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Abstract
In computational anatomy, one often lifts the statistics from the object space (images, sur-
faces, etc) to the group of deformation acting on their embedding space. Statistics on trans-
formation groups have been considered in previous chapters, by providing the Lie group with
a left or right invariant metric, which may (or may not) be consistent with the group action
on our original objects. In this chapter we take the point of view of statistics on abstract
transformations, independently of their action. In this case, it is reasonable to ask that our
statistical methods respect the geometric structure of the transformation group. For instance,
we would like to have a mean which is stable by the group operations (left and right com-
position, inversion). Such a property is ensured for Fréchet means in Lie groups endowed
with a bi-invariant Riemannian metric, like compact Lie groups (e.g. rotations). Unfortunately
bi-invariant Riemannian metrics do not exist for most non compact and non-commutative Lie
groups, including rigid-body transformations in any dimension greater than one. Thus, there
is a need for the development of a more general non-Riemannian statistical framework for
general Lie groups.
In this chapter, we partially extend the theory of geometric statistics developed in the pre-
vious chapters to affine connection spaces. More particularly, we consider connected Lie
groups endowed with the canonical Cartan-Schouten connection (a generally non-metric
connection). We show that this connection provides group geodesics which are completely
consistent with the composition and inversion. With such a non-metric structure, the mean
cannot be defined by minimizing the variance as in Riemannian Manifolds. However, the
characterization of the mean as an exponential barycenter gives us an implicit definition of
the mean using a general barycentric equation. Thanks to the properties of the canoni-
cal Cartan connection, this mean is naturally bi-invariant. In finite dimension, this provides
strong theoretical bases for the use of one-parameter subgroups. The generalization to in-
finite dimensions is at the basis of the SVF-framework. From the practical point of view, we
show that it leads to efficient and plausible models of atrophy of the brain in Alzheimer’s
disease.

c© Elsevier Ltd.
All rights reserved. 1
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Beyond Riemannian Geometry 3

1. Introduction

In computational anatomy, one needs to perform statistics on shapes and transforma-
tions, and to transport these statistics from one point to another (e.g. from a subject to
a template or to another subject). In this chapter we consider the points of view of ab-
stract transformations, independently of their action on objects. To perform statistics
on such transformation groups, the methodology developed in the previous chapters
consists in endowing the Lie group with a left (or right) invariant metric which turn
the transformation group into a Riemannian manifold. Then, one can use the tools
developed in chapter 2 such as the Fréchet mean, tangent PCA or PGA.

On a Lie group, this Riemannian approach is consistent with the group operations
if a bi-invariant metric exists, which is for example the case for compact groups such
as rotations. In this case, the bi-invariant Fréchet mean has many desirable invari-
ance properties: it is invariant with respect to left- and right-multiplication, as well
as to inversion. However, a left-invariant metric on a Lie groups is generally not
right-invariant (and conversely). Since the inverse operation exchanges a left-invariant
metric for a right-invariant one, such metrics are generally not inverse consistent ei-
ther. In this case, the Fréchet mean based on a left-invariant distance is not consistent
with right translations nor with inversions. A simple example of this behavior is given
in Section 5.2.4 with 2D rigid-body transformations.

In parallel to Riemannian methods based on left or right-invariant metrics, numer-
ous methods in Lie groups are based on the group properties, and in particular on
one-parameter subgroups, realized by the matrix exponential in matrix Lie groups.
There exist particularly efficient algorithms to compute the matrix exponential like the
scaling and squaring procedure [Hig05] or for integrating differential equations on Lie
groups in geometric numerical integration theory [HLW02, IMKNZ00]. In medical
image registration, parametrizing diffeomorphism with the flow of Stationary Velocity
Fields (SVF) was proposed in [ACPA06] and very quickly adopted by many other au-
thors. The group structure was also used to obtain efficient polyaffine transformations
in [ACAP09]. Last but not least, [APA06, PA12] showed that the bi-invariant mean
could be defined on Lie groups when the square-root (thus the log) of the transforma-
tions exists.

The goal of this chapter is to explain the mathematical roots of these algorithms,
which are actually based on an affine connection structure instead of a Riemannian
one. The connection defines the parallel transport, and thus a notion of geodesics that
extends straight lines: the tangent vector to an auto-parallel curve stays parallel to it-
self all along the curve. In finite dimension, these geodesics define exponential and log
maps locally, so we may generalize some of the statistical tools developed in Chapter 2
to affine connection spaces. As there is no distance, the Fréchet / Karcher means have
to be replaced by the weaker notion of exponential barycenters (which are the critical
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points of the variance in Riemannian manifolds). Higher order moments and the Ma-
halanobis distance can be defined (locally) without trouble. However, tangent PCA
is not easy to generalize as there is no reference metric to diagonalize the covariance
matrix.

In the case of Lie groups, we describe in Section 3 the natural family of connec-
tions proposed by Cartan and Schouten in 1926 which are left and right-invariant,
and for which one-parameter subgroups (the flow of left-invariant vector fields) are
the geodesics going through the identity. Among these, there is a unique symmet-
ric (torsion free) connection, called the canonical symmetric Cartan-Schouten (CCS)
connection. We show in Section 4 that when there exists a bi-invariant metric on the
Lie group (i.e. when the group is the direct product of Abelien and compact groups),
the CCS connection is the Levi-Civita connection of that metric. However, the CCS
connection still exists even when there is no bi-invariant metric. This is also the unique
affine connection induced by the canonical symmetric space structure of the Lie groups
with the symmetry sg(h) = gh−1g.

Based on the bi-invariance properties of the CCS connection, we turn in Section
5 to bi-invariant group means defined as exponential barycenters. These means exist
locally and are unique for sufficiently concentrated data. In a number of Lie groups
which do not support any bi-invariant metric, for instance nilpotent or some specific
solvable groups, we show that there is even global uniqueness. Thus, the group mean
appears to be a very general and natural notion on Lie groups. However, the absence
of a metric significantly complexifies the analysis to identify whenever data are suffi-
ciently concentrated or not, contrarily to Riemannian manifolds where we now have
fairly tight conditions on the support of the distribution to ensure the existence and
uniqueness of the Riemannian Fréchet mean. The particular case of rigid-body trans-
formations shows that fairly similar conditions could be derived for the bi-invariant
group mean. The question of how this result extends to other Lie groups remains
open.

Section 6 investigates the application of the CCS affine connection setting to Lie
groups of diffeomorphisms, which justifies the use of deformations parametrized by
the flow of stationary velocity fields (SVF) in medical image registration. Although a
number of theoretical difficulties remains when moving to infinite dimensions, very ef-
ficient algorithms are available, like the scaling and squaring to compute the group ex-
ponential and its (log)-Jacobian, the composition using the Baker-Campbell-Hausdorff
formula, etc. This allows the straightforward extension of the classical “demons” im-
age registration algorithm to encode diffeomorphic transformations parametrized by
SVFs. A special feature of the log-demons registration framework is to enforce al-
most seamlessly the inverse consistency of the registration.

The log-demons algorithm can be used to accurately evaluate the anatomical changes
over time for different subjects from time-sequences of medical images. However, the
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Beyond Riemannian Geometry 5

resulting deformation trajectories are expressed in each subject’s own geometry. Thus,
it is necessary to transport the intra-subject deformation information to a common ref-
erence frame in order to evaluate the differences between clinical groups in this type of
longitudinal study. Instead of transporting a scalar summary of the deformation trajec-
tory (usually the (log)-Jacobian determinant), we can transport the parameters of the
full deformation thanks to the parallel transport. We detail in Section 7 two discrete
parallel transport methods based on the computation of the geodesics: the Schild’s lad-
der, and a more symmetric variant called the pole ladder, specialized for the parallel
transport along geodesics. Most parallel transport methods are shown to be first order
approximations. It is noticeable that the pole ladder is actually a third order scheme
which becomes exact in symmetric spaces. We illustrate the computational advantages
and demonstrate the numerical accuracy of this method by providing an application to
the modeling of the longitudinal atrophy progression in Alzheimer’s disease (AD).
The quality of the resulting average models of normal and disease deformation trajec-
tories suggests that an important gain in sensitivity could be expected in group-wise
comparisons. For example, a statistically significant association between the brain
shape evolution and the Aβ1−42 biomarker among normal subjects of the ADNI study
was identified in [LFAP11]. Moreover, this framework is among the leading meth-
ods benchmarked in [CFI+15] for the quantification of longitudinal hippocampal and
ventricular atrophy, showing favorable results compared to state-of-the-art approaches
based on image segmentation.

2. Affine Connections Spaces

Geodesics, exponential and log maps are among the most fundamental tools to work
on differential manifolds, as we have seen in the previous chapters. However, when
our manifold is given an additional structure, which is the case for instance for Lie
groups, a compatible Riemannian metric does not always exist. We investigate in this
section how we can define the notion of geodesics in non-Riemannian spaces. The
main idea is to rely on the notion of curve with vanishing acceleration, or equivalently
curves whose tangent vectors remains parallel to themselves (auto-parallel curves).
In order to compare vectors living in different tangent spaces (even at points which
are infinitesimally close), we need to provide a notion of parallel transport from one
tangent space to the other. Likewise, computing accelerations requires a notion of
infinitesimal parallel transport that is called a connection.

We consider a smooth differential manifold M. We denote by TpM the tangent
space at p ∈ M and by TM the tangent bundle. A section of that bundle X :M 7→ TM
is a smooth vector field whose value at p is denoted X|p. The set of vector fields, de-
noted Γ(M), can be identified with derivations. Recall that a derivation δ is a linear
map from Γ(M) to itself that satisfies the Leibniz’s law: δ( f X) = (d f )X + f (δX) for
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any f ∈ C∞(M) and X ∈ Γ(M). In a local coordinate system, a derivation writes as
Xφ|p = ∂Xφ|p = d

dt

(
φ(p + tX|p)

)
. In this chapter, we prefer the notation ∂Xφ to the no-

tation Xφ. Composing two derivations is in general not a derivation because a term
with second order derivative appears when we write it in a local coordinate system.
However, this second order term can be canceled by subtracting the symmetric com-
position, so that the bracket [X,Y](φ) = ∂X∂Yφ − ∂Y∂Xφ of two vector fields is itself a
vector field. Endowed with this bracket, the set of vector fields Γ(M) is the algebra of
derivations of smooth functions φ ∈ C∞(M).

2.1. Affine Connection as an Infinitesimal Parallel Transport
In order to compare data in the tangent space at one point of the manifold with data
that are tangent at a different point, we need to define a mapping between these two
tangent spaces: this is the notion of parallel transport. As there is generally no way
to define globally a linear operator Π

q
p : TpM→ TqM which is consistent with the

composition (i.e. Π
q
p ◦ Π

p
r = Π

q
r ), the path connecting the two points p and q has to be

specified.

Definition 1 (Parallel transport along a curve). Let γ be a curve in M joining γ(s)
to γ(t). A parallel transport assigns to each curve a collection of mappings Π(γ)t

s :
Tγ(s)M→ Tγ(t)M such that:
• Π(γ)s

s = Id, the identity transformation of Tγ(s)M.
• Π(γ)t

u ◦ Π(γ)u
s = Π(γ)t

s (consistency along the curve).
• The dependence of Π on γ, s, and t is smooth.

The notion of (affine) connection, also called covariant derivative, is the infinites-
imal version of the parallel transport for the tangent bundle. Let X|p = γ̇(0) be the
tangent vector at the initial point p of the curve γ, and Y be a vector field. Then
∇XY = d

dt Π(γ)0
t Y |γ(t)

∣∣∣
t=0 defines a bilinear map which is independent of the curve γ

and only depends on the vector fields X and Y .

Definition 2 (Affine connection). An affine connection (or covariant derivative) on the
manifoldM is a bilinear map (X,Y) ∈ Γ(M) × Γ(M) 7→ ∇XY ∈ Γ(M) such that for all
smooth functions φ ∈ C∞(M):
• ∇φXY = φ∇XY , that is, ∇ is smooth and linear in the first variable;
• ∇X(φY) = ∂XφY + φ∇XY , that is, ∇ satisfies Leibniz rule in the second variable.

In a local chart, the vector fields ∂i constitute a basis of Γ(M): a vector field X =

xi∂i has coordinates xi ∈ C∞(M) (using Einstein summation convention). Similarly
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Beyond Riemannian Geometry 7

let Y = yi∂i. Using the two above rules, we can write the connection:

∇XY = xi∇∂i(y
j∂ j) = xiy j∇∂i∂ j + xi∂iy j∂ j = xiy j∇∂i∂ j + ∂XY.

This means that the connection is completely determined by its coordinates on the
basis vector fields ∇∂i∂ j = Γk

i j∂k. The n3 coordinates Γk
i j of the connection are called

the Christoffel symbols. They encode how the transport from one tangent space to
neighboring ones modifies the standard derivative of a vector field in a chart: ∇XY =

∂XY + xiy jΓk
i j∂k.

Definition 3 (Covariant derivative along a curve). Let γ(t) be a curve onM and Y =

Y(γ(t)) be a vector field along the curve. The covariant derivative of Y along γ(t) is

∇Y
dt

= ∇γ̇Y = ∂γ̇Y + Y iγ̇ jΓk
i j(γ)∂k.

A vector field is covariantly constant along the curve γ if ∇Y/dt = ∇γ̇Y = 0. This
defines the parallel transport according to the connection: specifying the value of the
field at one point Y(γ(0)) = u determines the value Y(γ(t)) = Π(γ)t

0u of a covariantly
constant field at all the other point of the curve.

The connection we defined so far is differentiating vector fields. It can be uniquely
extended to covectors and more general tensor fields by requiring the resulting op-
eration to be compatible with tensor contraction and the product rule ∇X(Y ⊗ Z) =

(∇XY) ⊗ Z + Y ⊗ (∇XZ).

2.2. Geodesics
Looking for curves whose tangent vectors are covariantly constant provides a defini-
tion of geodesics in affine connection spaces that generalizes straight lines: these are
the curves that remain parallel to themselves (auto-parallel curves).

Definition 4 (Affine geodesics). γ(t) is a geodesic if its tangent vector γ̇(t) remains
parallel to itself, i.e. if the covariant derivative ∇γ̇γ̇ = 0 of γ is zero. In a local coordi-
nate system, the equation of the geodesics is thus: γ̈k + Γk

i jγ̇
iγ̇ j = 0.

We retrieve here the standard equation of the geodesics in Riemannian geometry
without having to rely on any particular metric. However, what is remarkable is that we
still conserve many properties of the Riemannian exponential map in affine connection
spaces: as geodesics are locally defined by a second order ordinary differential equa-
tion, the geodesic γ(p,v)(t) starting at any point p with any tangent vector v is defined
for a sufficiently small time, which means that we can define the affine exponential
map expp(v) = γ(p,v)(1) for a sufficiently small neighborhood. Moreover, the strong
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Whitehead theorem still holds.

Theorem 1 (Strong Form of Whitehead Theorem). Each point of an affine connection
space has a normal convex neighborhood (NCN) in the sense that for any couple of
points (p, q) in this neighborhood, there exists a unique geodesic γ(t) joining them
that is entirely contained in this neighborhood. Moreover, the geodesic γ(t) depends
smoothly on the points p and q.

The proof of this theorem essentially involves the non-singularity of the differential
of the map Φ(p, v) = (p, expp(v)) and the inverse function theorem, with the use of an
auxiliary Euclidean metric on the tangent spaces around the point of interest. We refer
to [Pos01, Proposition 1.3, p.13] for the detailed proof.

As geodesics control many properties of the space, it is interesting to know which
affine connections lead to the same geodesics. Intuitively, a geodesic for a connec-
tion ∇ will remain a geodesic for another connection ∇̄ if the parallel transport of the
tangent vector in the direction of this tangent vector is the same, i.e. if ∇XX = ∇̄XX
for any vector field X. However, the parallel transport of other vectors of a frame can
change: this can be measured by torsion. The curvature is a second order measure of
how the parallel transport differ along different paths.

Definition 5 (Torsion and curvature tensors of an affine connection). The torsion of an
affine connection is:

T (X,Y) = ∇XY − ∇Y X − [X,Y] = −T (Y, X).

This tensor measures how the skew-symmetric part differ from the Lie derivative
LXY = [X,Y]. The connection is called torsion free (or symmetric) if the torsion van-
ishes. The curvature tensor is defined by

R(X,Y)Z = ∇X∇YZ − ∇Y∇XZ − ∇[X,Y]Z.

It measures how the infinitesimal parallel transport differ along the sides of a geodesic
parallelogram.

One can show that two connections have the same geodesics if they have the same
symmetric part (∇XY + ∇Y X)/2. i.e. if they only differ by torsion. Thus, at least for the
geodesics, we can restrict our attention to the torsion free connections. Conversely, any
procedure involving only geodesics (such as the Schild’s or the pole ladders developed
later in this chapter) is insensitive to the torsion of a connection.
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2.3. Levi Civita Connection of a Riemannian metric
Now that we have developed the theory of affine connection spaces, it is time to see
how it relates to Riemannian geometry. Let gi j =

〈
∂i, ∂ j

〉
be a smooth positive definite

bilinear symmetric form on TM. With this metric, we can define geodesics which are
(locally) length minimizing. Is there a specific connection for which the two notions
of geodesics are the same? The answer is yes, the two constructions do agree thanks
to the fundamental theorem of Riemannian geometry.

Theorem 2 (Levi-Civita connection of a Riemannian manifold). On any Riemannian
manifold, there exists a unique torsion free connection which is compatible with the
metric as a derivation, called the Levi-Civita connection. It satisfies:
• T (X,Y) = ∇XY − ∇Y X − [X,Y] = 0 (symmetry).
• ∂X 〈Y,Z〉 = 〈∇XY ,Z〉 + 〈Y,∇XZ〉 (compatibility with the metric).

The proof is constructive. First, we expand ∂X 〈Y,Z〉 + ∂Y 〈X,Z〉 − ∂Z 〈X,Y〉 using
the metric compatibility condition. Then, we use the zero torsion formula to replace
∇Y X by ∇XY + [Y, X] and similarly for ∇ZY and ∇ZX. We obtain Khozul formula,
which uniquely defines the the scalar product of the connection with any vector field
(thus the connection):

2 〈∇XY ,Z〉 = ∂X 〈Y,Z〉 + ∂Y 〈X,Z〉 − ∂Z 〈X,Y〉 + 〈[X,Y],Z〉 − 〈[X,Z],Y〉 − 〈[Y,Z], X〉

Written in a local coordinate system, we have
〈
∇∂i∂ j, ∂k

〉
= gmkΓ

m
i j. Let [gi j] = [gi j]−1

be the inverse of the metric matrix. Then the extension of the right part of Khozul
formula shows that the Christoffel symbols of the Levi-Civita connection are

Γi
jk =

1
2

gim
(
∂kgm j + ∂ jgmk − ∂mg jk

)
. (0.1)

2.4. Statistics on Affine Connection Spaces
In a connected manifold of dimension d which is orientable and countable at infin-
ity (we don’t even need the affine structure), the bundle of smooth d-forms Ωd(M) =

ΛdT ∗M is trivial so that there exist sections that never vanish (volume forms). Fo-
cusing on non-negative forms that sum-up to 1, we get the space of probabilities
Prob(M) =

{
µ ∈ Ωd(M) |

∫
M µ = 1, µ ≥ 0

}
. With this definition, the space of prob-

abilities is not a manifold but a stratified space because we hit a boundary at each
point where µ(dx) = 0. Imposing µ > 0 gives the smooth manifold of never vanishing
probabilities that can be endowed with the canonical Fisher-Rao metric, which is the
unique metrique invariant under the action of diffeomorphisms (reparametrizations of
M) for compact manifolds [BBM14]. However, we do not need this metric structure
here, so it is more interesting to consider the space Prob(M) comprising both smooth
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probabilities and sample distributions like µ = 1
n
∑n

i=1 δxi .
As for Riemannian manifolds, we cannot define the mean value in an affine con-

nection space with an expectation, unless the space is linear. Since we don’t have a
distance, we cannot use the minimization of the expected square distance either (the
Fréchet mean). However, we may rely on one of their properties: the implicit lo-
calization of the mean as a barycenter in exponential coordinates. The weaker affine
structure makes it challenging to determine the existence and uniqueness conditions of
this more general definition. However, this can be worked out locally. We can also de-
fine higher order moments and some simple statistical tools like the Mahalanobis dis-
tance. Other notions like principal component analysis cannot be consistently defined
without an additional structure. In the generalization of statistics from Riemannian
manifolds to affine connection spaces that we investigate in this section, an important
issue is to distinguish the affine notions (relying on geodesics) from the Riemannian
ones (relying on the distance).

Mean Values with Exponential Barycenters
Let us start by recalling the classical definition of a mean in the Euclidean space Rd:
the mean (or barycenter) of a probability µ (or a set of points µ = 1

n
∑n

i=1 δpi) is the
unique point p that verifies the barycentric equation

∫
Rd (p − q) µ(dq) = 0. At the mean,

the sum of the weighted displacements to each of the sample points is null, i.e. the
mean is at the center of the data. Notice that this definition is affine because it does
not require the dot product.

In a manifold with Riemannian metric ‖.‖p, the Fréchet mean of a probability µ

are the minima of the variance σ2(p) =
∫
M

dist(p, q)2 µ(dq) =
∫
M
‖Logp(q)‖2p µ(dq).

When the cut locus has null measure µ(Cut(p)) = 0, the variance is differentiable and
its gradient is ∇σ2(p) = −2

∫
M

Logp(q) µ(dq) = −2M1(µ). The local minima being
critical points, they satisfy the barycentric equation

∫
M

Logp(q) µ(dq) = 0 when they
belong to the punctured manifoldM∗µ = {p ∈ M | µ(Cut(p)) = 0}. This critical condi-
tion equation can also be taken as the definition of the mean, which leads to the notion
of exponential barycenter proposed in [BK81, EM91, Arn94, Arn95, CK99].

In an affine connection space, the notion of exponential barycenter still makes sense
as soon as we can compute the affine logarithm. The Whitehead Theorem (1) tells us
that there exists a normal convex neighborhood U at each point of the manifold. For
sufficiently concentrated probabilities µ ∈ Prob(U) with support in such a neighbor-
hood U, computing the first moment field M1(µ) =

∫
M

logp(q) µ(dq) makes sense for
p ∈ U.

Definition 6 (Exponential barycenter in an affine connection space). For sufficiently
concentrated probabilities µ ∈ Prob(U) whose support is included in a normal con-
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vex neighborhood U, exponential barycenters (of that neighborhood) are the points
implicitly defined by

M1(µ)|p =

∫
M

logp(q) µ(dq) = 0. (0.2)

This definition is close to the Riemannian center of mass (or more specifically the
Riemannian average) of [Gro04] but uses the logarithm of the affine connection instead
of the Riemannian logarithm. Notice however that there is an implicit dependency of
the convex neighborhood considered in that definition. In the absence of an auxiliary
metric, there is no evident way to specify a natural convex neighborhood which might
be maximal.

Theorem 3 (Existence of exponential barycenters). Distributions with compact sup-
port in a normal convex neighborhood U of an affine manifold (M,∇) have at least one
exponential barycenter. Moreover, exponential barycenter are stable by affine diffeo-
morphisms (connection preserving maps, which thus preserve the geodesics and the
normal convex neighborhoods).

Proof. The skecth of the proof of [PA12] is the following. First the normal neigh-
borhood U being star-shaped, it is homeomorphic to a sphere. Second, because U is
convex, the convex combination of vectors of logp(q) ∈ logp(U) remains in logp(U)
so that geodesic shooting along M1(µ) remains in the normal convex neighborhood:
expp(M1(µ)) ∈ U. By Brouwer’s fixed-point theorem, there is thus a fixed point within
U verifying expp(M1(µ)) = p, or equivalentlyM1(µ) =

∫
M

logp(q) µ(dq) = 0. A slightly
different proof of existence using the index of the vector fieldM1(µ) is due to [BK81].
See also this reference for the stability under affine maps. �

Remark 1. For distributions whose support is too large, exponential barycenters may
not exist. One reason is that the affine logarithm might fail to exist, even for geodesi-
cally complete affine connection manifolds. The classical example is the group of
unimodular real matrices of dimension two SL(2,R) = {A ∈ GL(2,R) | det(A) = 1} en-
dowed with the canonical symmetric connection (see next section) for which one can
show that a matrix A ∈ SL(2,R) has the form exp(X) iff A = − Id2 or Tr(A) > −2.
Thus, matrices with Tr(A) < −2 can’t be reached by any geodesic starting from iden-
tity. As a consequence, a distributions on SL(2,R) with some mass in this domain and
at the identity do not fit in a normal convex neighborhood. Such a distribution has
no exponential barycenter. We should relate this failure of existence of the mean to
a classical phenomenon observed in Euclidean spaces with heavy tailed distributions,
where the first moment is unbounded. It is currently not known if bounding the first
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moments (with respect to an auxiliary norm) is a sufficient condition for the existence
of exponential barycenters in affine connection spaces.

Uniqueness conditions of the exponential barycenter are harder to determine. There
exist convex manifolds (affine connection spaces restrained to a convex neighbor-
hood) which do not have a unique exponential barycenter. This is the case of the
propeller manifold of [Ken92] where a sample probability of three points with four
exponential barycenters is explicitly constructed. Under additional assumptions con-
trolling the covariant derivative of the logarithm inherited from Riemannian manifolds,
[BK81] could show the uniqueness of the exponential barycenter. Generalizing these
curvature-based conditions to general affine connection spaces remains to be done.

A different approach relying on a stronger notion of convexity was proposed by
Arnaudon and Li in [AL05].

Definition 7 (p-convexity). Let (M,∇) be an affine manifold. A separating function
on M is a convex function φ :M×M→ R+ vanishing exactly on the diagonal of
the product manifold (considered as an affine manifold with the direct product con-
nection). Here, convex means that the restriction of φ(γ(t)) to any geodesic γ(t) is a
convex function from R to R+. A manifold which carries a smooth separating function
φ such that

c d(p, q)p ≤ φ(p, q) ≤ C d(p, q)p,

for some constants 0 < c < C, some positive integer p and some Riemannian distance
function d is called a manifold with p-convex geometry.

A separating function generalizes the separating property of a distance (φ(p, q) =

0⇔ p = q) and the ever increasing value when q gets away from p along geodesics
but does not respect the triangular inequality. Whitehead Theorem tells us in essence
that any point in an affine connection space has a convex neighborhood with 2-convex
geometry. In Riemannian manifolds, sufficiently small geodesic balls have 2-convex
geometry. p-convexity (for p ≥ 2) is sufficient to ensure uniqueness but there are
examples of manifolds where one can prove uniqueness although they do not have
p-convex geometry for any p. This is the case of open hemispheres endowed with
the classical Euclidean embedding metric even if each geodesic ball strictly smaller
than an open hemisphere has p-convex geometry for some p depending on the radius
[Ken91]. This motivates the following extension.

Theorem 4 (Uniqueness of the exponential barycenter in CSLCG Manifolds [AL05]).
A convex affine manifold (M,∇) is said to be CSLCG (convex, with semi-local convex
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geometry) if there exists an increasing sequence (Un)n≥1 of relatively compact open
convex subsets ofM such thatM = ∪n≥1Un and for every Un (n ≥ 1), Un has p-convex
geometry for some p ∈ 2N depending on n. On a CSLCG manifold, every probability
measure with compact support has a unique exponential barycenter.

Covariance Matrix and Higher Order Moments
The mean is an important statistic which indicates the location of the distribution in the
group, but higher order moments are also needed to characterize the dispersion of the
population around this central value. Exponential barycenters are defined above for
sufficiently concentrated probabilities µ ∈ Prob(U) with support in a normal convex
neighborhood U, so that computing the first moment field M1(µ) =

∫
M

logp(q) µ(dq)
make sense for p ∈ U. In this neighborhood, computing higher order moments also
make sense.

Definition 8 (Moments of a probability distribution in an affine connection space).
For sufficiently concentrated probabilities µ ∈ Prob(U) whose support is included in a
normal convex neighborhood U, the k-order moment is the k-contravariant tensor:

Mk(µ)|p =

∫
M

logp(q) ⊗ logp(q) . . . ⊗ logp(q)︸                                 ︷︷                                 ︸
k times

µ(dq). (0.3)

In particular, the covariance field is the 2-contravariant tensor with the following co-
ordinates in any basis of the tangent space TpM:

Σ|
i j
p =

∫
M

[logp(q)]i[logp(q)] j µ(dq),

and its value Σ = Σ|p̄ at the exponential barycenter p̄ solution ofM1(µ)| p̄ = 0 (assuming
it is unique) is called the covariance of µ.

One should be careful that the covariance defined here is a rank (2, 0) (2-contravariant)
tensor which is not equivalent to the usual covariance matrix seen as a bilinear form
(a 2-covariant or rank (0, 2) tensor belonging to T ∗p̄M⊗ T ∗p̄M), unless we have an
auxiliary metric to lower the indices. In particular, the usual interpretation of the co-
ordinates of the covariance matrix using the scalar products of data with the basis
vectors Σi j =

∫
M
< logp(q), ei > < logp(q), e j > µ(dq) is valid only if we have a local

metric < ., . > which also defines the orthonormality of the basis vectors ei. Likewise,
diagonalizing Σ to extract the main modes of variability only makes sense with respect
to a local metric: changing the metric of T p̄M will not only change the eigenvectors
and the eigenvalues but also potentially the order of the eigenvalues. This means that
Principle Component Analysis (PCA) cannot be generalized to the affine connection
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space setting without an additional structure. This is the reason why PCA is sometimes
called Proper Orthogonal Decomposition (POD) in certain domains.

Mahalanobis Distance
Despite the absence of a canonical reference metric, some interesting tools can be
defined from the 2-contravariant tensor in an intrinsic way without having to rely on
an auxiliary metric. One of them is the Mahalanobis distance of a point q to a given
distribution (in the normal convex neighborhood specified above):

d2
µ(q) = d2

(p̄,Σ)(q) = [logp̄(q)]iΣ−1
i j [log p̄(q)] j. (0.4)

In this formula, p̄ is the exponential barycenter of µ and Σ−1
i j are the coefficients of the

inverse of the covariance Σ|
i j
p̄ in a given basis. One verifies that this definition does not

depend on the basis chosen for T p̄M. Furthermore, the Mahalanobis distance is invari-
ant under affine diffeomorphisms of the manifold. Indeed, if φ is an affine diffeomor-
phism preserving the connection, then U′ = φ(U) is a normal convex neighborhood
that contain the support of the push-forward probability distribution µ′ = φ∗µ and the
differential dφ acts as a linear map on the tangent spaces: logφ̄(p)(φ(q)) = dφ log p̄(q).
This shows that the exponential barycenter (assumed to be unique) is equivariant:
p̄′ = φ(p) = φ( p̄) and that the covariance is transformed according to Σ′ = dφ Σ dφ> in
the transformed coordinate system e′i = dφ ei. Because of the inversion of the matrix
Σ′ in the Mahalanobis distance, we get the invariance property: d2

(p̄′,Σ′)(q
′) = d2

( p̄,Σ)(q),
or more evidently d2

φ∗µ
(φ(q)) = d2

µ(q).

Open Problems for Generalizing Other Statistical Tool
This simple extension of the Mahalanobis distance suggests that it might be possible
to extend much more statistical definitions and tools on affine connection spaces in
a consistent way. One of the key problem is that everything we did so far is limited
to small enough normal convex neighborhoods. To tackle distributions of larger non-
convex support, we probably need an additional structure to specify a unique choice
of a maximal domain for the log function, as this is done in the Riemannian case by
the shortest distance criterion. A second difficulty relies in the absence of a natural
reference measure on an affine connection space. This means that probability density
functions have to be defined with respect to a given volume form, and would be dif-
ferent with the choice of another one. Thus, the notions of uniform distribution and
entropy of a distribution need to be related to the chosen reference measure. This
may considerably complexify the maximum entropy principled used in [Pen06a] and
Chapter 2 to define the Gaussian distributions. However, certain specific geometric
structures like Lie groups may provide additional tools to solve some of these prob-
lems, as we will see in the next sections.
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3. Canonical Connections on Lie Groups

Let us come back now to Lie groups. We first recall a series of properties of Lie groups
in Section 3.1 before turning to the search for affine connections that are compatible
with the Lie group operations in Section 3.2.

3.1. The Lie Group Setting
Recall from chapter 1 that a Lie group G is a smooth manifold provided with an iden-
tity element e, a smooth composition rule (g, h) ∈ G ×G 7→ gh ∈ G and a smooth in-
version rule Inv : f 7→ f −1 which are both compatible with the manifold structure.
The composition operation defines two canonical automorphisms of G called the left
and the right translations: Lg : f 7→ g f and Rg : f 7→ f g. The differential dLg of the
left translations maps the tangent space ThG to the tangent space TghG. In particular,
dLg maps any vector x ∈ TeG to the vector dLgx ∈ TgG, giving rise to the vector field
x̃|g = dLg x. One verifies that this vector field is left-invariant: x̃ ◦ Lg = dLg x̃. Con-
versely, every left-invariant vector field is determined by its value at identity. More-
over, the bracket of two left-invariant vector fields x̃ = dL x and ỹ = dL y is also left-
invariant and determined by the vector [x, y] = [x̃, ỹ]|e ∈ TeG. Thus, left-invariant vec-
tor fields constitute a sub-algebra of the algebra of vector fields Γ(G) on the group.
This is a fundamental algebra for Lie groups which is called the Lie algebra g. As we
have seen, the Lie algebra can be identified with the tangent vector space at identity,
endowed with the bracket defined above. Thus, the Lie algebra has the same dimen-
sion than the group. Because any basis of the tangent space at identity is smoothly
transported by left translation into a basis of the tangent space at any point, one can
decompose any smooth vector field on the basis of left-invariant ones with coefficients
that are smooth functions on the manifold. This means that the algebra of vector
fields Γ(G) is a finite dimensional module of dimension dim(G) over the ring C∞(G)
of smooth functions over the group.

By symmetry, we can also define the sub-algebra of right-invariant vector fields
X̄|g = dRgX and identify it with the tangent vector space at identity. However, one
should be careful that the right-bracket defined on the tangent space at identity is the
opposite of the left-bracket. This can be explained by the fact that left and right Lie al-
gebras are related by the inversion map Inv : f 7→ f −1 of the group, which exchanges
left and right compositions, and whose differential at identity is − IdTeG. As the al-
gebra of right-invariant vector fields is usually used for diffeomorphisms instead of
the traditional left-invariant ones for finite dimensional Lie groups, this explains why
there is sometimes a minus sign in the bracket (see Section 6.2.4 and comments in
[VPPA08, BHO07]).
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Adjoint Group
A third important automorphism of G is the conjugation Cg : f 7→ g f g−1. Differentiat-
ing the conjugation with respect to f gives an automorphism of the Lie algebra called
the adjoint action: an element g of G acts on an element x of g by

Ad(g)x = dLg|g−1dRg−1 |ex = dRg−1 |gdLg|ex.

In the matrix case, we have the classical formula: Ad(B)M = BMB−1.
Thus, one can map each element of the group to a linear operator which acts

on the Lie algebra. The mapping Ad : G → GL(g) is moreover a Lie group homo-
morphism from G to GL(g) since it is smooth and compatible with the group struc-
ture: Ad(e) = Id, ∀g ∈ G, Ad(g−1) = Ad(g)−1 and ∀g, h ∈ G, Ad(gh) = Ad(g)Ad(h).
Thus, G can be ‘represented’ by the adjoint operators acting on g in the sense of the
representation theory (see [Lan04] for a complete treatment). The subgroup Ad(G)
of the general linear group GL(g) is called the adjoint group. The properties of this
representation and the existence of bi-invariant metrics on the group G are intricated.

Taking the derivative of the adjoint map at the identity gives a representation of
its Lie algebra: let g(t) be a curve passing through the identity g(0) = e with tangent
vector x ∈ g. Then, for any y ∈ g, dAd(g)y/dt = adx(y) = [x, y]. Thus, adx is a linear
operator on the Lie algebra g.

Matrix Lie Group Exponential and Logarithm
In the matrix case, the exponential exp(M) of a square matrix M is given by exp(M) =∑∞

k=0 Mk/k!. Conversely, let A ∈ GL(d) be an invertible sqaure matrix. If there exists a
matrix M ∈ M(d) such that A = exp(M), then M is said to be a logarithm of A. In gen-
eral, the logarithm of a real invertible matrix may not exist, and it may not be unique if
it exists. The lack of existence is an unavoidable phenomenon in certain connected Lie
groups: one generally needs two exponentials to reach every element [W0̈3]. When a
real invertible matrix has no (complex) eigenvalue on the (closed) half line of negative
real numbers, then it has a unique real logarithm whose (complex) eigenvalues have an
imaginary part in (−π, π) [KL89, Gal08]. In this case this particular logarithm is well-
defined and called the principal logarithm. We will write log(M) for the principal
logarithm of a matrix M whenever it is defined.

Thanks to their remarkable algebraic properties, and essentially their link with one-
parameter subgroups, matrix exponential and logarithms can be quite efficiently nu-
merically computed, for instance with the popular ‘Scaling and Squaring Method’
[Hig05] and ‘Inverse Scaling and Squaring Method’ [HCHKL01].

One Parameter Subgroups and Group Exponential
For general Lie groups, the flow γx(t) of a left-invariant vector field x̃ = dL x starting
from e exists for all times. Its tangent vector is γ̇x(t) = dLγx(t)x by definition of the
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flow. Now fix s ∈ R and observe that the two curves γx(s + t) and γx(s)γx(t) are going
through point γx(s) with the same tangent vector. By the uniqueness of the flow, they
are the same and γx is a one parameter subgroup, i.e. a group morphism from (R, 0,+)
to (G, e, .): γx(s + t) = γx(s) γx(t) = γx(t + s) = γx(t) γx(s).

Definition 9 (Group exponential). Let G be a Lie group and let x be an element of the
Lie Algebra g. The group exponential of x, denoted exp(x), is given by the value at
time 1 of the unique function γx(t) defined by the ordinary differential equation (ODE)
γ̇x(t) = dLγx(t)x with initial condition γx(0) = e.

One should be very careful that the group exponential is defined from the group
properties only and does not require any Riemannian metric. It is thus generally dif-
ferent from the Riemannian exponential map associated to a Riemannian metric on the
Lie group. However, both exponential maps share properties: in finite dimension, the
group exponential is diffeomorphic locally around 0.

Theorem 5 (Group logarithm). In finite dimension, the group exponential is a diffeo-
morphism from an open neighborhood of 0 in g to an open neighborhood of e in G,
and its differential map at 0 is the identity. This implies that one can define without
ambiguity an inverse map, called the group logarithm map in an open neighbor-
hood of e: for every g in this open neighborhood, there exists a unique x in the open
neighborhood of 0 in g such that g = exp(x).

Indeed, the exponential is a smooth mapping and its differential map is invert-
ible at e. Thus, the Inverse Function Theorem guarantees that it is a diffeomorphism
from some open neighborhood of 0 to an open neighborhood of exp(0) = e [Pos01,
Proposition 1.3, p.13]. We write x = log(g) for this logarithm, which is the (abstract)
equivalent of the (matrix) principal logarithm. Notice that we use lower case exp and
log to clearly distinguish the group exponential and logarithm from their Riemannian
counterparts Exp and Log. The absence of an inverse function theorem in infinite di-
mensional Fréchet manifolds prevents the straightforward extension of this property
to general groups of diffeomorphisms [KW09].

Baker Campbell Hausdorff (BCH) Formula
A number of interesting formulas involving the group exponential map can be ob-
tained in a finite dimensional Lie group (or more generally in a BCH-Lie group) as
particular cases of the BCH formula. This formula is an infinite series of commuta-
tors that allows to write the composition of two group exponentials as a single expo-
nential: exp(x) exp(y) = exp(BCH(x, y)). Intuitively, this formula shows how much
log(exp(x) exp(y)) deviates from x + y due to the non-commutativity of the multiplica-
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tion in G. Remarkably, this deviation can be expressed only in terms of Lie brackets
between x and y [God82, Chap. VI].

Theorem 6 (Series form of the BCH formula). Let x, y be in g. If they are small
enough, then the logarithm of the product exp(x) exp(y) is well-defined and we have
the following development:

BCH(x, y) = log(exp(x) exp(y))
= x + y + 1

2 ([x, y]) + 1
12 ([x, [x, y]] + [y, [y, x]])

+ 1
24 ([[x, [x, y]], y]) + O((‖x‖ + ‖y‖)5).

(0.5)

A fundamental property of this function is the following: it is not only C∞ but also
analytic around 0, which means that BCH(x, y) (near 0) is the sum of an absolutely
converging multivariate infinite series (the usual multiplication is replaced here by the
Lie bracket). This implies in particular that all the (partial) derivatives of this function
are also analytic. The BCH formula is probably the most important formula from a
practical point of view: it is the cornerstone approximation used to efficiently update
the transformation parameters in SVF-based registration algorithms of Section 6.2.

3.2. Cartan-Schouten (CCS) Connections
For each tangent vector x ∈ g ' TeG, the one parameter subgroup γx(t) is a curve that
starts from identity with this tangent vector. In order to see if these curves could be
seen as geodesics, we now investigate natural connections on Lie groups. We start
with left-invariant connections verifying ∇dLgXdLgY = dLg∇XY for any vector fields X
and Y and any group element g ∈ G. As the connection is completely determined by
its action on the sub-algebra of left-invariant vector fields, we can restrict to the Lie
algebra. Let x̃ = dL x and ỹ = dL y be two left-invariant vector fields. Stating that the
covariant derivative of ỹ along x̃ is left-invariant amounts to say that the field ∇x̃ỹ =

dL(∇x̃ỹ|e) is determined by its value at identity α(x, y) = ∇x̃ỹ|e ∈ g. Conversely, each
bilinear operator of the Lie algebra α : g × g→ g uniquely defines the connection at
the identity and thus on all left-invariant vector fields: ∇αx̃ ỹ = α̃(x, y). The connection
is then uniquely extended to all vector fields using the linearity in the first variable and
the Leibniz rule.

Definition 10 (Cartan-Schouten and Bi-invariant Connections). Among the left-invariant
connections, the Cartan-Schouten connections are the ones for which geodesics go-
ing through identity are one parameter subgroups. Bi-invariant connections are both
left- and right-invariant.

The definition of Cartan-Schouten connection used here is due to [Pos01, Def.
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6.2 p.71]. It generalizes the three classical +, − and 0 Cartan-Schouten connections
[CS26] detailed below in Theorem 8.

Theorem 7. Cartan-Schouten connections are uniquely determined by the property
α(x, x) = 0 for all x ∈ g. Bi-invariant connections are characterized by the condition:

α([z, x], y) + α(x, [z, y]) = [z, α(x, y)] ∀x, y, z ∈ g. (0.6)

The one dimensional family of connections generated by α(x, y) = λ[x, y] satisfy these
two conditions. Moreover, there is a unique symmetric bi-invariant Cartan-Schouten
connection called the Canonical Cartan-Schouten (CCS) connection of the Lie group
(also called mean or 0-connection) defined by α(x, y) = 1

2 [x, y] for all x, y ∈ g, i.e.
∇x̃ỹ = 1

2 [x̃, ỹ] for two left-invariant vector fields.

Indeed, let us consider the one-parameter subgroup γx(t) starting from e with initial
tangent vector x ∈ g. As this is the integral curve of the left-invariant vector field
x̃ = dL x, its tangent vector is γ̇x(t) = dLγx(t)x = x̃|γx(t). The curve is a geodesic if and
only if it is auto-parallel, i.e. if ∇γ̇x γ̇x = ∇x̃ x̃ = α̃(x, x) = 0. Thus, the one-parameter
subgroup γx(t) is a geodesic if and only if α(x, x) = 0.

This condition implies that the operator α is skew-symmetric. However, if any
skew-symmetric operator give rise to a left-invariant connection, this connection is
not always right-invariant. The connection is right-invariant if ∇dRgXdRgY = dRg∇XY
for any vector fields X and Y and any group element g. As we have (dRg x̃) = ˜Ad(g−1)x
for any left-invariant vector field x̃ = dL x, the right-invariance is equivalent to the Ad-
invariance of the operator α:

α
(
Ad(g−1)x,Ad(g−1)y

)
= Ad(g−1) α(x, y),

for any two vectors x, y ∈ g and g ∈ G. We can focus on the infinitesimal version of this
condition by taking the derivative at t = 0 with g−1 = exp(tz). Since d

dt Ad(exp(tz))x =

[z, x] we obtain the requested characterization of bi-invariant connections: α([z, x], y) +

α(x, [z, y]) = [z, α(x, y)] .
The well known one-dimensional family of connections generated by α(x, y) =

λ[x, y] obviously satisfy this condition (in addition to α(x, x) = 0). It was shown by
Laquer [Laq92] that this family basically describes all the bi-invariant connections
on compact simple Lie groups (the exact result is that the space of bi-invariant affine
connections on G is one-dimensional) except for SU(d) when d > 3 where there is a
two-dimensional family of bi-invariant affine connections.
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Torsion and Curvature of Cartan-Schouten Connections
The torsion of a connection can be expressed in the basis of left-invariant vector fields:
T (x̃, ỹ) = ∇x̃ỹ − ∇ỹ x̃ − [x̃, ỹ] = α̃(x, y) − α̃(y, x) − [̃x, y]. This is itself a left-invariant vec-
tor field characterized by its value at identity T (x, y) = α(x, y) − α(y, x) − [x, y]. Thus,
the torsion of a Cartan connection is T (x, y) = 2α(x, y) − [x, y]. In conclusion, there is
a unique torsion-free Cartan connection, called the Symmetric Cartan-Schouten con-
nection, which is characterized by α(x, y) = 1

2 [x, y], i.e. ∇x̃ỹ = 1
2 [x̃, ỹ].

The curvature can also be expressed in the basis of left-invariant vector fields:
R(x̃, ỹ)z̃ = ∇x̃∇ỹz̃ − ∇ỹ∇x̃z̃ − ∇[x̃,ỹ]z̃. It is once again left-invariant and characterized by
its value in the Lie algebra:

R(x, y)z = α(x, α(y, z)) − α(y, α(x, z)) − α([x, y], z).

For connections of the form α(x, y) = λ[x, y], the curvature becomes

R(x, y)z = λ2[x, [y, z]] + λ2[y, [z, x]] + λ[z, [x, y]] = λ(λ − 1)[[x, y], z],

where the last equality is obtained thanks to the Jacobi identity of the Lie bracket. For
λ = 0 and λ = 1, the curvature is obviously null. These two flat connections are called
the left and right (or + and -) Cartan-Schouten connections. For the CCS connection
(often called mean or 0-connection), the curvature is R(x, y)z = − 1

4 [[x, y], z], which is
generally non zero.

Theorem 8 (Properties of Cartan-Schouten Connections). Among the bi-invariant Cartan-
Schouten connections on a Lie group, there is a natural one-parameter family of the
form α(x, y) = λ[x, y] that comprises three canonical connections called the 0, +, −
(or mean, right, right) connections:
• The − connection is the unique connection for which all the left-invariant vector

fields are covariantly constant along any vector field, inducing a global paral-
lelism.

• The + connection is the only connection for which all the right-invariant vector
fields are covariantly constant along any vector field, inducing also a global par-
allelism.

• The CCS or 0-connection is the unique torsion free Cartan-Schouten connection.
Its curvature tensor is generally non-zero but it is covariantly constant. It is thus
a locally symmetric space, and the symmetry sg(h) = gh−1g turns it into a globally
affine symmetric space.

These three connections have the same geodesics (left or right translations of one-
parameter subgroups) because they share the same symmetric part ∇XY + ∇Y X =

∂XY + ∂Y X.
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Connection T (x̃, ỹ) R(x̃, ỹ)z̃
∇λx̃ ỹ = λ[x̃, ỹ] λ (2λ − 1)[x̃, ỹ] λ(λ − 1)[[x̃, ỹ], z̃]
∇−x̃ ỹ = 0 0 (-) −[x̃, ỹ] 0
∇s

x̃ỹ = 1
2 [x̃, ỹ] 1

2 (0) 0 − 1
4 [[x̃, ỹ], z̃]

∇+
x̃ ỹ = [x̃, ỹ] 1 (+) +[x̃, ỹ] 0

When we only focus on geodesics, we can thus restrict to the symmetric CCS
connection. However, we should be careful that the parallel transport differ for the
three connections as we will see below.

3.3. Group geodesics, parallel transport
We call group geodesics the geodesics of the canonical Cartan-Schouten connection.
We already know that the geodesics going through identity are the one-parameter sub-
groups (by definition of the Cartan-Schouten connections). The canonical Cartan con-
nection being left-invariant, the curve γ(t) = g exp(tx) is also a geodesic. We have
indeed γ̇ = dLgγ̇x and ∇γ̇γ̇ = dLg∇γ̇x γ̇x = 0. As γ(0) = dLgx, we finally obtain that:

Theorem 9 (Group exponential). The group geodesic starting at g with tangent vector
v ∈ TgG is γ(g,v)(t) = g exp(t dLg−1 v). Thus, the (group) exponential map at point g is:

expg(v) = γg,v(1) = g exp(dLg−1v).

As noted in Theorem 1, there exists for each point g of G a normal convex neigh-
borhood (NCN) in the sense that for any couple of points (p, q) in this neighborhood,
there exists a unique geodesic of the form expp(tv) joining them which lies completely
in this neighborhood. Furthermore, a NCN Ve of the identity is transported by left-
invariance into a NCN gVe of any point g ∈ G.

Of course, we could have defined the geodesics using the right translations to obtain
curves of the form exp(t dRg−1 v) g. In fact, those two types of group geodesic are the
same and are related by the adjoint operator, as shown below. However, we should
be careful that the left and right transport of the NCN at the identity lead to different
NCN of a point g: gV , Vg.

Theorem 10. Let x be in g and g in G. Then we have:

g exp(x) = exp(Ad(g)x) g.

For all g in G, there exists an open neighborhoodWg of e ∈ G (namelyWg = Ve ∩

gVeg−1 whereVe is any NCN of e) such that for all m ∈ Wg the quantities log(m) and
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log(g m g−1) are well-defined and are linked by the following relationship:

log(g m g−1) = Ad(g) log(m).

Notice that in general the NCNWg depends on g unless we can find a NCNVe that
is stable by conjugation. These equations are simply the generalization to (abstract)
Lie groups of the well-known matrix properties: G exp(V) G−1 = exp(GVG−1) and
G log(V) G−1 = log(GVG−1).

Corollary 1 (Group exponential and log map at any point). For all g in G, there exists
an open neighborhood Vg of g such that the local exponential and logarithmic maps
of the CCS connection are well defined and the inverse of each other. Moreover, their
left and right expressions are:

expg(v) = g exp(dLg−1v) = exp(dRg−1v) g for v ∈ TgG;

logg(x) = dLg log(g−1x) = dRg log(xg−1) for x ∈ Vg.

Parallel Transport Along Geodesics
To obtain the parallel transport, we have to integrate the infinitesimal parallel transport
given by the connection along the path. Because left and right translations commute,
the parallel transport for the λ-Cartan connection of y ∈ g to Texp(x)G along the one
parameter subgroup exp(tx) is:

Π
exp(x)
e y = dLexp((1−λ)x)dRexp(λx)y

One can verify that this formula is consistent with the infinitesimal version (the λ-
Cartan connection): d

dt Π(exp(tx))0
t ỹ = λ[x̃, ỹ]. In particular, we observe that the paral-

lel transport of the left (resp. right) Cartan-Schouten connection (λ = 0, resp λ = 1) is
the left (resp. right) translation. Both are independent of the path: the Lie group en-
dowed with these connections is a spaces with absolute parallelism (but with torsion).
This was expected wince the curvature of these two connections vanishes.

For the canonical symmetric Cartan-Schouten connection (λ = 1/2), the parallel
transport is a geometric average where we transport on the left for half of the path
and on the right for the other half: Π

exp(x)
e y = dLexp(x/2)dRexp(x/2)y. Parallel translation

along other geodesics is obtained by left (or right) translation or this formula.

4. Left, Right and Bi-invariant Riemannian Metrics on a Lie Group

In the case of Lie groups, there are two natural families of left (resp right)-invariant
Riemannian metrics that are determined by an inner product at the tangent space of
the identity and prolonged everywhere by left (resp. right) translation: < v,w >L

g=<
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dLg−1v, dLg−1w >e. Conversely, a Riemannian metric is left-invariant if all left transla-
tions are isometries. Right invariant metrics are defined similarly. It is interesting to
understand if and when their geodesics coincide with the group geodesics, and if not
how much they differ.

4.1. Levi-Civita Connections of Left-Invariant Metrics
Let us define the operator ad∗ as the metric adjoint of the adjoint operator ad: this is
the unique bilinear operator satisfying for all vector fields X,Y,Z ∈ Γ(G):

〈ad∗(Y, X),Z〉 = 〈[X,Z],Y〉 .

This allows us to rewrite Khozul formula for the Levi-Civita connection as:

2 〈∇XY ,Z〉 = 〈[X,Y] − ad∗(X,Y) − ad∗(Y, X),Z〉 + ∂X 〈Y,Z〉 + ∂Y 〈X,Z〉 − ∂Z 〈X,Y〉 .

Without loss of generality, we restrict to left-invariant vector fields because they con-
stitute a basis of all vector fields (with functional coefficients). Since the dot product
is covariantly constant for left-invariant metrics, we left are with

∇x̃ỹ =
1
2

([x̃, ỹ] − ad∗(x̃, ỹ) − ad∗(ỹ, x̃)) . (0.7)

Denoting ad∗(x, y) = ad∗(x̃, ỹ)|e the restriction of the ad∗ operator to the Lie algebra,
we end up with the following bilinear form characterizing the Levi-Civita connection
of a left-invariant metric in the Lie algebra:

αL(x, y) =
1
2

([x, y] − ad∗(x, y) − ad∗(y, x)) .

Let γt be a curve and xL
t = dLγ−1

t
γ̇t be the left angular speed vectors (i.e. the left

translation of the tangent vector to the Lie algebra). Then the curve γt is a geodesic of
the left-invariant metric if

ẋL
t = αL(xL

t , x
L
t ) = −ad∗(xL

t , x
L
t ). (0.8)

This remarkably simple quadratic equation in the Lie algebra is called the Euler-
Poincaré equation. A very clear derivation is given in [Kol07].

Since the CCS connection is determined by α(x, y) = 1
2 [x, y], the geodesic of the

left-invariant metric γt is also a geodesic of the canonical Cartan connection if xL
t =

x is constant. Thus, we see that the geodesic of a left-invariant Riemannian metric
going through identity with tangent vector x is a one parameter subgroups if and only
if ad∗(x, x) = 0. Such vectors are called normal elements of the Lie algebra. For
other elements, the symmetric part of ad∗ encodes the acceleration of one parameter
subgroups with respect to the left-invariant geodesics starting with the same tangent
vector.
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4.2. Canonical Connection of Bi-invariant Metrics
Riemannian metrics which are simultaneously left- and right-invariant are called bi-
invariant. For these special metrics, we have the very interesting result:

Theorem 11. A left-invariant metric on a Lie group is bi-invariant if and only if for
all g ∈ G, the adjoint operator Ad(g) is an isometry of the Lie algebra g:

〈Ad(g)y,Ad(g)z〉 = 〈y, z〉 ,

or equivalently if and only if for all elements x, y, z ∈ g:

〈[x, y], z〉 + 〈y, [x, z]〉 = 0 or ad∗(x, y) = −ad∗(y, x) (0.9)

Thus, the Levi-Civita connection of a bi-invariant metric is necessarily the canonical
symmetric Cartan-Schouten connection characterized by α(x, y) = 1

2 [x, y] on the Lie
algebra. Moreover, a bi-invariant metric is also invariant w.r.t. inversion. Group
geodesics of G (including one-parameter subgroups) are the geodesics of such metrics.

Equation 0.9 is the infinitesimal version of the invariance of the dot product by the
adjoint group: It actually specifies that the metric dual of the adjoint ad∗ is skew sym-
metric, i.e. that the Levi-Civita connection of the metric considered is the canonical
symmetric Cartan-Schouten connection of the Lie group.

The proof is given in [Ste64, Chap. V] and [Pos01, Chap. 25]. In short, any el-
ement close to identity can be written g = exp(tx), for which we have dAd(g)y/dt =

[x, y]. Thus differentiating 〈Ad(g)y,Ad(g)z〉 = 〈y, z〉 gives the left part of equation
(0.9). Since this should be verified for all x ∈ g, we obtain the skew symmetry of the
ad∗ operator. Thus, the mean Cartan-Schouten connection is the Levi-Civita connec-
tion of any bi-invariant metric: the affine framework corresponds to the Riemannian
framework when this last one is fully consistent with the group operations.

An interesting consequence is that any Lie group with a bi-invariant metric has
non-negative sectional curvature. Indeed, the sectional curvature in the two-plane
span(x, y) for x, y ∈ g can be computed using left-invariant vector fields:

k(x, y) =
〈R(x, y)y, x〉

‖x‖2‖y‖2 − 〈x, y〉2
=

1
4

‖[x, y]‖2

‖x‖2‖y‖2 − 〈x, y〉2
, (0.10)

where we used the expression R(x, y)z = − 1
4 [[x, y], z] of the Riemannian curvature and

Eq. 0.9 to move one bracket from left to right in the inner product. Thus, taking
two orthonormal vectors of the Lie algebra, the section curvature reduces to k(x, y) =
1
4‖[x, y]‖2 which is non-negative.
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Compactness, Commutativity and Existence of Bi-invariant Metrics
The next question is to understand under which conditions such a bi-invariant metric
exists. From Theorem 11, we see that if a bi-invariant metric exists for the Lie group,
then Ad(g) is an isometry of g and can thus be looked upon as an element of the
orthogonal group O(d) where d = dim(G). As O(d) is a compact group, the adjoint
group Ad(G) = {Ad(g)/g ∈ G} is necessarily included in a compact set, a situation
called relative compactness. This notion actually provides a sharp criterion, since the
theory of differential forms and their integration can be used to explicitly construct a
bi-invariant metric on relatively compact subgroups [Ste64, Theorem V.5.3.].

Theorem 12. The Lie group G admits a bi-invariant metric if and only if its adjoint
group Ad(G) is relatively compact.

In the case of compact Lie groups, the adjoint group is also compact, and Theo-
rem 12 implies that bi-invariant metrics exist. This is the case of rotations, for which
bi-invariant Fréchet means have been extensively studied and used in practical ap-
plications, for instance in [Pen96, Pen98, Moa02]. In the case of commutative Lie
groups, left and right translations are identical and any left-invariant metric is triv-
ially bi-invariant. Direct products of compact Abelian groups obviously admit bi-
invariant metrics but Theorem 12 shows that in the general case, non-compact and
non-commutative Lie groups which are not the direct product of such groups may fail
to admit a bi-invariant metric.

Bi-invariant Pseudo-Riemannian Metrics (Quadratic Lie Groups)
The class of Lie groups that admits bi-invariant metrics is quite small and does not even
include rigid body transformations in 2D or 3D. Looking for a bi-invariant Riemannian
framework for larger groups is thus hopeless. One possibility is to relax the positivity
of the Riemannian metric to focus on bi-invariant pseudo-Riemannian metrics only,
for which the bilinear forms on the tangent space of the manifold are definite but
may not be positive (eigenvalues are just non-zero). Based on the classification of
quadratic Lie algebras of [Med82, MR85], Miolane developed in [MP15] an algorithm
to compute all the bi-invariant pseudo-metric on a given Lie group (if they exist). This
algorithm was applied to simple Lie groups that have a locally unique bi-invariant
mean (scaling and translations, the Heisenberg group, upper triangular matrices and
Euclidean motions). It showed that most of them do not possess a bi-invariant pseudo-
metric. The special Euclidean motion group in 3D is a notable exception. Thus, the
generalization of the statistical theory to pseudo-Riemannian metrics may not be so
interesting in practice.
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4.3. Example with Rigid Body Transformations
In medical imaging, the simplest possible registration procedure between two images
uses rigid-body transformations, characterized by a rotation matrix and a translation
vector. Since there exist bi-invariant metrics on rotations and on translations, one could
hope for the existence of bi-invariant metrics. We show below that this is not the case.

The Lie group of rigid-body transformations in the d-dimensional Euclidean space,
written here SE(d), is the semi-direct product of (SO(d),×) (rotations) and (Rd,+)
(translations). An element of SE(d) is uniquely represented by a couple (R, t) ∈ SO(d) n
Rd with the action on a point x of Rd being defined by (R, t).x = Rx + t. The multipli-
cation is then (R′, t′) (R, t) = (R′R,R′t + t′), the neutral element ( Id, 0) and the inverse
(R>,−R> t). The fact that the product between rotations and translations is semi-direct
and not direct (there is a coupling between rotation and translation in the composition)
is at the heart of the the non-existence of a bi-invariant metric on the product group.

We obtain a faithful representation of SE(d) and its Lie algebra using homogeneous
coordinates: (R, t) '

(
R t
0 1

)
and (Ω, v) '

(
Ω v
0 0

)
, where Ω is any skew d × d matrix and

v any vector of Rd. In the homogeneous representation, the Lie bracket [., .] is simply
the matrix commutator, which gives the following Lie bracket for the Lie algebra
se(n) = so(d) n Rd: [(Ω, v), (Ω′, v′)] = (ΩΩ′ −Ω′Ω, Ωv′ −Ω′v).

Proposition 1. The action of the adjoint operator Ad of the group of rigid-body trans-
formations SE(d) at the point (R, t) on an infinitesimal displacement (Ω, v) ∈ se(d) is
given by:

Ad(R, t)(Ω, v) = (RΩR>, −RΩR>t + Rv).

As it is unbounded, no bi-invariant Riemannian metric exists on the space of rigid-
body transformations for d > 1.

Such a result was already known for SE(3) [ZKC99]. It is established here for
all dimensions. A very interesting result of [MP15] is that there is no bi-invariant
pseudo-Riemannian metric either on SE(d) either, except for d = 3.

5. Statistics on Lie Groups as Symmetric Spaces

Although bi-invariant metrics may fail to exist, any Lie group has a symmetric canon-
ical Cartan-Schouten connection for which group means can be defined implicitly as
exponential barycenters, at least locally. As will be shown in the sequel, this defini-
tion has all the desirable bi-invariance properties, even when bi-invariant metrics do
not exist. Moreover, we can show the existence and uniqueness of the group mean
even globally in a number of cases. Group means were investigated for compact and
nilpotent Lie groups in [BK81, Chapter 8] as a side results in the study of almost flat
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metrics. In the medical image analysis domain, group means were originally proposed
in [APA06] under the name “bi-invariant means” and fully developed as exponential
barycenters of the CCS connection in [PA12].

5.1. Bi-invariant Means with Exponential Barycenters of the CCS
Connection

Every Lie group is orientable and has a Haar volume form. When the group is unimod-
ular (for instance in SE(d)), the Haar measure is bi-invariant and provides a canonical
reference measure to define intrinsic probability density functions on the group. How-
ever, left and right Haar measures differ by a function (the determinant of the adjoint)
in non-unimodular groups such as GL(d) so that this property cannot be used in gen-
eral. In any case, we can consider probability measures on the group µ ∈ Prob(G) that
include sample distributions µ = 1

n
∑n

i=1 δgi of n transformations gi in the group G. The
left, right translations and inversion being smooth and one-to-one, there is no prob-
lem to consider their push-forward action on measures, which write in the case of the
above sample distribution: dLhµ =

∑n
i=1 δhgi , dRhµ =

∑n
i=1 δgih and dInvµ =

∑n
i=1 δg−1

i
.

Definition 11 (Groups means). Let µ ∈ Prob(G) be a probability distribution on G
with compact support Supp(µ) belonging to an open set V diffeomorphic to a sphere
such that log(g−1h) and log(hg−1) = Ad(g) log(g−1h) exists for any point g ∈ V and
h ∈ Supp(µ). The points ḡ ∈ V solutions of the following group barycentric equation
(if there are some) are called group means:∫

G
log(ḡ−1h) µ(dh) = 0. (0.11)

This definition translates the exponential barycenters in the language of Lie groups.
However, the definition is a bit more general since we do not requireV to be a convex
normal neighborhood. Therefore, we cannot conclude about existence in general but
we know that it is ensured for a sufficiently concentrated distribution. This definition
is close to the Riemannian center of mass (or more specifically the Riemannian av-
erage) of [Gro04] but uses the group logarithm instead of the Riemannian logarithm.
Notice that the group geodesics cannot be seen as Riemannian geodesics when the
CCS connection is non-metric so that the group means are different (in general) from
the Fréchet or Karcher mean of some Riemannian metric.

The consistency constrain under the adjoint action on this neighborhood was also
added to obtain the following equivariance theorem, which is stated with empirical
means (sample distributions) for simplicity.

Theorem 13 (Equivariance of group means). Group means, when they exist, are left-,
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right- and inverse-equivariant: if ḡ is a mean of n points {gi} of the group and h ∈ G
is any group element, then hḡ is a mean of the points hgi, ḡh is a mean of the points
{gih} and ḡ−1 is a mean of {g−1

i }.

Proof. We start with the left-equivariance. If ḡ is a mean of the points {xi} and h ∈ G is
any group element, then log((hḡ)−1hgi) = log(g−1gi) exists for all points hgi. Thus the
point hḡ ∈ hV is a solution of the barycentric equation

∑
i log((hḡ)−1hgi) = 0, which

proves the left-equivariance. For the right-invariance, we have to apply Theorem 10:
Ad(ḡ)

(∑
i log(ḡ−1gi)

)
=

∑
i log(giḡ−1). Since Ad(ḡ) is invertible, the usual barycentric

equation, which is left-invariant, is equivalent to a right-invariant barycentric equation,
and ḡh is a mean of the points {gih}. The equivariance with respect to inversion is
obtained with

∑
i log(g−1

i ḡ) = −
∑

i log(ḡ−1gi)). �

Theorem 14 (Local uniqueness and convergence to the group mean). If the transfor-
mations {gi} belong to a sufficiently small normal convex neighborhood V of some
point g ∈ G, then there exists a unique solution of Eq. (0.11) in V. Moreover, the
following iterated fixed point strategy converges at least at a linear rate to this unique
solution:
1 Initialize ḡ0, for example with ḡ0 := g1.
2 Iteratively update the estimate of the mean:

ḡt+1 := ḡt exp

1
n

n∑
i=1

log(ḡ−1
t gi)

 . (0.12)

Until convergence: ‖ log(ḡ−1
t ḡt+1)‖ < ε

√
1
n
∑n

i=1

∥∥∥log(ḡ−1
t gi)

∥∥∥2
.

The proof is detailed in [PA12]. The uniqueness of the mean and the conver-
gence rate are linked to the contraction properties of the above iteration. The proof
rely on an auxiliary metric ‖.‖ on g such that for all x, y sufficiently small, we have:
‖[x, y]‖ ≤ ‖x‖ ‖y‖. The left-invariant function φ(g, h) = ‖ log(g−1h)‖2 can then be used
as a surrogate of a distance in this neighborhood. This function is sometimes called
the group distance. However, this is an improper name since the triangular inequality
is generally not respected. Notice that this is not a left-invariant Riemannian metric
either because we use the group logarithm and not the left-invariant Riemannian log.

As in the case of the Fréchet mean, there is a closed form for the group mean of
two points since this point is on the geodesic joining them.

Proposition 2. Let h be in a normal convex neighborhood of g ∈ G. Then the group
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mean of g and h (with weights 1 − α and α > 0) is given by:

ḡα = g exp
(
α log(g−1h)

)
= g(g−1h)α. (0.13)

This explicit formula is quite exceptional. In general, there is no closed form for
the group mean of more than 2 points. However, there are some specific groups where
a closed form exists for the bi-invariant mean in all cases as we will detail in next
section.

5.2. Existence and Uniqueness Results in Specific Matrix Groups
First it is worth noticing that compact Lie groups carry a bi-invariant metric for which
we can use the Riemannian result. Using a normalized metric in g such that ‖adx‖ ≤
‖x‖, [BK81] established the convexity of geodesic balls of radius ρ < π so that the
group mean is unique for distributions with support in a geodesic ball of radius strictly
less than π/2. [BK81] also considered simply connected nilpotent Lie groups endowed
with the canonical symmetric Cartan-Schouten connection. Despite the fact that these
groups generally cannot carry bi-invariant metrics (their Killing form is zero) they
proved that any distribution with compact support has a unique group mean. We sum-
marize their results in the following theorem without demonstration

Theorem 15 (Uniqueness of group means in compact Lie groups [BK81]). A com-
pact connected Lie group can be endowed with a bi-invariant metric normalized such
that ‖adx‖ ≤ ‖x‖, which is compatible with the canonical symmetric Cartan-Schouten
connection. With these conventions, any probability distribution with support in a
geodesic ball of radius strictly less than π/2 has a unique group mean.

Theorem 16 (Uniqueness of group means in nilpotent Lie groups [BK81]). A proba-
bility with compact support in a simply connected nilpotent Lie group endowed with
the canonical symmetric Cartan-Schouten connection has a unique group mean.

The Heisenberg group below is a good example of a simply connected nilpotent
Lie group that has no bi-invariant metric but a unique group mean. Then we turn to
the more general class of solvable Lie groups which was not addressed by Buser and
Karcher. With scaling-translations ST(d) and the upper triangular matrices with scalar
diagonal UT(d), we give two examples of non-nilpotent groups with no bi-invariant
metric that have unique group means as well. Moreover, the computation of the group
mean can be done in finite time using an iterative scheme solving each coordinate at a
time. We conjecture that this could be a feature of solvable groups. Last but not least,
we look at rigid body transformations and some properties of GL(d). These example
are summarized below, we refer the reader to [PA12] for more details.
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5.2.1. The Heisenberg Group
This is the group of 3D upper triangular matrices of the form:

[
1 x z
0 1 y
0 0 1

]
. Parameterizing

each element by the triplet (x, y, z), the group composition is (x1, y1, z1)(x2, y2, z2) =

(x1 + x2, y1 + y2, z1 + z2 + x1y2). The Heisenberg group is thus a semi-direct prod-
uct of (R2,+) and (R,+), which is not commutative. The inversion is (x, y, z)−1 =

(−x,−y,−z + xy) with neutral element (0, 0, 0).
The entire Heisenberg group is a normal convex neighborhood and we have:

exp(u, v,w) = (u, v,w + 1
2 uv),

log(x, y, z) = (x, y, z − 1
2 xy).

Proposition 3. The action of the adjoint operator Ad of the Heisenberg group at a
point (x, y, z) on an infinitesimal displacement (u, v,w) is given by:

Ad(x, y, z)(u, v,w) = (u, v,−y u + x v + w).

Because it is unbounded, no bi-invariant metric exists. However, the group mean
(x̄, ȳ, z̄) of a set of points {(xi, yi, zi)}1≤i≤n in the Heisenberg group is unique and given
explicitly by:

(x̄, ȳ, z̄) = 1
n

(∑
i xi,

∑
i yi,

∑
i zi + 1

2
((∑

i xi
)
.
(∑

i yi
)
−

∑
i xiyi

))
.

5.2.2. Scaling and Translations ST(d)
The group of scaling and translations in dimension d is one of the simple cases of
non-compact, non-commutative, non-nilpotent but solvable Lie groups which does
not possess any bi-invariant Riemannian metric. An element of ST(d) can be uniquely
represented by a scaling factor λ ∈ R?+ and a a translation t ∈ Rd. The action of an ele-
ment (λ, t) ∈ R?+ n R

d on a vector x ∈ Rd is: (λ, t)x = λx + t. Accordingly, the compo-
sition in ST(d) is: (λ′, t′) (λ, t) = (λ′λ, λ′t + t′) and inversion is (λ, t)−1 = (1/λ,−t/λ).
A faithful matrix representation of ST(d) is the subgroup of triangular matrices of the
form

(
λ Idd t

0 1

)
. The elements of the Lie algebra are of the form (α, v) where α ∈ R and

v ∈ Rd. Using eα and ln(λ) to denote the scalar exponential and logarithm functions,
the group exponential and logarithm can be written:

exp(α, v) = (eα, (eα − 1)/α v) ,
log(λ, t) = (ln(λ), ln(λ)/(1 − λ) t) .

Once again, the entire space ST(d) is a normal convex neighborhood: any two points
can be joined by a unique group geodesic.
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The adjoint action on the Lie algebra can be computed in the matrix representation:

Ad((λ, t))(α, v) =

(
λ Idd t

0 1

) (
α Idd v

0 0

) ( 1
λ

Idd − t
λ

0 1

)
Proposition 4. The action of the adjoint operator Ad of the ST(d) group at a point
(λ, t) on an infinitesimal displacement (α, v) is given by:

Ad((λ, t))(α, v) = (α, λv − αt).

Because the translation t and the scale λ in λv − αt are unbounded, no bi-invariant
metric exists on ST(d), although it is the semi-direct product of two commutative
groups. Nevertheless, the group mean (λ̄, t̄) of a set of points {(λi, ti)}1≤i≤n in the ST(d)
group is unique and given explicitly by:

λ̄ = exp
(

1
n
∑

i ln(λi)
)
, t̄ =

∑
i αi ti∑

i αi
, with αi =

ln
(
λi/λ̄

)
λi/λ̄ − 1

. (0.14)

5.2.3. Scaled Upper Uni-triangular Matrix Group
We consider the group UT(d) of d × d upper triangular with scaled unit diagonal. Such
matrices have the form M = λ Id + N, where λ is a positive scalar, Id the identity ma-
trix and N an upper triangular nilpotent matrix (Nd = 0) with only zeros in its diago-
nal. This group generalizes the Heisenberg group, which is the subgroup of matrices of
UT(3) with λ = 1. The group composition is: M′M = (λ′ λ) Id + (λ′ N + λ N′ + N′N).
The nilpotency of N allows to write the inversion in closed form:

M−1 = (λ Id + N)−1 = λ−1
(

Id + N
λ

)−1
= λ−1 ∑n−1

k=0(−1)k Nk

λk .

The group exponential and logarithm are:

exp(X) = exp(µ Id + Y) = exp(µ Id) exp(Y) = eµ
∑n−1

k=0
(Y)k

k! ,

log(M) = log
(
(λ Id)

(
Id + 1

λ
N
))

= ln(λ) Id +
∑n−1

k=1
(−1)k+1

k
Nk

λk .

Using these closed forms, one can derive the following equation:

log(M′M) = ln(λ′λ) Id +

n−1∑
k=1

(−1)k+1

k

(
1
λ

N +
1
λ′

N′ +
1
λ′λ

NN′
)k

,

which in turn allows to simplify the equation
∑

i log(M̄−1Mi) = 0 satisfied by the group
mean M̄ = λ̄ Id + N̄ in UT(d). Using

∑
i log(M̄−1Mi) = −

∑
i log(M−1

i M̄),∑
i

(
ln(λ̄λi

−1) Id
)

+
∑

i
∑n−1

k=1
(−1)k+1

k

(
1
λi
−1 Ni

−1 + 1
λ̄

N̄ + 1
λ̄λi
−1 Ni

−1N̄
)k

= 0, (0.15)
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where Ni
−1 is the nilpotent part of Mi

−1. To solve this equation, we see that λ̄ is the
geometric mean of the λi, and that the coefficient of N̄ can be recursively computed,
starting from coefficients above the diagonal. The key idea is that the kth power of a
nilpotent matrix N will have non-zero coefficients only in its kth upper diagonal. Thus,
we only need to consider the terms Ni

−1/λi
−1 + N̄/λ̄ = 0 to compute the coefficients of

M̄ above the diagonal. These coefficients are uniquely defined as a weighted arithmetic
mean of the coefficients above the diagonal in the data. Thanks to this result, we can
compute the above secondary diagonal elements which will be a weighted arithmetic
mean of the corresponding coefficients in the data with a quadratic correction involving
the previous coefficients. One can continue this way until all the coefficients of the
mean have been effectively computed.

Proposition 5. The adjoint group of the group UT(d) of d × d upper triangular with
scaled unit diagonal includes in particular the adjoint group of the subgroup of scal-
ing and translations ST(d). Thus, it is unbounded and there exists no bi-invariance
metric. Nevertheless, the group mean (λ̄ Id + N̄) of a set of points {(λi Id + Ni)}1≤i≤n

in the UT(d) group is unique and can be computed by a sequence of d geometric
means on the diagonal followed by d − 1, d − 2, ...1 arithmetic means (with a polyno-
mial of degree 1, 2, ...d − 1 correction based on the already computed coefficients) for
the coefficient of each parallel above the diagonal.

5.2.4. General Rigid-Body Transformations
We have seen in Section 4.3 that no bi-invariant metric exists in the rigid-body case.
One may now ask the question: is there a simple criterion for the existence/uniqueness
of the bi-invariant group mean of rigid-body transformations? We use in this sec-
tion the notations previously introduced in Section 4.3. Recall that (R, t) ∈ SE(d) =

SO(d) n Rd can be faithfully represented by the homogeneous matrix embedding
( R t

0 1
)
,

and the Lie algebra by matrices (Ω, v) '
(
Ω v
0 0

)
, where Ω is a skew d × d matrix and v

a vector of Rd. The group exponential can be computed using directly the matrix
representation, or by identifying the one-parameter subgroups of SE(d):

exp(Ω, v) =
(
exp(Ω), M(Ω) v

)
with M(Ω) =

∞∑
k=0

Ωk

(k + 1)!
= exp(Ω)

∫ 1

0
exp(−tΩ)dt.

To compute explicitly the value of the matrix M(Ω), we use the fact that any skew sym-
metric matrix can be diagonalized in the block diagonal form UΩU> = diag

(
{θ jJ}, 0

)
where U is an orthonormal matrix, θi are the 2D rotation angles and J =

( 0 −1
1 0

)
is a

normalized 2D skew-symmetric matrix (see Chapter 1 Section ?? on rotations). In
this coordinate system, we have already computed in Chapter 1 that exp(θ jJ) is a 2D
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rotation matrix of angle θ j. A few extra steps yield:

M(θ j J) =
sin θ j

θ j
Id2 +

cos θ j − 1
θ j

J =
1
θ j

(
sin θ j cos θ j − 1

− cos θ j + 1 sin θ j

)
.

The determinant of this matrix is det(M(θ j J)) = 2(1 − cos θ j)/θ2
j > 0 for 0 < |θ j| < 2π,

so that M(Ω) is invertible in this domain. A direct computation shows that the inverse
of M(θ j J) can be written:

M(θ j J)−1 =
θ j sin θ j

2(1 − cos θ j)
Id2 +

θ j

2
J =

 θ j sin θ j

2(1−cos θ j)
θ j

2

−
θ j

2
θ j sin θ j

2(1−cos θ j)

 .
Proposition 6. The principal logarithm of a rigid-body transformation (R, t) is well-
defined if and only if the logarithm of its rotation part R is well-defined, i.e. if the
angles of the 2D rotations of its decomposition are strictly less than π in absolute
value. In that case M(Ω) is invertible and we get the group logarithm on SE(d) with:

log(R, t) = (Ω, v) with Ω = log(R), v = M(Ω)−1t or
(
Ω v
0 0

)
= log

(
R t
0 1

)
The proof rely on the block upper-triangular structure of the homogeneous matrix

representing the transformation (R, t): the eigenvalues of such a matrix depend only
on the blocks in its diagonal, i.e. only on R and 1 here, and not on t.

This theorem highlight the fact that the difficult part is the rotation group. Because
the symmetric Cartan-Schouten connection on rotations is the Levi-Civita connection
of the bi-invariant metric developed in Chapter 1 (Section ??), we know by Karcher
theorem (Chapter 2, Section ??) that the mean rotation is unique if the support of the
rotation distribution is contained in a geodesic ball of radius r < r∗ = π/2). Remark-
ably, this is sufficient to guarantee the existence and uniqueness of the bi-invariant
mean of rigid-body transformations.

Proposition 7. Let {Ri, ti} be a set of rigid-body transformations with rotations within
a geodesic ball Br of radius r < π

2 . Then the bi-invariant Riemannian mean R̄ of their
rotation parts is unique in this geodesic ball and there exists a unique group mean
(R̄, t̄) on SE(d) with R̄ ∈ Br.

Proof. We are looking for the solutions (R̄, t̄) of the group barycentric equation:∑
i log((R̄, t̄)−1(Ri, ti)) =

∑
i log

(
R̄−1Ri, R̄−1(ti − t̄)

)
.

Denoting Ωi = log(R̄−1Ri), this boils down to
∑

i Ωi = 0 for the rotation part, which
is uniquely satisfied by the bi-invariant rotation mean R̄ in the geodesic ball Br by
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assumption. For the translation part, we get:
∑

i M(Ωi)−1R̄−1(ti − t̄) = 0. Thus, if M =∑
i M(Ωi)−1 is invertible, then this equation has a unique solution:

t̄ = R̄
(
M−1

)−1 ∑
i M(Ωi)−1R̄−1ti.

To show that this is the case under our assumptions, we note that M(Ω)−1 = S +

Ω/2, where S is a symmetric matrix with positive eigenvalues θ j sin θ j

2(1−cos θ j)
> 0 whenever

the 2D rotation angles satisfy |θ j| < π. This is a consequence of the bloc diagonaliza-
tion UM(Ω)−1U> = diag

(
{M(θ jJ)−1}, 1

)
with M(θ j J)−1 =

θ j sin θ j

2(1−cos θ j)
Id2 +

θ j

2 J. Thus,
the sum M =

∑
i M(Ωi)−1 = S̃ + Ã of the matrices of this type can also be written as

the sum of a positive definite symmetric matrix S̃ =
∑

i S i (the convex combination of
SPD matrices is a SPD matrix) and a skew symmetric matrix Ã =

∑
i Ωi/2. It is thus

invertible because (S̃ + Ã)x = 0 implies x>S̃ x = 0 (the skew symmetry of Ã implies
x>Ãx = 0) which is zero only for x = 0 by the definiteness of S̃ . �

Example with 2D Rigid Transformations
A 2D rigid transformation can be parametrized by T = (θ, t1, t2), where θ ∈] − π, π]
is the angle of the rotation of SO(2) ' S 1 and t = [t1, t2] ∈ R2 is the translation vec-
tor. We consider the following example of three rigid transformations proposed in
[Pen06b, p.31] to show that left and right invariant Riemannian means were different:
• T1 = (π/4 , −

√
2/2,

√
2/2),

• T2 = (0 ,
√

2, 0),
• T3 = (−π/4 , −

√
2/2, −

√
2/2).

A left-invariant Fréchet mean can also be computed explicitly in this case thanks to
the simple form taken by the corresponding geodesics. The analogous right-invariant
Fréchet mean can be computed by inverting the data, computing their left-invariant
mean and then inverting this Fréchet mean. The bi-invariant mean can be computed
with the above formula. This yields (after a number of simple but tedious algebraic
manipulations):
• Left-invariant Fréchet mean: (0 , 0, 0),
• Bi-invariant mean: (0 , (

√
2 − π

4 )/(1 + π
4 .(
√

2 + 1)), 0) ' (0 , 0.2171, 0),
• Right-invariant Fréchet mean: (0 ,

√
2/3, 0) ' (0 , 0.4714, 0).

As expected, the mean rotation angle is exactly the same in all cases. But the mean
translations are different, and the bi-invariant mean is located nicely between the left-
and right-invariant Fréchet means. This is quite intuitive, since the bi-invariant mean
can be looked upon as an in-between alternative with regard to left- and right-invariant
Fréchet means.
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6. The Stationary Velocity Fields (SVF) Framework for
Diffeomorphisms

Non-linear registration aims at maximizing the geometrical similarity of anatomical
images by optimizing the spatial deformations that are acting on them. In this process,
deformation fields quantify the anatomical changes as local changes of coordinates.
Thus, deformations represent a powerful and rich geometrical object for the statistical
analysis of motion and differences across organs.

In the context of medical image registration, diffeomorphic registration restricts the
set of possible spatial transformations to diffeomorphisms. There is a rich mathemat-
ical background for the estimation and analysis of deformations that brings key prop-
erties to the analysis of medical images. Diffeomorphic registration was introduced
with the “Large Deformation Diffeomorphic Metric Mapping (LDDMM)” framework
[Tro98, BMMTY05], which parametrizes deformations with the flow of time varying
velocity fields v(x, t) with a right-invariant Riemannian metric, as described in Chapter
4??. In view of reducing computational and memory costs of LDDMM, [ACPA06]
subsequently proposed to restrict this parametrization to the subset of diffeomorphisms
parametrized by the flow of stationary velocity fields (SVF). This setting is of partic-
ular methodological interest, since the flow associated to a SVF is a one-parameter
subgroup, and we can thus take advantage of the properties of the associated Lie alge-
bra to develop efficient and flexible computational tools. In the sequel, we review the
main aspects of SVF-based image registration, with a particular focus on the compu-
tational schemes arising from the one-parameter subgroup properties.

6.1. Parameterizing Diffeomorphisms with the Flow of SVFs
Before investigating in depth the computational aspects of SVF-based registration, we
illustrate in this section the theoretical background and rationale of the SVF frame-
work. In order to work in a well-posed space of deformations, we need to specify the
space on which the Lie algebra is modeled. This is the role of the regularization term
of the SVF registration algorithms [VPPA08, HBO09] or of the spline parametrization
of the SVF in [Ash07, MRD+11]: this regularization restricts the Lie algebra to suf-
ficiently regular velocity fields. One usually chooses a sufficiently powerful Hilbert
metric to model the Lie Algebra. The flow of these stationary velocity fields and their
finite composition generates a subgroup of all diffeomorphisms which is the group
that we consider. Up to now, the theoretical framework is very similar to the LDDMM
setting: if we model the Lie algebra on the same admissible Hilbert space than LD-
DMM, then all the diffeomorphisms generated by the one-parameter subgroups (the
exponential of SVFs) also belong to the LDDMM group. As in finite dimension, the
affine geodesics of the CCS connection (group geodesics) are metric-free. Thus, these
group geodesics generally differ from the Riemannian geodesics of LDDMM.
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However, it is well known that the above construction generates a group which is
significantly larger than the space covered by single group exponentials. Although our
affine connection space is geodesically complete (all geodesics can be continued for
all time without hitting a boundary), there is no Hopf-Rinow theorem in affine geom-
etry that can ensure that any two points can be joined by a geodesic. Thus, in gen-
eral, not all the elements of the group may be reached by a one-parameter subgroup.
An example in finite dimension that we have already seen is SL(2,R) (2-dimensional
square matrices with unit determinant) where elements with trace less than -2 cannot
be reached by any one-parameter subgroup. In the image registration context, this is
generally not a problem since all the possible diffeomorphisms of the group are not as
likely and we are only interested in admissible anatomical transformations. Another
potential problem is that, contrarily to the finite dimension, the exponential map is not
in general a diffeomorphism from a neighborhood of zero in the Lie algebra onto a
neighborhood of the identity in the infinite dimensional group. For instance, there ex-
ist diffeomorphisms in every neighborhood of the identity in Diffs(M) which are not
the exponential of an Hs vector field. A classical example of the non-surjectivity of
the exponential map is the function fn,ε(θ) = θ + π/n + ε sin2(nθ) in Diff(S1) [Mil84].
This function cannot be reached by any one-parameter subgroup, but can be made as
close as we want to the identity by dimensioning ε and n. However, such deformations
are very unlikely in our applications since the norm of the k-th derivative ‖ fn,ε‖Hk is
increasing when k is going to infinity. Regularity is indeed a critical issue in image reg-
istration. Thus, it may be a good idea to actually exclude this type of diffeomorphisms
from the space under consideration

In practice, there is also an issue with the discretization of the flow of velocity
fields: we inevitably have a spatial discretization of the velocity fields (and of the
deformations) on a grid. For LDDMM methods, there is an addition temporal dis-
cretization of the time varying velocity fields by a fixed number of time steps. These
discretizations intrinsically limit the frequency of the deformations, and prevent very
high spatial frequency diffeomorphisms to be reached both by the SVF and by the
discrete LDDMM frameworks. Chapter ?? of this book provides an insight on such
numerical issues in LDDMM while Chapter ?? builds on this low-pass behavior to
explicitly limits the deformation frequency. These limitations remains to be compared
to the ones of the SVFs.

6.2. SVF-Based Setting: Properties and Algorithm
In SVF-based methods, the deformation φ = exp(v) is parametrized by the Lie group
exponential of a smooth SVF v : Ω→ R3, defined by the ODE:

∂φ(x, t)
∂t

= v(φ(x, t)), (0.16)
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with initial condition φ(x, 0) = x. This ODE defines a one parameter subgroup: φt(x) =

φ(x, t) since φs+t(x) = φ(x, s) φ(x, t) = φ(x, s + t). The Lie group exponential is ob-
tained at the parameter value t = 1, i.e. exp(v) = φ(x) = φ(x, 1). The one-parameter
subgroup structure is the key element of the SVF setting, as it provides an efficient
way to tackle important computational problems in image registration, such as:
• the numerical integration of spatial vector fields (computing the exponential),
• the efficient inversion of spatial transformations,
• the stable computation of differential quantities and quantification of volume changes,
• the composition of spatial transformations.
We illustrate in this section the related schemes proposed in the literature.

6.2.1. Exponential of an SVF
The one-parameter subgroup property guarantees that the exponential operation can
be efficiently implemented as the composition of transformations:

exp(v) = φ(x, 1) = φ(x, 1
2 ) φ(x, 1

2 ) = exp(v/2) exp(v/2). (0.17)

This property is at the core of the generalization of the “scaling and squaring” inte-
gration scheme from matrices to SVF [ACPA06]. As a result, the ODE (0.16) can be
effectively computed as the iterative composition of successive exponentials (Algo-
rithm 1).

Algorithm 1 Scaling and Squaring for the Lie group exponential
1. Scaling step: choose n so that 2−nv is “small”.
2. Compute a first approximation: φ0(x)← exp(2−nv)(x) ≈ x + 2−nv(x).
3. Squaring step: For k = 1 to n do φk ← φk−1 φk−1.

The initial integration step (Step 2 of Algorithm 1) is a sensitive step affecting the
quality of the integration. This issue was investigated for example in [FLD+16], where
different integration schemes and initial approximations strategy were benchmarked in
terms of integration accuracy and computation time. Among the tested method, opti-
mal performances were obtained with Runge-Kutta and Exponential Integrators meth-
ods [MVL03]. Moreover, computing the transformation φk(xi) = φk−1(φk−1(xi)) at the
image grid point xi in the squaring step (Step 3 of Algorithm 1) involves a resampling
since φk−1(xi) is in general not at an exact grid point. The numerical accuracy of this
step is critical. For instance, tri-linear interpolation can easily be non-diffeomorphic
for large deformations.
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6.2.2. Inversion of Spatial Transformations
Given a diffeomorphism φ, the computation of the inverse requires the estimation of a
spatial transformation φinv such that φ(φinv(x)) = x, and φinv(φ(x)) = x. In general, this
is performed using a least-squares optimization minimizing the error over the domain.
In the SVF setting, such a computation can be performed through very simple alge-
braic manipulations on the related SVF parameters. Indeed, the one-parameter sub-
group properties guarantees φinv = φ(x,−1), since φ(x, 1)φ(x,−1) = φ(x, 0) = e, and
vice versa. Thus, the diffeomorphism φ = exp(v) parametrized by the SVF v has in-
verse φinv = exp(−v) parametrized by the SVF −v.

6.2.3. Computing differential quantities
The quantification of the amount of warping φ applied at each voxel by the dense de-
formation field is usually locally derived from the Jacobian matrix dφ = ∇φ> of the
deformation in terms of determinant, log-determinant, trace, and the right Cauchy-
Green strain tensor dφ>dφ. An index of volume change over an anatomical region Ω

can be obtained by integrating the change of volume of all elements in the region of
interest, or by computing the flux that is going inward or outward of this region.

Integration of the Jacobian Determinant in the Region of Interest
This is an average measure of volume change. The computation of the Jacobian ma-
trix dφ is normally performed by spatial differentiation of the transformation by finite
differences (Algorithm 2) .

Algorithm 2 Classical Computation of the Jacobian Determinant by Finite Differences
Given a discrete sampling φ of the transformation over the image grid space {xi}:
1. Compute the Jacobian matrix F via finite differences along coordinates ek:

dφ jk(xi) = [∂ekφ(xi)] j = (φ j(xi + δek) − φ j(xi))/δ, where δ is the discretization step size.
2. Compute det(dφ) with the preferred numerical method.

The differentiation by finite differences is however usually highly sensitive to the
spatial noise, and completely depends on the size of the discrete space-sampling. This
can create instabilities in case of large deformations leading to incorrect Jacobian de-
terminant estimation. This limitation is elegantly overcome in the SVF framework
using a variation of the scaling and squaring method for the Lie group exponential. In
fact, the (log-) Jacobian can be reliably estimated by finite differences for the scaled
velocity field v/2n, and then recursively computed thanks to the additive property of
the one-parameter subgroups, and by applying the chain rule (Algorithm 3).

With this scheme the Jacobian determinant is therefore evaluated accordingly to the
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Algorithm 3 Jacobian Matrix and Log-Jacobian Determinant with Scaling and Squar-
ing
Given a deformation φ = exp(v):

1. Scaling step: Choose n so that 2−nv is ”small”.
2. Compute a first approximation (dv is computed using finite differences):
φ0 = exp(2−nv) ≈ Id + 2−nv and dφ0 ≈ Id + 2−ndv.
LD0 = log det (dφ0) = Tr(log(dφ0)) ≈ Tr(2−ndv).

3. Squaring step: For k = 1 to n do:
φk = φk−1φk−1 and dφk = (dφk−1φk−1) dφk−1

LDk = log det (dφk) = LDk−1 ◦ φk−1 + LDk−1.

exponential path and is consistent with the definition of diffeomorphisms parametrized
by the one-parameter subgroup. Moreover, the log-Jacobian determinant is defined in
terms of the divergence of the velocity and, by definition, the value of the correspond-
ing Jacobian determinant is always strictly positive. This property implies that the
evaluation preserves the diffeomorphic formulation and is therefore robust to the dis-
cretization approximations. For instance, in case of large deformations, the sampling
of the deformation field in the image grid space may introduce spurious folding effects
(e.g. in presence of an unequal distribution of the vectors around a sink), thus leading
to an incorrect negative Jacobian estimation with the direct estimation, while it would
be still correctly defined with the present method. One should be careful that the esti-
mation of the full Jacobian matrix dφ with this method is numerically less stable than
the log-Jacobian as one need to resample and multiply many matrices that are very
small deviations from the identity.

Flux of the Deformation Field Across the Boundary of the Region
We can also derive a volume change index by comparing the volume enclosed by the
deformed surface relatively to the original one. This is related to the flux of the velocity
field across the boundary of the region δΩ. Nevertheless, the direct computation of the
flux is usually hindered by its high sensitivity to the localization and orientation of the
boundaries. This limitation led to the development of surrogate intensity-based mea-
sures of the flux [FF97, SDSJM01]. However, the properties of the SVF framework
enables us to derive a stable and efficient numerical scheme. Following [LAFP13],
formula (0.16) leads to the following relationship:

∫
Ω

log(det(dφ(x, 1)))dΩ =

∫ 1

0
flux∂Ω(v ◦ φ(x, t)) dt. (0.18)
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This formula shows that the spatial integration of the log-Jacobian determinant of the
deformation over the region of interest is equal to the flux of the velocity field across
the corresponding boundary, integrated along the path described by the exponential
map. Formula (0.18) consistently computes the flow of the vector field during the evo-
lution described by the SVF parametrization, and measures the flux of a vector field
over a surface (right side of (0.18)) by scalar integration of the log-Jacobian deter-
minant in the enclosed volume (left side of (0.18)). Moving from the surface to the
volume integration simplifies and robustifies the measure of the flux by attenuating the
segmentation errors (and relative erroneous boundary detection). This also allows to
deal with uncertainties in the region of interest, for instance by integration on prob-
abilistic masks. The difference between the Jacobian and the log-Jacobian analysis
becomes clear: the former quantifies volume changes, while the latter quantifies the
shift of the boundaries (given by the average regional log-Jacobian determinant).

6.2.4. Composing Transformations Parametrized by SVF
The Baker Campbell Hausdorff (BCH) formula (Section 3.1) was introduced in the
SVF diffeomorphic registration in [BHO07] and provides an explicit way to compose
diffeomorphisms parametrized by SVFs by operating in the Lie Algebra only. More
specifically, if v, u are SVFs, then exp(v) exp(u) = exp(w) with

w = BCH(v, u) = v + u +
1
2

[v, u] +
1
12

[v, [v, u]] −
1
12

[u, [v, u]] + . . .

In this formula, the Lie bracket of vector fields [v, u] is the derivative of u in the
direction of the flow of v: [v, u] = dv u − du v = ∂uv − ∂vu. Here, the Lie algebra of
diffeomorphisms is by convention the algebra of right-invariant vector fields instead of
the traditional left-invariant ones used in finite dimensional Lie groups. This explains
why this bracket is the opposite of the one of Section 3.1 (see comments in [VPPA08,
BHO07]).

For a small u, the computation can be truncated to any order to obtain an approx-
imation for the composition of diffeomorphisms. For this reason, the BCH is a key
tool for the development of efficient gradient-based optimization algorithms. Keeping
the description of our deformations within the Lie algebra significantly simplifies the
optimization of the SVF parameters via gradient descent in the log-Demons algorithm.

6.3. SVF-Based Diffeomorphic Registration with the Log-Demons
Inspired by the idea of encoding diffeomorphisms with the flow of SVF [ACPA06],
several SVF-based non-linear image registration algorithms were concurrently pro-
posed [VPPA07, BHO07, Ash07, VPPA08, VPPA09, HBO09, MRD+11]. Among
them, the (log)-Demons registration algorithm [VPPA07, VPPA08, VPPA09] found
a considerable interest in the medical image registration community. Successful ap-
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plication to several clinical problems include [PDSP08, MPS+11, LFAP11, SPR11].
This setting is particularly appealing since it leads to a computationally effective and
flexible registration scheme leveraging on the mathematics and numerics of SVF. We
illustrate is this section the SVF properties presented in Section 6.2 within the log-
Demons registration framework.

Image Similarity in the Log-Demons
Given a pair of images I, J : R3 7→ R, we aim at estimating a SVF v parametrizing dif-
feomorphically the spatial correspondences that minimize a functional Sim[I, J, v]. For
example, if the similarity is the log-likelihood of a Gaussian intensity error (the sum of
squared differences criterion -SSD-), we may have Sim[I, J, v] = ‖I − J ◦ exp(−v)‖2L2

,
or Sim[I, J, v] = ‖I ◦ exp(v) − J‖2L2

depending on the choice of the reference image.
The SVF formulation easily allows to symmetrize the similarity term in order to
make it independant of the choice of the reference image. For example, [VPPA08]
proposed unbiased correspondences by averaging the forward and backward corre-
spondences v = 1

2 (u + w) separately estimated from the SSD functional on both sides:
Sim f orw[I, J, u] = ‖I ◦ exp(u) − J‖2L2

and Simback[I, J,w] = ‖I − J ◦ exp(−w)‖2L2
. Although

the symmetrization comes straightforwardly from the SVF parametrization of the de-
formations, the strategy requires twice the optimization of the correspondence terms,
and can be computationally costly when extended to similarity terms more complex
than the standard SSD.

To address this issue, [LAFP13] proposed a symmetric criterion optimizing at the
half-way space, were both images are resampled simultaneously. This can be easily
formulated with the SVF framework thanks to the inverse property by considering the
resampled images I ◦ exp(v/2) and J ◦ exp(−v/2). For instance, the standard SSD can
be symmetrized in:

S S D[sym](I, J, v) = ‖I ◦ exp(v/2) − J ◦ exp(−v/2)‖2L2
.

More complex similarity functionals, such as the local correlation coefficient (LCC),
were easily extended to symmetric criteria using this formulation [LAFP13].

Regularization of SVF Parameters.
In order to prevent overfit, image registration usually considers a regularization term
Reg(v) aiming at promoting the spatial regularity of the solution. Several regulariza-
tion functionals have been proposed in the literature to promote specific mechanistic
constraints, such as diffusion properties Reg(v) = ‖dv‖2L2

, incompressibility Reg(v) =

‖Tr(dv)‖2L2
[MPS+11, MPM+12], or more complex terms involving the penalization of

the (potentially infinite) high-order derivative terms of the SVF [CA04].
However, instead of adding the regularization to the similarity term as classically

done in image registration, it was observed in [CBD+03] that introducing an auxiliary
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variable for the correspondences with a coupling term in the demons criterion was
providing a more efficient optimization. In the log-demons framework, this amounts
to parametrize the image correspondences by the flow of a SVF vc, and the coupling
term by

Aux(vc, v) = ‖vc − v‖2L2
≈ ‖BCH(vc,−v)‖2L2

= ‖ log(exp(vc) exp(−v))‖2L2
.

The criterion optimized by the log-demons is then:

E(v, vc, I, J) = 1
σ2

i
S im(I, J, vc) + 1

σ2
x
Aux(vc, v) + 1

σ2
T
Reg(v). (0.19)

6.4. Optimizing the Log-Demons Algorithm
The interest of the auxiliary variable is to decouple a non-linear and non-convex op-
timization into two optimizations which are respectively local and quadratic. The
classical criterion is obtain at the limit when the typical scale of the error σ2

x between
the transformation and the correspondences tends to zero. The minimization of (0.19)
is alternatively performed with respect to the SVF parameters vc and v in two steps:
• Matching. The correspondence energy: Ecorr(v, vc, I, J) = 1

σ2
i
S im(I, J, vc) + 1

σ2
x
Aux(vc, v),

is minimized to find a (non-regularized) SVF vc that best puts into correspondence
the two images. The optimization of this non-convex energy is usually performed
via gradient descent, Gauss-Newton or Levenberg Marquardt methods. Thanks to
the quadratic formulation of the auxiliary term in vc, the correspondence energy
update can be efficiently computed with respect to standard similarity functionals
S im(·), such as the sum of squared differences (SSD), or the local correlation co-
efficient (LCC). In particular, the Taylor expansion of the similarity with respect
to the variation δu of vc leads to a closed form with a second order Newton’s like
gradient descent scheme:

δu =

(
‖Λ‖2 + 1

S im(I,J,vc)
σ2

i

σ2
x

)(−1)
Λ,

where Λ is the gradient of Ecorr(v, vc, I, J) with respect the update δu [LAFP13].
• Regularization. The functional Ereg(v, vc) = 1

σ2
x
Aux(vc, v) + 1

σ2
T
Reg(v) is optimized

with respect to v. Following [MPS+11], formulating the term Reg(·) with infi-
nite dimensional Isotropic Differential Quadratic Forms (IDQF, [CA04]) leads to a
closed form for the regularization step: the optimal v is obtained using a Gaussian
convolution v = Gσ ∗ vc, where σ is a parameter of the IDQF. Thus this regulariza-
tion step can be solved explicitly and very efficiently.
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7. Parallel Transport of SVF Deformations

Modeling the temporal evolution of the tissues of the body is an important goal of
medical image analysis, for instance to understand the structural changes of organs
affected by a pathology, or to study the physiological growth during the life span. This
requires to analyze and compare the anatomical differences in time series of anatom-
ical images of different subjects. The main difficulty is to compare across individuals
the transformation parameters describing the anatomical changes over time (longitu-
dinal deformations) within each subject.

Comparison of longitudinal deformations can be done in different ways, depending
on the analyzed feature. For instance, the scalar Jacobian determinant of longitudinal
deformations represents the associated local volume change, and can be compared
by scalar resampling in a common reference frame via inter-subject registration. This
simple transport of scalar quantities is the basis of the classical tensor based morphom-
etry techniques [AF00, RLF+04]. However, transporting the Jacobian determinant is
not sufficient to reconstruct a deformation in the template space.

If we consider vector-values characteristics of deformations instead of scalar quan-
tities, the transport is not uniquely defined anymore. For instance, a simple method
of transport consists in reorienting the longitudinal intra-subject displacement vector
field by the Jacobian matrix of the subject-to-reference deformation. Another intuitive
method uses the transformation conjugation (change of coordinate system) in order to
compose the longitudinal intra-subject deformation with the subject-to-reference one
[RCSO+04]. As pointed out in [BZO10], this method relies on the inverse consis-
tency of the inter-subject deformations, which can raise numerical problems for large
deformations. Among these normalization methods, the parallel transport of longitu-
dinal deformations is arguably a more principled tool in the diffeomorphic registration
setting thanks to its differential geometric background.

7.1. Continuous and Discrete Parallel Transport Methods
In computational anatomy, the parallel transport along geodesics of diffeomorphisms
with a right invariant metric has been initially proposed in the LDDMM context by
[You07]. This work builds upon the idea of approximating the parallel transport by Ja-
cobi fields [Arn79]. An application of this framework can be found in [QYMC08] for
the study of hippocampal shape changes in Alzheimer’s disease. Although represent-
ing a rigorous implementation of the parallel transport, this framework is generally
computationally intensive. Moreover, the formulation is quite specific to LDDMM
geodesics, and it is not evident to extend it to a general computational scheme in affine
spaces.

In the context of SVF-based registration, [LP13] provided explicit formulas for
the parallel transport with respect to the standard Cartan-Schouten connections (left,
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right and symmetric) in the case of finite dimensional Lie groups. Although further
investigations are needed to better understand the generalization to infinite dimensions,
practical examples of parallel transport of longitudinal diffeomorphisms with respect
to the Cartan-Schouten connections demonstrated that it was an effective approach
to transport SVFs. However, experiments showed that the numerical implementation
plays a central role in the stability and accuracy of the different transport methods.
For instance, the left and symmetric Cartan transports appear to be less stable than the
right one due to the need of computing high-order differentials.

The practical implementation of continuous transport methods requires a precise
knowledge of connection underlying the space geometry. This is not always simple,
especially in the image registration setting. Moreover, the parallel transport involves
the computation of high-order derivatives which, in practice, may introduce numerical
issues. In particular, differential operations are particularly sensitive to the discretiza-
tion of energy functionals and operators on the image grid.

The complexity and limitations deriving from the direct computation of continu-
ous parallel transport methods can be alleviated when considering discrete approxi-
mations. Inspired by the work of the theoretical physicist Alfred Schild’s, the Schild’s
Ladder was proposed in [MTW73] as a scheme for performing the parallel trans-
port through the construction of geodesic parallelograms. The interest of the Schild’s
ladder resides in the generality of its formulation, since it only requires to compute
geodesics. This means in particular that this type of parallel transport remains consis-
tent with the numerical scheme used to compute the geodesics. Indeed, although the
geodesics on the manifold are not sufficient to recover all the information about the
geometric properties of the space, such as the torsion of the connection, it was shown
in [KMN00] that Schild’s ladder approximates the parallel transport with respect to
the symmetric part of the connection of the space at the first order.

7.2. Discrete ladders for the registration of image sequences
Let {Ii} (i = 1 . . . n) be a time series of images with the baseline I0 as reference. The
longitudinal deformation from I0 to Ii can be computed with image registration, in our
case encoded with SVFs. Our goal is to transport these registration parameters to a
template image T0 in order to produce follow-up image Ti that transforms the image
sequence I0, . . . , Ii to the corresponding sequence T0, . . .Ti in the reference space. In
order to relate geodesics between images to geodesics in the diffeomorphism group,
we assume here that all images belong to the orbit I of the template (or of any other
image of the sequence) and that our registration algorithm provides an exact matching.
These are of course simplifying assumptions whose impact needs to be evaluated in
practice. In particular, we know that the registration is never perfect as the regulariza-
tion term always prevents from achieving a perfect image match.
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Nevertheless, this assumption allows us to model the image space I as the quotient
of the group of diffeomorphisms by the isotropy group of the template (this is the set
of deformations that leaves the template image unchanged). This construction endows
the image space I with an invariant affine structure. We assume here that the affine
manifold manifold (I,∇) which is produced is a geodesically orbital space [AA07,
NRS07] where all geodesics are homogeneous, i.e. orbits of one-parameter subgroups
of deformations: I(t) = I ◦ exp(tv) for I ∈ I. This idealized setting is perfectly aligned
with the SVF-based registration methodology1.

7.2.1. Schild’s Ladder
In the medical image registration domain, [LAP11, LP13] was the first to adapt Schild’s
ladder to SVF-based diffeomorphic image registration. Schild’s ladder transports a
vector along a curve through the construction of geodesic parallelograms. One step of
the ladder is illustrated in Figure 0.1. The corresponding algorithm in our idealized
image space model I is described in Algorithm 4.

Interestingly, the Schild’s ladder implementation appeared to be more stable in
practice than the closed-form expression of the symmetric Cartan-Schouten parallel
transport on group geodesics of diffeomorphisms. The reason is probably the incon-
sistency of numerical schemes used for the computation of the geodesics and for the
transformation Jacobian in the implementation of this exact parallel transport formula.

Algorithm 4 Schild’s Ladder for the Transport of a Longitudinal Deformation.
Let I0 and I1 be a series of (two) images, and T0 a reference frame.
1. Compute the geodesic γ(s) in the space I connecting I1 and T0

and define the mid-point I1/2 = γ(1/2).
2. Compute the geodesic ρ(s) from I0 to I1/2 and shoot twice along this geodesic

to define the transported follow-up image T1 = ρ(2).
3. The transported SVF logT0

(T1) is obtained by registering the images T0 and T1.

This scheme requires the computation of two logarithms/registrations (from I1 to
T0, and from I0 to I1/2), and can thus be computationally expensive when transporting
multiple images. Moreover, the transport of time series of {Ii} images is not defined
with respect to the same baseline-to-reference curve, since the mid-point I1/2 depends
on the follow-up image Ii (see Fig. 0.1). This issue is critical because it may introduce

1The study of this construction remains to be mathematically substantiated. It is notably complexified by
the infinite dimension. However, we believe that this idealized setting is a good metaphor anyway because
it provides an extraordinary simplifying framework to explain the parallel transport on images.



i
i

“chapter5” — 2019/1/4 — 16:57 — page 46 — #46 i
i

i
i

i
i

46

Figure 0.1 Geometrical schemes in the Schild’s ladder and in the pole ladder. By using the
curve C as diagonal, the pole ladder requires the computation of half times of the geodesics
(blue) required by the Schild’s ladder (red) (Figure adapted from [LP14]).

inconsistencies in practice. Theses problems may be tackled by modifying the Schild’s
ladder to lead to a novel scheme: the pole ladder.

7.2.2. Pole Ladder
The pole ladder is a modified version of the Schild’s Ladder based on the observation
that if the curve along which we want to transport is itself a geodesic, then it can be
used as one of the diagonals of the geodesic parallelogram. In this case, constructing
the ladder for image time series requires the computation of a new diagonal of the
parallelogram only, and is defined with respect to the same reference (Figure 0.1).
The resulting ladder is therefore analogous to the Schild’s one, with the difference of
explicitly using as a diagonal the geodesic C which connects I0 and T0 (Algorithm 5).

Algorithm 5 Pole Ladder for the Transport of a Longitudinal Deformation.
Let I0 and I1 be a series of (two) images, and T0 a reference frame.
1. Compute the geodesic C(s) in the space I connecting I0 and T0

and define the mid-point I1/2 = C(1/2).
2. Compute the geodesic γ(t) from I1 to I 1

2
and shoot twice along this geodesic

to define the transported image T1 = γ(2).
3. The transported SVF is the inverse of velocity field registering T0 to p(1) = T ′1.
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7.2.3. Theoretical Accuracy: Pole Ladder is a Third Order Scheme
So far, Schild’s and pole ladders methods were shown to be first order approximations
of the Riemannian parallel transport. Building on a BCH-type formula on affine con-
nection spaces, the behavior of one pole ladder step was recently established up to
order 5 [Pen18]. In Lie groups, we have seen that the BCH formula provides an ex-
pansion of the composition of two group exponentials in the Lie algebra: BCH(v, u) =

log(exp(v) exp(u)). In general affine connection manifolds, a somewhat similar for-
mula can be established based on the curvature instead of the Lie bracket: the double
exponential expx(v, u) = expy(Π

y
xu) corresponds to a first geodesic shooting from the

point x along the vector v, followed by a second geodesic shooting from y = expx(v)
along the parallel transport Π

y
xu of the vector u. [Gav06] has shown that the Taylor

expansion of the log of this composition hx(v, u) = logx(expx(v, u)) is:

hx(v, u) =v + u +
1
6

R(u, v)v +
1
3

R(u, v)u +
1

12
∇vR(u, v)v +

1
24

(∇uR)(u, v)v

+
5
24

(∇vR)(u, v)u +
1
12

(∇uR)(u, v)u + O(‖u‖5 + ‖v‖5).

When applied to pole ladder reformulated using geodesic symmetry, we find that
the error on one step of pole ladder to transport the vector u along the geodesic seg-
ment [I0,T0] = [expI1/2

(−v/2), expI1/2
(v/2)] (all quantities being parallel translated at

the mid-point I1/2) is:

Π
I1/2

T0
pole(u) − Π

I1/2

I0
u =

1
48

((∇vR)(u, v)(5u − v) + (∇uR)(u, v)(v − 2u)) + O(‖v + u‖5).

It is remarkable that the scheme is of order three in general affine connection spaces
with a symmetric connection, much higher than expected. Moreover, the fourth order
error term vanishes in affine symmetric spaces since the curvature is covariantly con-
stant in these spaces. In fact, one can actually prove that all error terms vanish in a
convex normal neighborhood of an affine connection space: one step of pole ladder
realizes a transvection, which is an exact parallel transport (provided that geodesics
and mid-points are computed exactly of course) [Pen18]. The scheme is even globally
exact in Riemannian symmetric manifolds. These properties make pole ladder a very
attractive alternative for parallel transport in more general affine or Riemannian mani-
folds. In particular, pole ladder is exact for SVF: Πv(u) = log(exp(v/2) exp(u) exp(−v/2))
(see Fig.0.2), as already noted in [LP14].

7.2.4. Effective Ladders on SVF-Deformations
Despite the straightforward formulation, algorithms (4) and (5) require multiple eval-
uations of geodesics in the space of diffeomorphisms, thus resulting in high compu-
tational cost. Moreover, since an exact matching is practically impossible, the imple-
mentation of the ladders through multiple image registrations may lead to important
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approximations of the parallel transport. For instance, the definition of I1/2 using the
forward deformation from I0 or the backward one from T0 may provide significantly
different results. Finally, numerical approximations introduced by exponential and
logarithm maps can introduce errors that can propagate during the iteration of the
ladder. For all of these reasons, it is desirable to reformulate the above schemes us-
ing only transformations to obtain a computationally efficient and numerically stable
framework.

Within the SVF framework, the transport can be very effectively approximated
using the BCH formula for compositions [LP14]. The BCH approximation of the
above exact parallel transport of a deformation exp(u) along a geodesic parametrized
by the SVF v is obtained by:

Πv
BCH(u) ' u + [v/2, u] +

1
2

[v/2, [v/2, u]] + HOT. (0.20)
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Figure 0.2 Ladder with the one parameter subgroups. The transport exp(Π(u)) is the deforma-
tion exp(v/2) exp(u) exp(−v/2) (Figure adapted from [LP14]).

To gain even more efficiency and numerical stability, we can derive an iterative
scheme for the computation of formula (0.20), inspired by the one-parameter sub-
groups properties of SVF. To provide a sufficiently small vector in the computation of
the conjugate we observe that:

exp(v) exp(u) exp(−v) = exp
( v
n

)
. . . exp

( v
n

)
exp(u) exp

(
−

v
n

)
. . . exp

(
−

v
n

)
.

The parallel transport can then be recursively computed by iterating the ladder over
small geodesics parametrized by v/n:
1. Scaling step: find n such that v/n is small.
2. Iterate n times the ladder step: u← u + [ v

n , u] + 1
2 [ v

n , [
v
n , u]].

We note that this method preserves the original “ladder” formulation, operated
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along the inter-subject geodesic exp(tv). In fact it iterates the construction of the ladder
along the path exp(v) over small steps of size v/n.

7.3. Longitudinal Analysis of Brain Deformations in Alzheimer’s
Disease

We illustrate in this Section an application of pole ladder to the estimation of a group-
wise model of the longitudinal changes in a group of patients affected by Alzheimer’s
disease (AD). In this disease, the brain atrophy which is measurable in time sequences
of magnetic resonance images (MRI) was shown to strongly correlate with cognitive
performance and neuropsychological scores, and characterizes the progression from
pre-clinical to pathological stages [FFJJ+10]. For this reason, the development of
reliable atlases of the pathological longitudinal evolution of the brain is of great im-
portance for improving the understanding of the pathology. Tackling this problem
requires the development of frameworks allowing the comparison across individuals
of the atrophy trajectory measured through non-rigid registration.

A preliminary approach to the group-wise analysis of longitudinal morphological
changes in AD consists in performing the longitudinal analysis after normalizing the
anatomical images to a template space. A key issue here is the different nature of the
changes occurring at the intra-subject level, reflecting the individual’s atrophy over
time, and the changes across different subjects, which are usually of larger magnitude
and not related to specific biological process. To improve the quantification of the
longitudinal dynamics, the intra-subject changes should be modeled at the individual
level, and only subsequently transported in the common reference for statistical anal-
ysis. For this reason, the parallel transport of longitudinal deformations is an ideal
tool for the comparison of longitudinal trajectories, allowing statistical analysis of the
longitudinal brain changes in a common reference frame. We summarize below the
findings of [LP14].

Data Analysis and Results [LP14]
Images corresponding to the baseline I0 and the one-year follow-up I1 scans were
selected for 135 subjects affected by Alzheimer’s disease. For each subject i, the pairs
of scans were rigidly aligned. The baseline was linearly registered to an unbiased
reference template and the parameters of the linear transformation were applied to
Ii
1. Finally, for each subject, the longitudinal changes were measured by non-linear

registration using the LCC-Demons algorithm [LAFP13].
The resulting deformation fields φi = exp(vi) were transported with the pole ladder

(BCH scheme) in the template reference along the non-linear subject-to-template de-
formation. The group-wise longitudinal progression was modeled as the mean of the
transported SVFs vi. The areas of significant longitudinal changes were investigated by
one-sample t-test on the group of log-Jacobian scalar maps corresponding to the trans-
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ported deformations, in order to detect the areas of measured expansion/contraction
significantly different from zero.

For the sake of comparison, the one sample t-statistic was tested on the individ-
ual’s longitudinal log-Jacobian scalar maps warped into the template space along the
subject-to-template deformation. This is the classical transport used in tensor-based
morphometry studies [AF00].

Figure 0.3 One year structural changes for 135 Alzheimer’s patients. A) Mean of the longitudinal
SVFs transported in the template space with the pole ladder. We notice the lateral expansion
of the ventricles and the contraction in the temporal areas. B) T-statistic for the corresponding
log-Jacobian values significantly different from 0 (p < 0.001 FDR corrected). C) T-statistic for
longitudinal log-Jacobian scalar maps resampled from the subject to the template space. Blue
color: significant expansion, Red color: significant contraction (Figure reproduced from [LP14]).

Figure 0.3 illustrates the mean SVF of the transported one-year longitudinal trajec-
tories. The field flowing outward of the ventricles indicates a pronounced enlargement.
Moreover, we notice an expansion in the temporal horns of the ventricles as well as a
consistent contracting flow in the temporal areas. The same effect can be statistically
quantified by evaluating the areas where the log-Jacobian maps are significantly dif-
ferent from zero. The areas of significant expansion are located around the ventricles
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and spread in the CSF, while a significant contraction is appreciable in the temporal
lobes, hippocampi, parahippocampal gyrus and in the posterior cingulate. The statis-
tical result is in agreement with the one provided by the simple scalar interpolation of
the individual’s longitudinal log-Jacobian maps. In fact we do not experience any sub-
stantial loss of localization power by transporting SVFs instead of scalar log-Jacobian
maps. However by parallel transporting we preserve also the multidimensional infor-
mation of the SVFs, which potentially leads to more powerful voxel-by-voxel com-
parisons than the ones obtained with univariate tests on scalars. For instance, we were
able to show statistically significant different brain shape evolutions depending on the
level of Aβ1−42 protein in the CSF which could be pre-symptomatic of Alzheimer’s
disease [LFAP11]. More generally, a normal longitudinal deformation model allows
to disentangle normal aging component from the pathological atrophy even with one
time-point only per patient (cross-sectional design) [LPFA14].

The SVF describing the trajectory transported in a common template can also be
decomposed into local volume changes and a divergence free reoriention pattern using
Helmholtz’ decomposition [LAP15]. This allows to consistently define anatomical re-
gions of longitudinal brain atrophy in multiple patients, leading to improved measure-
ments of the quantification of the longitudinal hippocampal and ventricular atrophy in
AD. The method provided best performing results during the MIRIAD atrophy chal-
lenge for the regional atrophy quantification in the brain, with a favorable comparison
with respect to state-of-art approaches [CFI+15].

8. Historical Notes and Additional References

A large part of the body of sections 2 and 3 is based on the standard books on Rie-
mannian manifolds [Kli82, dC92, GHL93]. Most parts related to the Cartan connec-
tion are taken from the book of Helagson [Hel78] which is the absolute reference
for Lie groups. However, notations and a number of coordinate-free formulations
are taken from more modern books on differential geometry and Lie groups. Among
them [Pos01] is certainly one of the clearest exposition, especially for the affine set-
ting (Chapters 1 to 6). On the link between left or right invariant geodesics on infinite
dimensional Lie groups and Mechanics, the presentation of Kolev [Kol07] is really
enlightening.

The barycentric definition of bi-invariant means on Lie groups based on one-parameter
subgroups was developed during the PhD of Vincent Arsigny [Ars06] and in the re-
search report [APA06]. In this preliminary work, the ’group geodesics’ were sim-
ply defined as left translations of one-parameters subgroups without further justifica-
tion. [PA12] extended this work by reformulating and rigorously justifying ’group
geodesics’ as the geodesics of the canonical Cartan-Schouten connections. This al-
lows better distinguishing the properties that are related to the connection itself (bi-
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invariance) from the ones that are related to the definition of the mean as an exponen-
tial barycenter in an affine connection space.
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[God82] Roger Godement. Introduction à la Théorie des Groupes de Lie, Tomes I et II. Publications
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