 2003], BHV centroid [Billera, Holmes, Vogtmann, 2001]

□ On non-positive spaces [G. Cheng, J. Ho, H. Salehian, B. C. Vemuri 2016]

Stochastic algorithm

- □ [Bonnabel IEE TAC 58(9) 2013]
- □ [Arnaudon & Miclo, Stoch. Proc. & App. 124, 2014]

Asymptotic behavior of the mean

Uniqueness of p-means with convex support

[Karcher 77 / Buser & Karcher 1981 / Kendall 90 / Afsari 10 / Le 11]

- Non-positively curved metric spaces (Aleksandrov): OK [Gromov, Sturm]
- Positive curvature: [Karcher 77 & Kendall 89] concentration conditions: Support in a regular geodesic ball of radius $r < r^* = \frac{1}{2} \min(inj(M), \pi/\sqrt{\kappa})$

Bhattacharya-Patrangenaru CLT [BP 2005, B&B 2008]

□ Under suitable concentration conditions, for IID n-samples:

- $\bar{x}_n \rightarrow \bar{x}$ (consistency of empirical mean)
- $\sqrt{n} \log_{\bar{x}}(\bar{x}_n) \rightarrow N(0, \bar{H}^{-1} \Sigma \bar{H}^{-1})$ if $\bar{H} = \int_M Hess_{\bar{x}}(d^2(y, \bar{x})) \mu(dy)$ invertible

Questions

- □ Intelligible expression of Hessian?
- □ What happens for a small sample size (non-asymptotic behavior)?
- □ Can we extend results to affine connection spaces?

Concentration assumptions

 \square Uniqueness of the mean, support of diameter < ε

Riemannian manifold: Karcher & Kendall Concentr. Cond.

- □ Supp(μ) ⊂ B(x,r) with r < $\frac{1}{2}$ inj(x)
- $\Box \quad \sup_{x \in B(x,r)} \kappa(x) < \pi^2/(4r)^2$

Affine connection spaces: Arnaudon & Li convexity cond.

- $\square \ \rho: M \times M \ \rightarrow R^+ \text{ separating function}$
 - Separability: $\rho(x, y) = 0 \Leftrightarrow x = y$
 - Convexity along geodesic: $\rho(\gamma_1(t), \gamma_2(t)): R \to R^+ \ convex$
- □ p-convex geometry: $c \operatorname{dist}^p(x, y) \le \rho(x, y) \le C \operatorname{dist}^p(x, y)$
- Uniqueness of exponential barycenter (compact support)

Taylor expansion in manifolds

The mean is an exponential barycenter

- □ Tangent mean field: $\mathfrak{M}_1(x) = \int_M \log_x(z) \mu(dz)$ has a zero at \bar{x} . Problem: vector field
- □ Recentered man field is a mapping of vector spaces $N_x(v) = \prod_{x_v}^x \mathfrak{M}_1(\exp_x(v)) = \int_M \prod_{x_v}^x \log_{x_v}(y) \mu(dy)$

has a zero at $\bar{v} = \log_x(\bar{x})$

Neighboring log expansion (derived from Gavrilov)

Non-Asymptotic behavior of empirical means

Moments of the Fréchet mean of a n-sample

- Taylor expansions based on [Gavrilov 2007]
- □ Unexpected bias in 1/n on empirical mean (gradient of curvature-cov.) bias(\bar{x}_n) = $E(log_{\bar{x}}(\bar{x}_n)) = \frac{1}{6n} (\mathfrak{M}_2: \nabla R: \mathfrak{M}_2) + O(\epsilon^5, 1/n^2)$
- Concentration rate modulated by the curvature-covariance:

 $Cov(\bar{x}_n) = E\left(\log_{\bar{x}}(\bar{x}_n) \otimes \log_{\bar{x}}(\bar{x}_n)\right) = \frac{1}{n}\mathfrak{M}_2 + \frac{1}{3n}\mathfrak{M}_2: \mathbb{R}:\mathfrak{M}_2 + O(\epsilon^5, 1/n^2)$

- Asymptotically infinitely fast CV for negative curvature
- No convergence (LLN fails) at the limit of KKC condition

[XP, Curvature effects on the empirical mean in Manifolds 2019, arXiv:1906.07418]

Constant curvature spaces

□ Symmetric spaces: no bias

□ Variance is modulated w.r.t. Euclidean: $Var(\bar{x}_n) = \alpha \frac{\sigma^2}{n}$

High concentration expansion

$$\Box \ \alpha = 1 + \frac{2}{3} \left(1 - \frac{1}{d} \right) \left(1 - \frac{1}{n} \right) \kappa \sigma^2 + O(\epsilon^5)$$

Asymptotic CLT expansion

$$\Box \ \alpha = \left(\frac{1}{d} + \left(1 - \frac{1}{d}\right)\overline{h}\right)^{-2} + O(n^{-2})$$

Archetypal modulation factor

□ Uniform distrib on $S(\bar{x}, \theta) \subset M$ large n, large d

$$\Box \ \alpha = \frac{\tan^2(\sqrt{\kappa\theta^2})}{\kappa\theta^2}$$

X. Pennec – Ecole d'été de Peyresq, Jul 1-5 2019

Convergence rate modulation factor, hyperbolic space, space dim=3, N > 5

Conclusions

High concertation expansion very accurate for low theta

Asymptotic expansion very accurate for n> 10

Main variable controlling the modulation is variancecurvature tensor

 $R(\blacksquare, \circ) \blacksquare: \mathfrak{M}_2$

Main variable controling the bias $\mathfrak{M}_2: \nabla R(^\circ, \blacksquare) \blacksquare: \mathfrak{M}_2$

Trimester on Statistics with Geometry and Topology

Geometric Statistics workshop Toulouse, 30-08/05-09 2019

- □ Fri 30-08 PM: Susan Holmes (mini-course 1)
- □ Mon 02-09 AM: Susan Holmes (mini-course 2)

PM: Ezra Miller (Sampling from stratified spaces. 1: Stratified spaces)

- Tue 03-09 AM: Ezra Miller (Sampling from stratified spaces. 2: Fréchet means)
 PM: Stephan Huckeman (TBA) / Thomas Hotz (Universal, nonasymptotic confidence sets for extrinsic and intrinsic means)
- Wed 04-09 AM: Xavier Pennec (Statistics on Riemannian manifolds and affine connection spaces. 1: manifolds and basic statistics)
 PM: Huiling Le (Empirical Likelihood of Frechet Means) / Alice Le Brigant (TBA)
- Thu 05-09 AM: Xavier Pennec (Statistics on Riemannian manifolds and affine connection spaces. 2: Barycentric subspace analysis, asymptotic and non-asymptotic behavior of the empirical mean)
 - PM: Nina Miolane & TBA

Geometric Statistics: Mathematical foundations and applications in computational anatomy

Intrinsic Statistics on Riemannian Manifolds Manifold-Valued Image Processing Metric and Affine Geometric Settings for Lie Groups Parallel Transport to Analyze Longitudinal Deformations

Advances Statistics: CLT & PCA

- Estimation of the empirical Fréchet mean & CLT
- Principal component analysis in manifolds
- Natural subspaces in manifolds: barycentric subspaces
- Rephrasing PCA with flags of subspaces

Low dimensional subspace approximation?

Manifold of cerebral ventricles Etyngier, Keriven, Segonne 2007.

Manifold of brain images S. Gerber et al, Medical Image analysis, 2009.

- $\hfill\square$ Beyond the 0-dim mean \rightarrow higher dimensional subspaces
- When embedding structure is already manifold (e.g. Riemannian):
 Not manifold learning (LLE, Isomap,...) but submanifold learning
- Natural subspaces for extending PCA to manifolds?

Tangent PCA (tPCA)

Maximize the squared distance to the mean (explained variance)

- a Algorithm
 - Unfold data on tangent space at the mean
 - Diagonalize covariance at the mean $\Sigma(x) \propto \sum_i \overline{\bar{x}x_i} \, \overline{\bar{x}x_i}^t$
- □ Generative model:
 - Gaussian (large variance) in the horizontal subspace
 - Gaussian (small variance) in the vertical space

 \square Find the subspace of $T_{\chi}M$ that best explains the variance

Problems of tPCA

Analysis is done relative to the mean

□ What if the mean is a poor description of the data?

- Multimodal distributions
- Uniform distribution on subspaces
- Large variance w.r.t curvature

Bimodal distribution on S2

Images courtesy of S. Sommer

Principal Geodesic / Geodesic Principal Component Analysis

Minimize the squared Riemannian distance to a low dimensional subspace (unexplained variance)

 $\Box \text{ Geodesic Subspace: } GS(x, w_1, \dots, w_k) = \{ \exp_x(\sum_i \alpha_i w_i) \text{ for } \alpha \in \mathbb{R}^k \}$

- Parametric subspace spanned by geodesic rays from point x
- Beware: GS have to be restricted to be well posed [XP, AoS 2018]
 PGA (Fletcher et al., 2004, Sommer 2014)

□ Geodesic PCA (GPCA, Huckeman et al., 2010)

- □ Generative model:
 - Unknown (uniform ?) distribution within the subspace
 - Gaussian distribution in the vertical space

Asymmetry w.r.t. the base point in $GS(x, w_1, ..., w_k)$

Totally geodesic at x only

Patching the Problems of tPCA / PGA Improve the flexibity of the geodesics

- 1D regression with higher order splines [Gu, Machado, Leite, Vialard, Singh, Niethammer, Absil,...]
 - Control of dimensionality for n-D Polynomials on manifolds?

Iterated Frame Bundle Development [HCA, Sommer GSI 2013]

- Iterated construction of subspaces
- Parallel transport in frame bundle
 - Intrinsic asymmetry between components

Nested "algebraic" subspaces

- Principal nested spheres [Jung, Dryden, Marron 2012]
- □ Quotient of Lie group action [Huckemann, Hotz, Munk, 2010]

• No general semi-direct product space structure in general Riemannian manifolds

Geometric Statistics: Mathematical foundations and applications in computational anatomy

Intrinsic Statistics on Riemannian Manifolds Manifold-Valued Image Processing Metric and Affine Geometric Settings for Lie Groups Parallel Transport to Analyze Longitudinal Deformations

Advances Statistics: CLT & PCA

- Estimation of the empirical Fréchet mean & CLT
- Principal component analysis in manifolds
- Natural subspaces in manifolds: barycentric subspaces
- Rephrasing PCA with flags of subspaces

Affine span in Euclidean spaces

Affine span of (k+1) points: weighted barycentric equation

Aff
$$(x_0, x_1, \dots x_k) = \{x = \sum_i \lambda_i x_i \text{ with } \sum_i \lambda_i = 1\}$$

= $\{x \in \mathbb{R}^n \text{ s. } t \sum_i \lambda_i (x_i - x) = 0, \lambda \in \mathbb{P}_k^*\}$

Key ideas:

Triangulate from several reference:
 locus of weighted means

Barycentric subspaces and Affine span in Riemannian manifolds

Fréchet / Karcher barycentric subspaces (KBS / FBS)

□ Normalized weighted variance: $\sigma^2(\mathbf{x},\lambda) = \sum \lambda_i dist^2(x,x_i) / \sum \lambda_i$ □ Set of absolute / local minima of the λ -variance □ Works in stratified spaces (may go accross different strata)

• Non-negative weights: Locus of Fréchet Mean [Weyenberg, Nye]

Exponential barycentric subspace and affine span

- □ Weighted exponential barycenters: $\mathfrak{M}_1(x, \lambda) = \sum_i \lambda_i \overrightarrow{xx_i} = 0$
- $\Box \ \mathsf{EBS}(x_0, \dots x_k) = \{ x \in M^*(x_0, \dots x_k) \mid \mathfrak{M}_1(x, \lambda) = 0 \}$
- □ Affine span = closure of EBS in M $Aff(x_0, ..., x_k) = \overline{EBS(x_0, ..., x_k)}$

Questions

- Local structure: local manifold? dimension? stratification?
- \square Relationship between KBS \subset FBS, EBS and affine span?

[X.P. Barycentric Subspace Analysis on Manifolds. Annals of statistics. 2018. To appear. arXiv:1607.02833]

Analysis of Barycentric Subspaces

Assumptions:

□ Restrict to the **punctured manifold** $M^*(x_0, ..., x_k) = M / \cup C(x_i)$

• $dist^2(x, x_i)$, $\log_x(x_i)$ are smooth but M^* may be split in pieces

Affinely independent points:

 $\{\overrightarrow{x_i x_j}\}_{0 \le i \ne j \le k}$ exist and are linearly independent for all i

Local well posedness for the barycentric simplex:

- □ EBS / KBS are well defined in a neighborhood of reference points
- For reference points in a sufficiently small ball and positive weights: unique Frechet = Karcher = Exp Barycenter in that ball: smooth graph of a k-dim function [proof using Buser & Karcher 81]

SVD characterization of EBS: $\mathfrak{M}_1(x,\lambda) = Z(x)\lambda = 0$

- $\Box \quad \mathsf{SVD:} \ Z(x) = [\overrightarrow{xx_0}, \dots \overrightarrow{xx_k}] = U(x)S(x)V^t(x)$
 - $EBS(x_0, ..., x_k) =$ Zero level-set of l>0 singular values of Z(x)
 - Stratification on the number of vanishing singular values

[X.P. Barycentric Subspace Analysis on Manifolds. Annals of statistics. 2018. To appear. arXiv:1607.02833]

Analysis of Barycentric Subspaces

Exp. barycenters are critical points of λ **-variance on M*** $\Box \nabla \sigma^2(\mathbf{x},\lambda) = -2\mathfrak{M}_1(\mathbf{x},\lambda) = 0$ *KBS* $\cap M^* \subset EBS$

Caractérisation of local minima: Hessian (if non degenerate) $H(\mathbf{x},\lambda) = -2\sum_{i} \lambda_{i} D_{x} \log_{x}(x_{i}) = \mathrm{Id} - \frac{1}{3} \mathrm{Ric}(\mathfrak{M}_{2}(\mathbf{x},\lambda)) + \mathrm{HOT}$

Regular and positive pts (non-degenerated critical points)

$$\Box \ EBS^{Reg}(x_0, ..., x_k) = \{ x \in Aff(x_0, ..., x_k), s.t. \ H(x, \lambda^*(x)) \neq 0 \}$$

 $\Box \ EBS^{+}(x_{0}, ..., x_{k}) = \{ x \in Aff(x_{0}, ..., x_{k}), s.t. \ H(x, \lambda^{*}(x)) \ Pos. \ def. \}$

Theorem: EBS partitioned into cells by the index of the Hessian of λ -variance: KBS = EBS⁺ on M^{*}

[X.P. Barycentric Subspace Analysis on Manifolds. Annals of statistics. 2018. To appear. arXiv:1607.02833]

Example on the sphere

□ Unit sphere $\mathcal{M} = S_n$ embedded in \mathbb{R}^{n+1} □ $||\mathbf{x}|| = 1$

Exp and log map

$$\exp_{x} (v) = \cos(||v||) x + \frac{\sin(||v||)}{||v||} v$$

$$\log_{x} (y) = f(\theta)(y - \cos(\theta)) \quad \text{with} \quad \theta = \arccos(x^{t}y)$$

ХÝ

Distance $dist(x, y) = ||\log_x(y)|| = \theta$

(k+1)-pointed & punctured Sphere

 $\square \ X = [x_0, x_1, \dots, x_k] \in (S_n)^k$

□ Punctured sphere: exclude antipodal points: $S_n^* = S_n / -X$

T_xM

KBS / FBS with 3 points on the sphere

EBS: great subspheres spanned by reference points (mod cut loci) $EBS(x_0, ..., x_k) = Span(X) \cap S_n \setminus Cut(X)$ $Aff(x_0, ..., x_k) = Span(X) \cap S_n$

KBS/FBS: look at index of the Hessian of λ -variance

 $H(\mathbf{x},\lambda) = \sum \lambda_i \theta_i \cot(\theta_i) (\mathrm{Id} - \mathbf{x}\mathbf{x}^{\mathrm{t}}) + \sum (1 - \lambda_i \theta_i \cot(\theta_i)) \overline{xx_i} \overline{xx_i}^{\mathrm{t}}$

Complex algebric geometry problem [Buss & Fillmore, ACM TG 2001]
 3 points of the n-sphere: EBS partitioned in cell complex by index of critical point
 KBS/EBS less interesting than EBS/affine span

Weighed Hessian index: **brown = -2 (min) = KBS** / green = -1 (saddle) / blue = 0 (max)

Example on the hyperbolic space

Manifold

 □ Unit pseudo-sphere M = H_n embedded in Minkowski space ℝ^{1,n}
 □ ||x||²_{*} = -x₀² + x₁² + … x_n² = -1

Exp and log map

$$\exp_{x} (v) = \cosh(\|v\|_{*}) x + \frac{\sinh(\|v\|_{*})}{\|v\|_{*}} v$$

$$\log_{x} (y) = f_{*}(\theta)(y - \cosh(\theta)) \quad \text{with} \quad \theta = \operatorname{arcosh}(-\langle x|y \rangle_{*})$$

Distance $dist(x, y) = ||\log_x(y)||_* = \theta$

Punctured hyperbolic space: no cut locus to exclude

Example on the hyperbolic space

EBS = Affine span: great sub-hyperboloids spanned by reference points $EBS(x_0, ..., x_k) = Aff(x_0, ..., x_k) = Span(X) \cap H_n$

KBS: locus of maximal index of the Hessian of λ -variance

 $H(\mathbf{x},\lambda) = \sum \lambda_i \theta_i \coth(J + J \mathbf{x} \mathbf{x}^t J^t) + \sum (1 - \lambda_i \coth(\theta_i)) J \overrightarrow{xx_i} \overrightarrow{xx_i}^t J^t$

Complex algebric geometry problem

□ 3 points on Hⁿ: better than for spheres, but still disconnected components

Weighted Hessian Index: **brown = -2 (min) = KBS** / blue = 1 (saddle)

Geodesic subspaces are limit cases of affine span

Theorem

- $\Box GS(x, w_1, \dots, w_k) = \{ \exp_x(\sum_i \alpha_i w_i) \text{ for } \alpha \in \mathbb{R}^k \} \text{ is the limit} \\ \text{ of } Aff(x_0, \exp_{x_o}(\epsilon w_1), \dots \exp_{x_o}(\epsilon w_k)) \text{ when } \epsilon \to 0.$
- □ Reference points converge to a 1st order (k,n)-jet
 - PGA [Fletcher et al. 2004, Sommer et al. 2014]
 - GPGA [Huckemann et al. 2010]

Conjecture

□ This can be generalized to higher order derivatives

- Quadratic, cubic splines [Vialard, Singh, Niethammer]
- Principle nested spheres [Jung, Dryden, Marron 2012]
- Quotient of Lie group action [Huckemann, Hotz, Munk, 2010]

Application in Cardiac motion analysis

[Marc-Michel Rohé et al., MICCAI 2016, MedIA 45:1-12, 2018]

Application in Cardiac motion analysis

- *v_i* registers image to reference i
- $\sum_i \lambda_i v_i = \mathbf{0}$

Optimize reference images to achieve best registration over the sequence

[Marc-Michel Rohé et al., MICCAI 2016, MedIA 45:1-12, 2018]

Application in Cardiac motion analysis

Barycentric coefficients curves Optimal Reference Frames $\boldsymbol{\lambda} = (0, 1, 0)$ $\lambda_3 < 0$ N $\lambda_2 < 0$ $\lambda = (1, 0, 0)$ $\lambda = (0, 0, 1)$

[Marc-Michel Rohé et al., MICCAI 2016, MedIA 45:1-12, 2018]

Cardiac Motion Signature

Dimension reduction from **+10M voxels** to **3 reference** frames + **60 coefficients** Tested on **10 controls** [1] and **16 Tetralogy of Fallot** patients [2]

[1] Tobon-Gomez, C., et al.: Benchmarking framework for myocardial tracking and deformation algorithms: an open access database. Medical Image Analysis (2013)
 [2] Mcleod K., et al.: Spatio-Temporal Tensor Decomposition of a Polyaffine Motion Model for a Better Analysis of Pathological Left Ventricular Dynamics. IEEE TMI (2015)

Cardiac motion synthesis

Original Sequence

Barycentric Reconstruction

(3 images)

PCA Reconstruction

(2 modes)

30 images

3 images + 2 coeff.

1 image + 2 SVF + 2 coeff.

Reconstr. error: 18.75 Compression ratio: 1/10 Reconstr. error: 26.32 (+40%) Compression ratio: 1/4

[Marc-Michel Rohé et al., MICCAI 2016, MedIA 45:1-12, 2018]

Geometric Statistics: Mathematical foundations and applications in computational anatomy

Intrinsic Statistics on Riemannian Manifolds Manifold-Valued Image Processing Metric and Affine Geometric Settings for Lie Groups Parallel Transport to Analyze Longitudinal Deformations

Advances Statistics: CLT & PCA

- Estimation of the empirical Fréchet mean & CLT
- Principal component analysis in manifolds
- Natural subspaces in manifolds: barycentric subspaces
- Rephrasing PCA with flags of subspaces

Forward, Backward and Nested Analysis

Forward Barycentric Subspace (k-FBS) decomposition

- □ Iteratively add points x_j from j=0 to k
- \square $x_0 = Mean(y_j), \quad x_1 = argmin_x(\sigma_{out}^2(x_0, x)) \dots$ PGA-like
- □ Start with 2 points: $(x_0, x_1) = \operatorname{argmin}_{(x,y)}(\sigma_{out}^2(x, y))$ GPGA-like

Backward analysis: Pure Barycentric Subspace (k-PBS)

□ Find $Aff(x_0, ..., x_k)$ minimizing the unexplained variance:

$$\sigma_{out}^2(x_0, \dots x_k) = \sum_j dist^2(y_j, Proj_{Aff(x_0\dots x_k)}(y_j))$$

- □ Iteratively remove one point from $(x_0, ..., x_j)$ from j=0 to k
- One optimization only for k+1 points and discrete backward reordering

From greedy to global optimization?

- $\hfill\square$ Optimal unexplained variance \rightarrow non nested subspaces
- $\hfill\square$ Nested forward / backward procedures \rightarrow not optimal
- □ Optimize first, decide dimension later → Nestedness required
 [Principal nested relations: Damon, Marron, JMIV 2014]

Barycentric Subspace Analysis (k-BSA)

The natural object for PCA: Flags of subspaces in manifolds

 $\Box x_0 \prec x_1 \prec \cdots \prec x_k$ are k +1 n distinct ordered points of M.

 $\Box FL(x_0 \prec x_1 \prec \cdots \prec x_k)$ is the sequence of properly nested subspaces $FL_{i(x_0 \prec x_1 \prec \cdots \prec x_k)} = Aff(x_0, \dots, x_i)$ $Aff(x_0) = \{x_0\} \subset \dots Aff(x_0, \dots x_k) \dots \subset Aff(x_0, \dots x_n) = M$ $\sigma_{out}^2(x_0) \ge \dots \ge \sigma_{out}^2(x_0, \dots x_k) \ge \dots \ge \sigma_{out}^2(x_0, \dots x_n) = 0$

X. Pennec – Ecole d'été de Peyresg, Jul 1-5 2019

26

Barycentric Subspace Analysis (k-BSA)

Accumulated unexplained variance (area under the curve)

 \square k-BSA optimizes: $AUV(k) = \sum_{i=0}^{k} \sigma_{out}^2(x_0, ..., x_i)$

□ In a Euclidean space with Gaussian $N(x_0, \Sigma = diag(\sigma_1^2, ..., \sigma_n^2))$

 $\sigma_{out}^2(x_0, \dots x_i) = \sigma_{i+1}^2 + \dots \sigma_n^2 \xrightarrow{\rightarrow} AUV(k) = \sum_{i=0}^k i \sigma_i^2 + (k+1) \sum_{i=k+1}^n \sigma_i^2$

→ minimal for ordered eigenmodes of Σ with $\sigma_1 \ge \sigma_2$... $\ge \sigma_n$

[Barycentric Subspace Analysis on Manifolds, Annals of Statistics 2018]

Sample-limited barycentric subspace inference

Restrict the inference to data points only

- □ Fréchet mean / template [Lepore et al 2008]
- □ First geodesic mode [Feragen et al. 2013, Zhai et al 2016]
- □ Higher orders: challenging with PGA... but not with BSA

- FBS: Forward Barycentric Subspace
- k-PBS: Pure Barycentric Subspace with backward ordering
- k-BSA: Barycentric Subspace Analysis up to order k

Robustness with L_p norms

Affine spans is stable to p-norms

$$\Box \sigma^p(\mathbf{x}, \lambda) = \frac{1}{p} \sum \lambda_i dist^p(x, x_i) / \sum \lambda_i$$

□ Critical points of $\sigma^p(\mathbf{x},\lambda)$ are also critical points of $\sigma^2(\mathbf{x},\lambda')$ with $\lambda'_i = \lambda_i \operatorname{dist}^{p-2}(x,x_i)$ (non-linear reparameterization of affine span)

Unexplained p-variance of residuals

- □ 2 : more weight on the tail,at the limit: penalizes the maximal distance to subspace
- \Box 0 < p < 2: less weight on the tail of the residual errors: statistically robust estimation
 - Non-convex for p<1 even in Euclidean space
 - But sample-limited algorithms do not need gradient information

Experiments on the sphere

3 clusters on a 5D sphere

 10, 9 and 8 points (stddev 6 deg) around three orthogonal axes plus 30 points uniformly samples on 5D sphere

- FBS: Forward Barycentric Subspace: mean and median not in clusters
- 1-PBS / 2-PBS: Pure Barycentric Subspace with backward ordering: ok for k=2 only
- 1-BSA / 2-BSA: Barycentric Subspace Analysis up to order k: less sensitive to p & k

Experiments on the hyperbolic space

3 clusters on a 5D hyperboloid (50% outliers)

 15 random points (stddev 0.015) around an equilateral triangle of length 1.57 plus 15 points of stddev 1.0 (truncated at max 1.5)

- FBS: Forward Barycentric Subspace: ok for $p \leq 0.5$
- 1-PBS / 2-PBS: Pure Barycentric Subspace with backward ordering: ok for k=2 only
- 1-BSA / 2-BSA: Barycentric Subspace Analysis up to order k: ok for $p \leq 1$

Take home messages

Natural subspaces in manifolds

- PGA & Godesic subspaces:
 look at data points from the (unique) mean
- Barycentric subspaces:
 « triangulate » several reference points
 - Justification of multi-atlases?

Critical points (affine span) rather than minima (FBS/KBS)

- Barycentric coordinates need not be positive (convexity is a problem)
- □ Affine notion (more general than metric)
 - Generalization to Lie groups (SVFs)?

Natural flag structure for PCA

Hierarchically embedded approximation
 subspaces to summarize / describe data

A. Manesson-Mallet. La géométrie Pratique, 1702

Open research avenues

Other iterative least squares methods?

- □ ICA, PLS
- \square Manifold learning \rightarrow Submanifold learning

Modulate BSA to account for within subspace distribution

- Gaussian: central points
- Clusters: mixtures of modes
- Extremal references: archetypal analysis

And applications

- Multi-atlases (brains, heart motion image sequences)
- □ SPD matrices (BCI)

Pushing the frontiers of Geometric Statistics

Beyond the mean and unimodal concentrated laws

- □ Flags (nested sequences) of subspace in manifolds
- □ Non Gaussian statistical models within subspaces?

Beyond the Riemannian / metric structure

- □ Riemannian manifolds, Non-Positively Curved (NPC) metric spaces
- Towards Affine connection, Quotient, Stratified spaces

Unify statistical estimation theory

 Explore influence of curvature, singularities (borders, corners, stratifications) on non-asymptotic estimation theory

Quotient spaces

Functions/Images modulo time/space parameterization

Amplitude and phase discrimination problem

Noise in top space = Bias in quotient spaces

The curvature of the **template shape's orbit and presence of noise** creates a repulsive bias

Theorem [Miolane et al. (2016)]: Bias of estimator \hat{T} of the template TBias $(\hat{T}, T) = \frac{\sigma^2}{2}H(T) + O(\sigma^4)$ where H(T): mean curvature vector of template's orbit

Extension to Hilbert of ∞ -dim: bias for $\sigma > 0$, asymptotic for $\sigma \to \infty$, [Devilliers, Allasonnière, Trouvé and XP. SIIMS 2017, Entropy, 2017]

→ Estimated atlas is topologically more complex than should be

Towards non-smooth spaces

Stratified spaces

- Correlation matrices
 - Positive semi definite (PSD) matrices with unit diagonal [Grubisic and Pietersz, 2004]

Orthant spaces (phylogenetic trees)

• BHV tree space [Billera Holmes Voigt, Adv Appl Math, 2001] [Nye AOS 2011] [Feragen 2013] [Barden & Le, 2017]

Adapted from [Rousseeuw and Molenberghs, 1994].

Adapted from [Dinh et al, AoS 2018,

Can we explain non standard statistical results?

□ Sticky mean [Hotz et al 2013] [Barden & Le 2017], repulsive mean [Miolane 2017]

□ Faster convergence rate with #sample in NPC spaces [Basrak, 2010]

[Ellingson et al, Topics in Nonparametric Statistics, 2014]

References on Barycentric Subpsace Analysis

Barycentric Subspace Analysis on Manifolds

- X. P. Annals of Statistics. 46(6A):2711-2746, 2018. [arXiv:1607.02833]
 - Barycentric Subspaces and Affine Spans in Manifolds Geometric Science of Information GSI'2015, Oct 2015, Palaiseau, France. LNCS 9389, pp.12-21, 2015.
 Warning: change of denomination since this paper: EBS →affine span
 - **Barycentric Subspaces Analysis on Spheres** Mathematical Foundations of Computational Anatomy (MFCA'15), Oct 2015, Munich, Germany. pp.71-82, 2015. https://hal.inria.fr/hal-01203815
- Sample-limited L p Barycentric Subspace Analysis on Constant Curvature Spaces. X.P. Geometric Sciences of Information (GSI 2017), Nov 2017, Paris, France. LNCS 10589, pp.20-28, 2017.
- Low-Dimensional Representation of Cardiac Motion Using Barycentric Subspaces: a New Group-Wise Paradigm for Estimation, Analysis, and Reconstruction. M.M Rohé, M. Sermesant and X.P. Medical Image Analysis vol 45, Elsevier, April 2018, 45, pp.1-12.
 - Barycentric subspace analysis: a new symmetric group-wise paradigm for cardiac motion tracking. M.M Rohé, M. Sermesant and X.P. Proc of MICCAI 2016, Athens, LNCS 9902, p.300-307, Oct 2016.