
i
i

“chapter2” — 2019/2/1 — 1:42 — page 1 — #1 i
i

i
i

i
i

Statistics on Manifolds
P. Thomas Fletcher,∗

∗ University of Virginia, Departments of Electrical & Computer Engineering and Computer Science, Charlottesville, VA USA
Corresponding: ptf8v@virginia.edu

Abstract
Statistical analysis of data on a Riemannian manifold extends fundamental concepts from
multivariate statistical analysis in vector spaces by using the metric structure. The first ex-
ample of generalizing a classical statistic to the manifold setting is the Fréchet mean, which
minimizes the sum-of-squared geodesic distances to the data. Such a geometric least-
squares principle also leads to extensions of principal components analysis and regression
on manifolds. From these geometric concepts, we extend to a probabilistic viewpoint by
defining normal distributions on Riemannian manifolds. This leads to probabilistic modeling
and inference through both maximum likelihood and Bayesian approaches.

1. Introduction

This chapter provides a review of basic statistics for data on Riemannian manifolds,
including generalizations of the concepts of a mean, principal component analysis
(PCA), and regression. Definitions for these statistics in Euclidean space all somehow
rely on the vector space operations in Rd. For example, the arithmetic mean is defined
using vector addition and scalar multiplication. The inherent difficulty in defining
statistics on general Riemannian manifolds is the lack of vector space operations in
these spaces.

One avenue for analyzing manifold-valued data is through geometry. Because a
Riemannian manifold has a distance metric, we can think of model fitting as a least-
squares problem, that is, minimizing the sum-of-squared distances from our data to the
model. While least-squares problems in Euclidean space often have closed-form solu-
tions, e.g., linear regression, solving least-squares problems in Riemannian manifolds
typically requires some form of iterative optimization.

For PCA and regression analysis, a further complication arises in that the under-
lying models in Rd are defined as linear subspaces, which are also not available in
Riemannian manifolds. In these cases, geodesic curves provide the natural generali-
zation of straight lines to manifolds. Therefore, the natural generalization of linear
regression to manifolds is geodesic regression, in which a geodesic curve is fit to data
with an associated real-valued explanatory variable. In the case of PCA, the first prin-
cipal component may now be replaced with a principal geodesic that best fits the data
using just one dimension. Higher-order principal components are defined as principal
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geodesic subspaces, which are generated as the image under the exponential map of
linear subspaces of a tangent space.

In addition to the geometric perspective, another avenue to define manifold statis-
tics is through probability. In traditional Euclidean statistics, least-squares fitting is
equivalent to maximum likelihood estimation under a Gaussian distribution assump-
tion of the errors. Such a probabilistic interpretation is also possible on manifolds
through the definition of a Riemannian normal distribution law. We show how this
distribution provides a unifying framework for probabilistic interpretation of several
models of manifold data, including the Fréchet mean, geodesic regression, and princi-
pal geodesic analysis.

Throughout this chapter, let y1, . . . , yN ∈ M denote a set of data on a Riemannian
manifold. From a statistical viewpoint, we will consider these data as coming from
a realization of a random sample, i.e., draws from a set of N independent, identically
distributed (i.i.d.) random variables. However, we will often consider data points
and their statistical analysis from a purely geometric perspective, without referring to
random variables.

2. The Fréchet Mean

For Euclidean data, the sample mean is the de facto point estimate of the center of a
data set. It is the simplest statistic to define, yet also perhaps the most fundamentally
important one. The sample mean of a set of points y1, . . . , yN ∈ R

d is given by their
arithmetic average,

ȳ =
1
N

N∑
i=1

yi. (2.1)

This definition for the mean depends on the vector space operations of Euclidean
space. In general, a Riemannian manifold will not be a vector space, and this defi-
nition for the mean will not be directly applicable. For data on a manifold embedded
in Euclidean space, M ⊂ Rd, we could consider applying the linear mean equation
using the vector operations of the ambient space, Rd. However, the resulting mean
point may not land onM. The following two examples demonstrate how the arithme-
tic mean of data on an embedded manifold can fail to be on the manifold.

Example 1 (Linear Mean for the Sphere). The 2D sphere has a natural embedding in
R3 as the set of all unit-length vectors, i.e., S 2 ≡ {y ∈ R3 : ‖y‖ = 1}. Given a set of
points on the sphere, y1, . . . , yN ∈ S 2, their linear average in R3, ȳ, will not in general
be a point on S 2. Take, for example, the points y1 = (1, 0, 0) and y2 = (0, 1, 0). Their
mean, ȳ = (0.5, 0.5, 0), has norm ‖ȳ‖ =

√
2/2, and thus does not lie on S 2.
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Statistics on Manifolds 3

Example 2 (Linear Mean for GL(k)). The space of k × k matrices with non-zero de-
terminant form a Lie group known as the general linear group, denoted GL(k). This is
a connected, open subset of M(k,k). However, averaging under the usual vector space
operations of M(k,k) ≡ R

k×k does not preserve the non-degeneracy of GL(k). Take, for
example, the two matrices:

y1 =

(
1 2
0 1

)
, y2 =

(
1 0
2 1

)
.

Both y1 and y2 have determinant equal to one, and are thus in GL(2), but their linear

average, ȳ =

(
1 1
1 1

)
, has determinant zero.

Given that the formula (2.1) is not defined for general Riemannian manifolds, we
may then ask if there are defining properties of the mean point in Euclidean space that
can be generalized to the manifold setting. The equation for the Euclidean mean can
be derived from several different principles:
1. Algebraic: The arithmetic mean is the unique point such that the residuals sum to

zero:

(y1 − ȳ) + · · · + (yN − ȳ) = 0.

Note that this definition uses only the vector space properties of Rd.
2. Geometric: It is a least-squares centroid of the data points. That is, it minimizes

the sum-of-squared distances to the data,

ȳ = arg min
y∈Rd

N∑
i=1

‖yi − y‖2.

3. Probabilistic: If the yi are realizations of i.i.d. multivariate normal random varia-
bles, Yi ∼ N(µ,Σ), then ȳ is a maximum-likelihood estimate of the mean parameter
µ. That is,

ȳ = arg max
µ∈Rd

N∏
i=1

p(yi; µ,Σ),

where p(·; µ,Σ) is the pdf for the multivariate normal distribution, N(µ,Σ).
The algebraic characterization of the mean point does not generalize to Riemannian

manifolds, again because it is dependent on a vector space structure. However, the
geometric and probabilistic characterizations can be generalized. In this section we
consider the geometric characterization of the mean point on a Riemannian manifold.
This concept of a mean point is due to Maurice Fréchet [Fré48], and is thus known as
the Fréchet mean. Later, in Section 5 we will see how this is related to a probabilistic
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interpretation. Now consider a set of data, y1, . . . , yN , on a Riemannian manifold, M.
The geometric characterization of the Euclidean sample mean can be generalized to
Riemannian manifolds as the sample Fréchet mean, which is the minimizer of the
sum-of-squared distances to the data,

ȳ = arg min
y∈M

N∑
i=1

d(y, yi)2, (2.2)

where d denotes the geodesic distance on M. Fréchet actually introduced a much more
general concept of expectation of a probability measure on a metric space, of which,
the sample Fréchet mean on a manifold is a special case.

2.1. Existence and Uniqueness of the Fréchet Mean
Because the Fréchet mean is defined via an optimization, the first natural questions are
whether a solution to this optimization exists and if it is unique. We begin by giving
an example where the Fréchet mean does not exist.

Example 3. The “punctured plane” is R2 with the origin (0, 0) removed. As an open
set of R2, this is a manifold, and it is a Riemannian manifold when given the same
Euclidean metric as R2. However, it is not a complete manifold, as geodesics (which
are still straight lines) cannot pass through the missing point at the origin. Any set of
points where the Fréchet mean in R2 would be (0, 0) do not have a Fréchet mean in the
punctured plane, for example, y1 = (1, 0), y2 = (−1, 0).

It turns out that the key ingredient missing for the punctured plane is completeness
of the metric. In fact, completeness of a distance metric is sufficient to guarantee
existence of the Fréchet mean, as shown in the next theorem. Note that this holds for
any complete metric space, not only those that are Riemannian manifolds.

Theorem 1 (Existence of the Fréchet mean). Let M be a complete metric space. Then
the Fréchet mean of any finite set of points y1, . . . , yN ∈ M exists.

Proof. Define the sum-of-squared distance function, F(y) =
∑N

j=1 d(yi, y j)2. We show
that a global minimum of F exists (but it may not be unique). Denote the diameter
of the point set by r = maxi, j d(yi, y j). Let K = ∪N

i=1B̄r(yi), where B̄r(yi) is the closed
metric ball of radius r centered at xi. By the completeness of X, K is a closed set,
bounded in diameter by 2r, and so is a compact set. Therefore, the restriction of
the sum-of-squared distance function to the set K attains a minimum within K. Now
consider a point y ∈ X such that y < K. Then F(y) > nr2. However, this must be larger
than the minimum within K because F(yi) =

∑N
j=1 d(yi, y j)2 ≤ nr2. �
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Statistics on Manifolds 5

Even when a Fréchet mean of a set of data exists, it may not be unique. That is,
there may be multiple points that achieve the minimum in (2.2). A simple example of
this is given on the 2D sphere.

Example 4 (Non-uniqueness of the Fréchet mean on S 2). Consider the unit sphere S 2

embedded in R3, with two data points at the north and south pole: y1 = (0, 0, 1), y2 =

(0, 0,−1). Then the Fréchet mean is the set of points on the equator
ȳ = {(cos θ, sin θ, 0) : θ ∈ [0, 2π)}.

Conditions for the uniqueness of the Fréchet mean were given by Karcher [Kar77]
and later refined by Kendall [Ken90]. The following result is due to Asfari [Asf11].

Theorem 2 (Uniqueness of the Fréchet mean). Let M be a complete Riemannian mani-
fold with sectional curvature bounded above by ∆, and let inj(M) denote the injectivity
radius of M. If data y1, . . . , yN ∈ M are contained in a geodesic ball of radius

r =


1
2 min

{
inj(M), π

√
∆

}
, if ∆ > 0,

1
2 inj(M), if ∆ ≤ 0,

then the Fréchet mean ȳ is unique.

Example 5 (2D constant curvature manifolds). To better understand this uniqueness
theorem, we consider the examples of constant curvature manifolds of dimension two.
• (∆ = 0) For the Euclidean plane, R2, the injectivity radius is infinite and sectional

curvature is equal to 0. Therefore, the theorem states that any set of data in R2 has
a unique Fréchet mean.

• (∆ = 1) For the 2-sphere, S 2, the injectivity radius is π and sectional curvature is
equal to 1. The theorem then gives a bound of r =

pi
2 , meaning any set of data

contained in an open hemisphere of S 2 will have a unique Fr’echet mean.
• (∆ = −1) For the hyperbolic plane, H2, the injectivity radius is infinite and sectional

curvature is −1. Then, the theorem states that, like Euclidean space, any set of data
in H2 will have a unique Fr’echet mean.

2.2. Estimation of the Fréchet Mean
The Fréchet mean is defined by the minimization problem (2.2). The squared-distance
function from a point y ∈ M on a Riemannian manifold is smooth away from the cut
locus of y. As such, a natural strategy for computing the Fréchet mean is by gradient
descent optimization, first proposed by Pennec [Pen99]. This gradient descent algo-
rithm also appeared in [BF01] for the case of spheres and [Moa02] for the case of
rotations.
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First, consider the squared-distance function from a single point x ∈ M,

Fx(y) = d(y, x)2.

As a consequence of the Gauss lemma (see [dC92]), the gradient of the squared-
distance function is given by

gradFx(y) = −2Logy(x).

Then the gradient descent, with some step size τ > 0, proceeds as follows:

Algorithm 1: Fréchet Mean
Input: y1, . . . , yN ∈ M
Output: ȳ ∈ M, the Fréchet mean
Initialize: ȳ0 = x1

while ‖v‖ > ε do
v = τ

N
∑N

i=1 Logȳ j
yi

ȳ j+1 = Expȳ j
v

3. Covariance and Principal Geodesic Analysis

The covariance of a vector-valued random variable y in Rd is defined as

Cov(y) = E
[
(y − E[y]) (y − E[y])T

]
.

This definition clearly relies on the vector space structure of Rd, i.e., vector transpose
and matrix multiplication operations. Therefore, it does not apply directly as written
to a manifold-valued random variable. However, we can rewrite this equation by re-
calling that the Riemannian log map in Eucliean space is given by Logyx = (x − y).
Then, the covariance of y is equivalently

Cov(y) = E
[(

LogE[y]y
) (

LogE[y]y
)T

]
.

This equation can now be directly generalized to a Riemannian manifold by repla-
cing the Euclidean expectation, E[y], with Fréchet expectation. For a random sample,
y1, y2, . . . , yn ∈ M, the sample covariance matrix is given by

S =

n∑
i=1

(
Logȳyi

) (
Logȳyi

)T
. (2.3)
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Statistics on Manifolds 7

3.1. Principal Component Analysis
The covariance matrix encodes the variability of multivariate data, however, it is often
difficult to interpret or make use of it directly. A more convenient breakdown of the
variability of high-dimensional data is given by principal component analysis (PCA), a
method whose origins go back to Pearson [Pea01] and Hotelling [Hot33]. See the book
[Jol86a] for a comprehensive review of PCA. The objectives of principal component
analysis are (1) to efficiently parameterize the variability of data and (2) to decrease the
dimensionality of the data parameters. In this section we review PCA for Euclidean
data, y1, . . . , yN ∈ R

d, with mean ȳ, before describing how it can be generalized to
manifolds in the next section.

There are several different ways to describe PCA. The definitions given here may
not necessarily be standard, but they are helpful as the basis for the generalization
to Riemannian manifolds. The goal of PCA is to find a sequence of nested linear
subspaces, V1, . . . ,Vd, through the mean that best approximate the data. This may be
formulated in two ways, both resulting in the same answer. The first is a least-squares
approach, where the objective is to find the linear subspaces such that the sum-of-
squares of the residuals to the data are minimized. More precisely, the linear subspace
Vk is defined by a basis of orthonormal vectors, i.e., Vk = span({v1, . . . , vk}), which are
given by

vk = arg min
‖v‖=1

N∑
i=1

‖yk
i − 〈y

k
i , v〉 v‖2, (2.4)

where the yk
i are defined recursively by

y1
i = yi − ȳ,

yk
i = yk−1

i − 〈yk−1
i , vk−1〉 vk−1

Simply put, the point yk
i is obtained by removing from (yi − ȳ) the contributions of

the previous directions, v1, . . . , vk−1. In other words, the point yk
i is the projection of

(yi − µ) onto the subspace perpendicular to Vk−1.
The other way of defining principal component analysis is as the subspaces through

the mean that maximize the total variance of the projected data. The total variance for
a set of points y1, . . . , yN is defined as

σ̂2 =
1
N

N∑
i=1

‖yi − ȳ‖2.
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Then the linear subspaces Vk = span({v1, . . . , vk}) are given by the vectors

vk = arg max
‖v‖=1

N∑
i=1

〈yk
i , v〉

2, (2.5)

where the yk
i are defined as above. It can be shown (see [Jol86a]) that both definitions

of PCA, i.e., (2.4) and (2.5), give the same results thanks to the Pythagorean theorem.
The computation of the spanning vectors vk proceeds as follows. First, the linear

average of the data is computed as

ȳ =
1
N

N∑
i=1

yi.

Next, the sample covariance matrix of the data is computed as

S =
1

N − 1

N∑
i=1

(yi − ȳ)(yi − ȳ)T .

This is the unbiased estimate of the covariance matrix, that is, N − 1 is used in the de-
nominator instead of N. The covariance matrix is a symmetric, positive-semidefinite
quadratic form, that is, S = S T , and for any x ∈ Rd the inequality xT S x ≥ 0 holds.
Therefore, the eigenvalues of S are all real and nonnegative. Let λ1, . . . , λd be the ei-
genvalues of S ordered so that λ1 ≥ λ2 ≥ · · · ≥ λd, and let v1, . . . , vd be the correspon-
dingly ordered eigenvectors. When repeated eigenvalues occur, there is an ambiguity
in the corresponding eigenvectors, i.e., there is a hyperplane from which to choose
the corresponding eigenvectors. This does not present a problem as any orthonormal
set of eigenvectors may be chosen. These directions are the solutions to the defining
PCA equations, (2.4) and (2.5), and are called the principal directions or modes of
variation.

Any data point yi can be decomposed as

yi = ȳ +

d∑
k=1

αikvk,

for real coefficients αik = 〈yi − ȳ, vk〉. The αik for fixed i are called the principal com-
ponents of yi. The total variation of the data is given by the sum of the eigenvalues,
σ2 =

∑d
k=1 λk. The dimensionality of the data can be reduced by discarding the prin-

cipal directions that contribute little to the variation, that is, choosing an m < d and
projecting the data onto Vm, giving the approximation

ỹi = ȳ +

m∑
k=1

αikvk.
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One method for choosing the cut-off value m is based on the percentage of total varia-
tion that should be preserved.

3.2. Principal Geodesic Analysis
Principal geodesic analysis (PGA) [FLJ03, FLPJ04] generalizes PCA to handle data
y1, . . . , yN on a connected, complete manifold M. The goal of PGA, analogous to PCA,
is to find a sequence of nested geodesic submanifolds that maximize the projected va-
riance of the data. These submanifolds are called the principal geodesic submanifolds.

Let TȳM denote the tangent space of M at the Fréchet mean ȳ of the yi. Let
U ⊂ TȳM be a neighborhood of 0 such that projection is well-defined for all geo-
desic submanifolds of Expȳ(U). We assume that the data is localized enough to lie
within such a neighborhood. The principal geodesic submanifolds are defined by first
constructing an orthonormal basis of tangent vectors v1, . . . , vn ∈ TȳM that span the
tangent space TȳM. These vectors are then used to form a sequence of nested subspa-
ces Vk = span({v1, . . . , vk}) ∩ U. The principal geodesic submanifolds are the images
of the Vk under the exponential map: Hk = Expȳ(Vk). The first principal direction is
chosen to maximize the projected variance along the corresponding geodesic:

v1 = arg max
‖v‖=1

N∑
i=1

‖Logȳ(πH(yi))‖2, (2.6)

where H = Expȳ(span({v}) ∩ U).

The remaining principal directions are defined recursively as

vk = arg max
‖v‖=1

N∑
i=1

‖Logȳ(πH(yi))‖2, (2.7)

where H = Expȳ(span({v1, . . . , vk−1, v}) ∩ U).

Just as is the case with PCA, we can alternatively define PGA through a least
squares fit to the data. In this setting, the first principal direction is chosen to minimize
the sum-of-squared geodesic distance from the data to the corresponding geodesic:

v1 = arg min
‖v‖=1

N∑
i=1

||Logyi
(πH(yi))||2,

where H = Expȳ(span({v}) ∩ U).
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The remaining principal directions are defined recursively as

vk = arg min
‖v‖=1

N∑
i=1

||Logyi
(πH(yi))||2,

where H = Expȳ(span({v1, . . . , vk−1, v}) ∩ U).

3.3. Estimation: Tangent Approximation and Exact PGA
Neither the variance maximization (2.6), (2.7) nor the residual minimization (3.2),
(3.2) formulation of PGA has a closed form solution for general manifolds. Therefore,
Fletcher et al. [FLPJ04] proposes to approximate PGA in the tangent space to the
Fréchet mean of the data. This is done by first mapping the xi to the tangent space TµM
using the Log map. Linear distances in TµM between points close to the origin are
similar to the geodesic distances between the corresponding points in M under the Exp
map. Therefore, if the data are highly concentrated about the Fréchet mean, the PGA
optimization problem is well-approximated by the PCA optimization problem of the
Log map transformed points. Fletcher et al. [FLPJ04] give an explicit expression in the
case of the sphere for the approximation error between projections in the tangent space
versus on the manifold. This suggests the following tangent space approximation
algorithm to PGA.

Algorithm 2: Tangent approximation to PGA
Input: Data x1, . . . , xN ∈ M
Output: Principal directions, vk ∈ TµM, variances, λk ∈ R
ȳ = Fréchet mean of {yi} (Algorithm 1)
ui = Logȳ(yi)
S = 1

N−1
∑N

i=1 uiuT
i

{vk, λk} = eigenvectors/eigenvalues of S.

Later work developed algorithms for exact optimization of the variance maximiza-
tion formulas (2.6), (2.7) for PGA. This was first worked out for the special case of
SO(3) by Said et al. [SCBS07] and then for general Riemannian manifolds by Sommer
et al. [SLHN10, SLN14]. This algorithm, often referred to as exact PGA, proceeds by
gradient ascent. This requires derivatives of the Riemannian Exp and Log maps, which
are given by Jacobi fields. These derivatives are also used in geodesic regression and
will be covered in the next section. Chakraborty et al. [CSV16] developed an efficient
algorithm for exact PGA on constant curvature manifolds, using closed-form soluti-
ons for distances and projections onto geodesic submanifolds. Salehian et al. [SVV14]
present an incremental algorithm for computing PGA by updating the parameters with



i
i

“chapter2” — 2019/2/1 — 1:42 — page 11 — #11 i
i

i
i

i
i

Statistics on Manifolds 11

eac newly introduced data point. This has two advantages: (1) it reduces the memory
cost over the standard batch mode PGA algorithms, and (2) it allows new data to be
easily added later, without recomputing the entire PGA.

3.4. Further Extensions of PCA to Manifolds
Geodesic PCA [HHM10] solves a similar problem to the sum-of-squared residual mi-
nimization formulation of PGA (3.2), (3.2), with the exception that the geodesic prin-
cipal components are not constrained to pass through the Fréchet mean. In the case of
data in Euclidean space, the hyperplanes that best fit the data always pass through the
mean. However, in the case of data on a manifold with nontrivial curvature, removing
the constraint that geodesics pass through the mean can lead to more flexibility in fit-
ting data. For data on a sphere, S d, principal nested spheres (PNS) [JDM12] finds a
series of nested subspheres of decreasing dimension that best fit the data. In contrast
to PGA, the principal spheres are not constrained to be geodesic spheres (i.e., they
can have smaller radius than the original sphere). Also, instead of building up from
low dimension to high, PNS iteratively finds nesed spheres starting from the full di-
mension d and removing one dimension at a time. One consequence of this is that the
0-dimensional principal nested sphere is not necessarily the Fréchet mean. Eltzner et
al. [EJH14] extend PNS to polyspheres (products of multiple spheres) by developing
a procedure for deforming a polysphere into a single sphere where PNS can then be
applied. Banerjee et al. [BJV17] present a version of PGA that is robust to outliers,
along with an exact algorithm to compute it.

4. Regression Models

Regression analysis is a fundamental statistical tool for determining how a measured
variable is related to one or more potential explanatory variables. The most widely
used regression model is linear regression, due to its simplicity, ease of interpretation,
and ability to model many phenomena. However, if the response variable takes values
on a nonlinear manifold, a linear model is not applicable. Several works have studied
regression models on manifolds, where the goal is to fit a curve on a manifold that
models the relationship between a scalar parameter and data on the manifold. This is
typically done by a least squares fit, similar to the Fréchet mean definition in (2.2),
except now the optimization is over a certain class of curves on the manifold rather
than a point. That is, given manifold data y1, . . . , yN ∈ M with corresponding real data
x1, . . . , xN ∈ R, the regression problem is to find a curve γ̂(x) ∈ M such that

γ̂ = arg min
γ∈Γ

N∑
i=1

d(γ(xi), yi)2, (2.8)

where Γ is a space of curves on M.
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In this chapter we will focus on nonparametric kernel regression on Riemannian
manifolds [DFBJ07] and geodesic regression [Fle11, Fle12], i.e., where Γ is the space
of parameterized geodesics on M. Niethammer et al. [NHV11] independently pro-
posed geodesic regression for the case of diffeomorphic transformations of image
time series. Hinkle et al. [JH14] use constant higher-order covariant derivatives to
define intrinsic polynomial curves on a Riemannian manifold for regression. Shi et
al. [SSL+09] proposed a semiparametric model for manifold response data, which
also has the ability to handle multiple covariates.

A closely related problem to the regression problem is that of fitting smoothing
splines to manifold data. The typical objective function for smoothing splines is a
combination of a data matching term and a regularization term for the spline curve.
For example, Su et al. [SDK+12] proposed a smoothing spline where the data mat-
ching is the same least squares objective as the regression problem (2.8), leading to a
smoothing splines optimization of the form

γ̂ = arg min
γ∈Γ

N∑
i=1

d(γ(xi), yi)2 + λR(γ), (2.9)

where R is some regularization functional, and λ > 0 is a weighting between regulari-
zation and data fitting. In this case, the search space may be the space of all continuous
curve segments, Γ = C([0, 1],M). Jupp and Kent [JK87] proposed solving the smoo-
thing spline problem on a sphere by unrolling onto the tangent space. This unrolling
method was later extended to shape spaces by Kume [KDL07]. Smoothing splines
on the group of diffeomorphisms has been proposed as growth models by Miller et
al. [Mil04] and as second-order splines by Trouvé et al. [TV10]. A similar paradigm
is used by Durrleman et al. [DPT+09] to construct spatiotemporal image atlases from
longitudinal data. Yet another related problem is the spline interpolation problem,
where the data matching term is dropped and the regularization term is optimized sub-
ject to constraints that the curve pass through specific points. The pioneering work
of Noakes et al. [NHP89] introduced the concept of a cubic spline on a Riemannian
manifold for interpolation. Crouch and Leite [CL95] investigated further variational
problems for these cubic splines and for specific classes of manifolds, such as Lie
groups and symmetric spaces. Buss and Fillmore [BF01] defined interpolating splines
on the sphere via weighted Fréchet averaging.

4.1. Regression in Euclidean Space
4.1.1. Multilinear Regression
Before formulating geodesic regression on general manifolds, we begin by reviewing
multiple linear regression in Rd. Here we are interested in the relationship between
a non-random independent variable X ∈ R and a random dependent variable Y taking
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Figure 2.1 Comparison of linear (black) and nonparametric (red) regressions. When the data
follows a linear trend (left), a linear regression model is favored due to its ease of interpretation.
However, when the data trend is nonlinear (right), nonparametric regression models will fit better.

values in Rd. A multiple linear model of this relationship is given by

Y = α + Xβ + ε, (2.10)

where α ∈ Rd is an unobservable intercept parameter, β ∈ Rd is an unobservable slope
parameter, and ε is an Rd-valued, unobservable random variable representing the error.
Geometrically, this is the equation of a one-dimensional line through Rd (plus noise),
parameterized by the scalar variable X. For the purposes of generalizing to the mani-
fold case, it is useful to think of α as the starting point of the line and β as a velocity
vector.

Given realizations of the above model, i.e., data (xi, yi) ∈ R × Rd, for i = 1, . . . ,N,
the least squares estimates, α̂, β̂, for the intercept and slope are computed by solving
the minimization problem

(α̂, β̂) = arg min
(α,β)

N∑
i=1

‖yi − α − xiβ‖
2 . (2.11)

This equation can be solved analytically, yielding

β̂ =

1
N

∑
xi yi − x̄ ȳ∑
x2

i − x̄2
,

α̂ = ȳ − x̄ β̂,
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where x̄ and ȳ are the sample means of the xi and yi, respectively. If the errors in
the model are drawn from distributions with zero mean and finite variance, then these
estimators are unbiased and consistent. Furthermore, if the errors are homoscedastic
(equal variance) and uncorrelated, then the Gauss-Markov theorem states that they will
have minimal mean-squared error amongst all unbiased linear estimators.

4.1.2. Univariate Kernel Regression
Before reviewing the manifold version, we give a quick overview of univariate kernel
regression as developed by Nadaraya [Nad64] and Watson [Wat64]. As in the linear
regression setting, we are interested in finding a relationship between data x1, . . . , xN ∈

R, coming from an independent variable X, and data y1, . . . , yN ∈ R, representing a
dependent variable Y . The model of their relationship is given by

Y = f (X) + ε,

where f is an arbitrary function, and ε is a random variable representing the error.
Contrary to linear regression, the function f is not assumed to have any particular
parametric form.

Instead, the function f is estimated from the data by local weighted averaging.

f̂h(x) =

∑N
i=1 Kh(x − xi)yi∑N
i=1 Kh(x − xi)

.

In this equation, K is a function that satisfies
∫

K(t) dt = 1 and Kh(t) = 1
h K( t

h ), with
bandwidth parameter h > 0. This is the estimation procedure shown in Figure 4.1 (red
curves).

4.2. Regression on Riemannian Manifolds
4.2.1. Geodesic Regression
Let y1, . . . , yN be points on a smooth Riemannian manifold M, with associated scalar
values x1, . . . , xN ∈ R. The goal of geodesic regression is to find a geodesic curve
γ on M that best models the relationship between the xi and the yi. Just as in linear
regression, the speed of the geodesic will be proportional to the independent parameter
corresponding to the xi. Estimation will be set up as a least-squares problem, where
we want to minimize the sum-of-squared Riemannian distances between the model
and the data. A schematic of the geodesic regression model is shown in Figure 2.2.

Notice that the tangent bundle T M serves as a convenient parameterization of the
set of possible geodesics on M. An element (p, v) ∈ T M provides an intercept p and
a slope v, analogous to the α and β parameters in the multiple linear regression mo-
del (2.10). In fact, β is a vector in the tangent space TαRd � Rd, and thus (α, β) is an
element of the tangent bundle TRd. Now consider an M-valued random variable Y and
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M

yi

Exp(p, xv) 

p

v

Figure 2.2 Schematic of the geodesic regression model.

a non-random variable X ∈ R. The generalization of the multiple linear model to the
manifold setting is the geodesic model,

Y = Exp(Exp(p, Xv), ε), (2.12)

where ε is a random variable taking values in the tangent space at Exp(p, Xv). Notice
that for Euclidean space, the exponential map is simply addition, i.e., Exp(p, v) =

p + v. Thus, the geodesic model coincides with (2.10) when M = Rd.

Least Squares Estimation
Consider a realization of the model (2.12): (xi, yi) ∈ R × M, for i = 1, . . . ,N. Given
this data, we wish to find estimates of the parameters (p, v) ∈ T M. First, define the
sum-of-squared error of the data from the geodesic given by (p, v) as

E(p, v) =
1
2

N∑
i=1

d(Exp(p, xiv), yi)2. (2.13)

Following the ordinary least squares minimization problem given by (2.11), we for-
mulate a least squares estimator of the geodesic model as a minimizer of the above
sum-of-squares energy, i.e.,

(p̂, v̂) = arg min
(p,v)

E(p, v). (2.14)

Again, notice that this problem coincides with the ordinary least squares problem when
M = Rd.

Unlike the linear setting, the least squares problem in (2.14) for a general manifold
M will typically not yield an analytic solution. Instead we derive a gradient descent
algorithm. Computation of the gradient of (2.13) will require two parts: the derivative
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Mp

vu1

J(x)

Mp

v

u2
J(x)

dp Exp dv Exp
Figure 2.3 Jacobi fields as derivatives of the exponential map.

of the Riemannian distance function and the derivative of the exponential map. Fixing
a point p ∈ M, the gradient of the squared distance function is ∇xd(p, x)2 = −2Logx(p)
for x ∈ V(p).

The derivative of the exponential map Exp(p, v) can be separated into a derivative
with respect to the initial point p and a derivative with respect to the initial velocity v.
To do this, first consider a variation of geodesics given by c1(s, t) = Exp(Exp(p, su1), tv(s)),
where u1 ∈ TpM defines a variation of the initial point along the geodesic η(s) =

Exp(p, su1). Here we have also extended v ∈ TpM to a vector field v(s) along η via pa-
rallel translation. This variation is illustrated on the left side of Figure 2.3. Next consi-
der a variation of geodesics c2(s, t) = Exp(p, su2 + tv), where u2 ∈ TpM. (Technically,
u2 is a tangent to the tangent space, i.e., an element of Tv(TpM), but there is a natu-
ral isomorphism Tv(TpM) � TpM.) The variation c2 produces a “fan” of geodesics as
seen on the right side of Figure 2.3.

Now the derivatives of Exp(p, v) with respect to p and v are given by

dp Exp(p, v) · u1 =
d
ds

c1(s, t)
∣∣∣∣
s=0

= J1(1)

dv Exp(p, v) · u2 =
d
ds

c2(s, t)
∣∣∣∣
s=0

= J2(1),

where Ji(t) are Jacobi fields along the geodesic γ(t) = Exp(p, tv). Jacobi fields are
solutions to the second order equation

D2

dt2 J(t) + R(J(t), γ′(t)) γ′(t) = 0, (2.15)

where R is the Riemannian curvature tensor. For more details on the derivation of
the Jacobi field equation and the curvature tensor, see for instance [dC92]. The ini-
tial conditions for the two Jacobi fields above are J1(0) = u1, J′1(0) = 0 and J2(0) =
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0, J′2(0) = u2, respectively. If we decompose the Jacobi field into a component tangen-
tial to γ and a component orthogonal, i.e., J = J> + J⊥, the tangential component is
linear: J>(t) = u>1 + tu>2 . Therefore, the only challenge is to solve for the orthogonal
component.

Finally, the gradient of the sum-of-squares energy in (2.13) is given by

∇p E(p, v) = −

N∑
i=1

dp Exp(p, xiv)† Log(Exp(p, xiv), yi),

∇v E(p, v) = −

N∑
i=1

xi dv Exp(p, xiv)† Log(Exp(p, xiv), yi),

where we have taken the adjoint of the exponential map derivative, e.g., defined by
〈dp Exp(p, v)u,w〉 = 〈u, dp Exp(p, v)†w〉. As we will see in the next section, formulas
for Jacobi fields and their respective adjoint operators can often be derived analytically
for many useful manifolds.

R2 Statistics and Hypothesis Testing
In regression analysis the most basic question one would like to answer is whether
the relationship between the independent and dependent variables is significant. A
common way to test this is to see if the amount of variance explained by the model is
high. For geodesic regression we will measure the amount of explained variance using
a generalization of the R2 statistic, or coefficient of determination, to the manifold
setting. To do this, we first define predicted values of yi and the errors εi as

ŷi = Exp(p̂, xiv̂),
ε̂i = Log(ŷi, yi),

where (p̂, v̂) are the least squares estimates of the geodesic parameters defined above.
Note that the ŷi are points along the estimated geodesic that are the best predictions of
the yi given only the xi. The ε̂i are the residuals from the model predictions to the true
data.

Now to define the total variance of data, y1, . . . , yN ∈ M, we use the Fréchet vari-
ance, intrinsically defined by

var(yi) = min
y∈M

1
N

N∑
i=1

d(y, yi)2.

The unexplained variance is the variance of the residuals, var(ε̂i) = 1
N

∑
‖ε̂i‖

2. From
the definition of the residuals, it can be seen that the unexplained variance is the mean
squared distance of the data to the model, i.e., var(ε̂i) = 1

N
∑

d(ŷi, yi)2. Using these two
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variance definitions, the generalization of the R2 statistic is then given by

R2 = 1 −
unexplained variance

total variance
= 1 −

var(ε̂i)
var(yi)

. (2.16)

Fréchet variance coincides with the standard definition of variance when M = Rd.
Therefore, it follows that the definition of R2 in (2.16) coincides with the R2 for li-
near regression when M = Rd. Also, because Fréchet variance is always nonnegative,
we see that R2 ≤ 1, and that R2 = 1 if and only if the residuals to the model are exactly
zero, i.e., the model perfectly fits the data. Finally, it is clear that the residual variance
is always smaller than the total variance, i.e., var(ε̂i) ≤ var(yi). This is because we
could always choose p̂ to be the Fréchet mean and v = 0 to achieve var(ε̂i) = var(yi).
Therefore, R2 ≥ 0, and it must lie in the interval [0, 1], as is the case for linear models.

We now describe a permutation test for testing the significance of the estimated
slope term, v̂. Notice that if we constrain v to be zero in (2.14), then the resulting least
squares estimate of the intercept, p̂, will be the Fréchet mean of the yi. The desired
hypothesis test is whether the fraction of unexplained variance is significantly decre-
ased by also estimating v. The null hypothesis is H0 : R2 = 0, which is the case if the
unexplained variance in the geodesic model is equal to the total variance. Under the
null hypothesis, there is no relationship between the X variable and the Y variable.
Therefore, the xi are exchangeable under the null hypothesis, and a permutation test
may randomly reorder the xi data, keeping the yi fixed. Estimating the geodesic regres-
sion parameters for each random permutation of the xi, we can calculate a sequence of
R2 values, R2

1, . . . ,R
2
m, which approximate the sampling distribution of the R2 statistic

under the null hypothesis. Computing the fraction of the R2
k that are greater than the

R2 estimated from the unpermuted data gives us a p-value.

4.2.2. Kernel Regression on Manifolds
The regression method of Davis et al. [DFBJ07] generalizes the Nadaraya-Watson ker-
nel regression method to the case where the dependent variable lives on a Riemannian
manifold, i.e., yi ∈ M. Here the model is given by

Y = Exp( f (X), ε),

where f : R→ M defines a curve on M, and ε ∈ T f (X)M is an error term. As in the
univariate case, there are no assumptions on the parametric form of the curve f .

Motivated by the definition of the Nadaraya-Watson estimator as a weighted aver-
aging, the manifold kernel regression estimator is defined using a weighted Fréchet
sample mean as

f̂h(x) = arg min
y∈M

∑N
i=1 Kh(x − xi)d(y, yi)2∑N

i=1 Kh(x − xi)
.
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Figure 2.4 Corpus callosum segmentation and boundary point model for one subject.

Notice that when the manifold under study is a Euclidean vector space, equipped with
the standard Euclidean norm, the above minimization results in the Nadaraya-Watson
estimator.

4.3. Example of Regression on Kendall Shape Space
We now give examples of both geodesic and nonparametric kernel regression in Ken-
dall shape space (see Chapter ??). The goal of our statistical analysis is to understand
the relationship between age and the shape of the corpus callosum. The corpus cal-
losum is the major white matter bundle connecting the two hemispheres of the brain.
A midsagittal slice from a magnetic resonance image (MRI) with segmented corpus
callosum is shown in Figure 2.4. The data used is derived from the OASIS brain da-
tabase (www.oasis-brains.org), and this regression analysis originally appears in
[Fle12].

The data consisted of MRI from 32 subjects with ages ranging from 19-90 ye-
ars old. The corpus callosum was segmented in a midsagittal slice using the ITK
SNAP program (www.itksnap.org). These boundaries of these segmentations were
sampled with 128 points using ShapeWorks (www.sci.utah.edu/software.html).
This algorithm generates a sampling of a set of shape boundaries while enforcing cor-
respondences between different point models within the population. An example of
a segmented corpus callosum and the resulting boundary point model is shown in Fi-
gure 2.4. Each of these preprocessing steps were done without consideration of the
subject age, to avoid any bias in the data generation.

The statistical significance of the estimated trend was tested using the permutation
test described in Section 4.2.1, using 10,000 permutations. The p-value for the signi-
ficance of the slope estimate, v̂, was p = 0.009. The coefficient of determination (for
the unpermuted data) was R2 = 0.12. The low R2 value must be interpreted carefully.
It says that age only describes a small fraction of the shape variability in the corpus
callosum. This is not surprising: we would expect the intersubject variability in corpus
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Figure 2.5 Geodesic regression of the corpus callosum. The estimated geodesic is shown as
a sequence of shapes from age 19 (blue) to age 90 (red).

Corpus Callosum Regression: Age = 20 Corpus Callosum Regression: Age = 44

20 yrs. 44 yrs.

Corpus Callosum Regression: Age = 66 Corpus Callosum Regression: Age = 90

66 yrs. 90 yrs.
Figure 2.6 Comparison of geodesic regression (solid black) and nonparametric kernel regres-
sion (dashed red) of the corpus callosum shape versus age.

callosum shape to be difficult to fully describe with a single variable (age). However,
this does not mean that the age effects are not important. In fact, the low p-value
says that the estimated age changes are highly unlikely to have been found by random
chance.

Next, we computed a nonparametric kernel regression of the corpus callosum ver-
sus age, as described in Section 4.2.2. The kernel regression was performed on the
same Kendall shape space manifold and the bandwidth was chosen automatically using
the cross-validation procedure described in Section [DFBJ07]. Next, the resulting cor-
pus callosum shape trend generated by the kernel regression method was compared to
the result of the geodesic regression. This was done by again generating shapes from
the geodesic model γ̂(xk) at a sequence of ages, xk, and overlaying the corresponding
generated shapes from the kernel regression model at the same ages. The results are
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plotted for ages xk = 20, 44, 66, and 90. Both regression methods give strikingly si-
milar results. The two regression models at other values of ages, not shown, are also
close to identical. This indicates that a geodesic curve does capture the relationship be-
tween age and corpus callosum shape, and that the additional flexibility offered by the
nonparametric regression does not change the estimated trend. However, even though
both methods provide a similar estimate of the trend, the geodesic regression has the
advantage that it is simpler to compute and easier to interpret, from the standpoint of
the R2 statistic and hypothesis test demonstrated above.

5. Probabilistic Models
5.1. Normal Densities on Manifolds
In this section we review probabilistic formulations for geodesic regression and PGA.
Before defining these models, we first consider a basic definition of a manifold-valued
normal distribution and give procedures for maximum-likelihood estimation of its pa-
rameters. There is no standard definition of a normal distribution on manifolds, mainly
because different properties of the multivariate normal distribution in Rd may be ge-
neralized to manifolds by different definitions. Grenander [Gre63] defines a generali-
zation of the normal distribution to Lie groups and homogeneous spaces as a solution
to the heat equation. Pennec [Pen06] defines a generalization of the normal distribu-
tion in the tangent space to a mean point via the Riemannian Log map. The definition
that we use here, introduced in [Fle12], and also used in [JH14, ZF13], generalizes
the connection between least-squares estimation of statistical models and maximum-
likelihood estimation under normally distributed errors.

Consider a random variable y taking values on a Riemannian manifold M, defined
by the probability density function (pdf)

p(y; µ, τ) =
1

C(µ, τ)
exp

(
−
τ

2
d(µ, y)2

)
, (2.17)

C(µ, τ) =

∫
M

exp
(
−
τ

2
d(µ, y)2

)
dy, (2.18)

where C(µ, τ) is a normalizing constant. We term this distribution a Riemannian nor-
mal distribution, and use the notation y ∼ NM(µ, τ−1) to denote it. The parameter
µ ∈ M acts as a location parameter on the manifold, and the parameter τ ∈ R+ acts
as a dispersion parameter, similar to the precision of a Gaussian. This distribution has
the advantages that (a) it is applicable to any Riemannian manifold, (b) it reduces to
a multivariate normal distribution (with isotropic covariance) when M = Rd, and (c)
much like the Euclidean normal distribution, maximum-likelihood estimation of pa-
rameters gives rise to least-squares methods when M is a Riemannian homogeneous
space, as shown next.
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5.1.1. Maximum-Likelihood Estimation of µ
Returning to the Riemannian normal density in (2.17), the maximum-likelihood esti-
mate of the mean parameter, µ, is given by

µ̂ = arg max
µ∈M

N∑
i=1

ln p(yi; µ, τ)

= arg min
µ∈M

N ln C(µ, τ) +
τ

2

N∑
i=1

d(µ, yi)2.

This minimization problem clearly reduces to the least-squares estimate, or Fréchet
mean in (2.2), if the normalizing constant C(µ, τ) does not depend on the µ parameter.
As shown in [Fle12], this occurs when the manifold M is a Riemannian homogeneous
space, which means that for any two points x, y ∈ M, there exists an isometry that
maps x to y. This is because the integral in (2.18) is invariant under isometries. More
precisely, given any two points µ, µ′ ∈ M, there exists an isometry φ : M → M, with
µ′ = φ(µ), and we have

C(µ, τ) =

∫
M

exp
(
−
τ

2
d(µ, y)2

)
dy

=

∫
M

exp
(
−
τ

2
d(φ(µ), φ(y))2

)
dφ(y)

= C(µ′, τ).

Thus, in the case of a Riemannian homogeneous space, the normalizing constant can
be written as

C(τ) =

∫
M

exp
(
−
τ

2
d(µ, y)2

)
dy, (2.19)

and we have equivalence of the MLE and Fréchet mean, i.e., µ̂ = ȳ.
Two properties of the Riemannian normal distribution are worth emphasizing at

this point. First, the requirement that M be a Riemannian homogeneous space is im-
portant. Without this, the normalizing constant C(µ, τ) may be a function of µ, and
if so, the MLE will not coincide with the Fréchet mean. For example, a Riemannian
normal distribution on an anisotropic ellipsoid (which is not a homogeneous space)
will have a normalizing constant that depends on µ. Second, it is also important that
the Riemannian normal density be isotropic, unlike the normal law in [Pen06], which
includes a covariance matrix in the tangent space to the mean. Again, a covariance
tensor field would need to be a function of the mean point, µ, which would cause
the normalizing constant to change with µ. That is, unless the covariant derivative of
the covariance field was zero everywhere. Unfortunately, such tensor fields are not
always possible on general homogeneous spaces. For example, the only symmetric,



i
i

“chapter2” — 2019/2/1 — 1:42 — page 23 — #23 i
i

i
i

i
i

Statistics on Manifolds 23

second-order tensor fields with zero covariant derivatives on S 2 are isotropic.

5.1.2. Estimation of the Dispersion Parameter, τ
Maximum-likelihood estimation of the dispersion parameter, τ, can also be done using
gradient ascent. Unlike the case for estimation of the µ parameter, now the normalizing
constant is a function of τ, and we must evaluate its derivative. We can rewrite the
integral in (2.19) in normal coordinates, which can be thought of as a polar coordinate
system in the tangent space, TµM. The radial coordinate is defined as r = d(µ, y), and
the remaining n − 1 coordinates are parameterized by a unit vector v, i.e., a point on the
unit sphere S n−1 ⊂ TµM. Thus we have the change-of-variables, φ(rv) = Exp(µ, rv).
Now the integral for the normalizing constant becomes

C(τ) =

∫
S n−1

∫ R(v)

0
exp

(
−
τ

2
r2

)
|det(dφ(rv))| dr dv, (2.20)

where R(v) is the maximum distance that φ(rv) is defined. Note that this formula is
only valid if M is a complete manifold, which guarantees that normal coordinates are
defined everywhere except possibly a set of measure zero on M.

The integral in (2.20) is difficult to compute for general manifolds, due to the pre-
sence of the determinant of the Jacobian of φ. However, for symmetric spaces this
change-of-variables term has a simple form. If M is a symmetric space, there exists a
orthonormal basis u1, . . . , un, with u1 = v, such that

|det(dφ(rv))| =
d∏

k=2

fk(r), (2.21)

where κk = K(u1, uk) denotes the sectional curvature, and fk is defined as

fk(r) =


1
√
κk

sin(
√
κkr) if κk > 0,

1
√
−κk

sinh(
√
−κkr) if κk < 0,

r if κk = 0.

Notice that with this expression for the Jacobian determinant there is no longer a de-
pendence on v inside the integral in (2.20). Also, if M is simply connected, then
R(v) = R does not depend on the direction v, and we can write the normalizing con-
stant as

C(τ) = An−1

∫ R

0
exp

(
−
τ

2
r2

) d∏
k=2

|κk|
−1/2 fk(

√
|κk|r)dr,

where An−1 is the surface area of the n − 1 hypersphere, S n−1. While this formula
works only for simply connected symmetric spaces, other symmetric spaces could be
handled by lifting to the universal cover, which is simply connected, or by restricting
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the definition of the Riemannian normal pdf in (2.17) to have support only up to the
injectivity radius, i.e., R = minv R(v).

The derivative of the normalizing constant with respect to τ is

C′(τ) = An−1

∫ R

0

r2

2
exp

(
−
τ

2
r2

) d∏
k=2

|κk|
−1/2 fk(

√
|κk|r)dr. (2.22)

Both C(τ) and C′(τ) involve only a one-dimensional integral, which can be quickly
and accurately approximated by numerical integration. Finally, the derivative of the
log-likelihood needed for gradient ascent is given by

d
dτ

N∑
i=1

ln p(yi; µ, τ) = −N
C′(τ)
C(τ)

−
1
2

N∑
i=1

d(µ, yi)2.

5.1.3. Sampling from a Riemannian Normal Distribution
In this section, we describe a Markov Chain Monte Carlo (MCMC) method for sam-
pling from a Riemannian normal distribution with given mean and dispersion parame-
ters, (µ, τ). From (2.20) we see that the Riemannian normal density is proportional to
an isotropic Gaussian density in TµM times a change-of-variables term. This suggests
using an independence sampler with an isotropic Gaussian as the proposal density.

More specifically, let y ∼ NM(µ, τ−1), and let φ(rv) = Exp(µ, rv) be normal coordi-
nates in the tangent space TµM. Then the density in (r, v) is given by

f (r, v) ∝

exp
(
− τ2 r2

)
|det(dφ(rv))| r ≤ R(v),

0 otherwise.

Notice that the density is zero beyond the cut locus. For the independence sampler,
we will not need to compute the normalization constant. We will then use an isotropic
(Euclidean) Gaussian in TµM as the proposal density, which in polar coordinates is
given by

g(r, v) ∝ r exp
(
−
τ

2
r2

)
.

An iteration of the independence sampler begins with the previous sample (r, v)
and generates a proposal sample (r̃, ṽ) from g, which is accepted with probability

α((r̃, ṽ), (r, v)) = min
{

1,
f (r̃, ṽ)g(r, v)
f (r, v)g(r̃, ṽ)

}
= min

{
1,

∣∣∣∣∣r det(dφ(r̃ṽ))
r̃ det(dφ(rv))

∣∣∣∣∣} , (2.23)

So, the acceptance probability reduces to simply a ratio of the Log map change-of-
variables factors, which for symmetric spaces can be computed using (2.21). The final
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Algorithm 3: Independence sampler for the Riemannian normal distribution
Input: Parameters µ, τ
Draw initial sample (r, v) from g
for i = 1 to S do

Sample proposal (r̃, ṽ) from g
Compute the acceptance probability α((r̃, ṽ), (r, v)) using (2.23)
Draw a uniform random number u ∈ [0, 1]
if r̃ ≤ R(ṽ) AND u ≤ α((r̃, ṽ), (r, v)) then

Accept: Set yi = Exp(µ, r̃ṽ), and set (r, v) = (r̃, ṽ)
else

Reject: Set yi = Exp(µ, rv)

τ = 50 τ = 20 τ = 1
Accept rate = 0.995 Accept rate = 0.991 Accept rate = 0.833

Figure 2.7 Samples from a Riemannian normal density on S 2 for various levels of τ. Samples
are in blue, and the mean parameter, µ, is shown in red.

MCMC procedure is given by Algorithm 3.

5.1.4. Sphere Example
We now demonstrate the above procedures for sampling from Riemannian normal
densities and ML estimation of parameters on the two-dimensional sphere, S 2. Fi-
gure 5.1.3 shows example samples generated using the independence sampler in Al-
gorithm 3 for various levels of τ. Notice that the sampler is efficient (high acceptance
rate) for larger values of τ, but less efficient for smaller τ as the distribution approaches
a uniform distribution on the sphere. This is because the proposal density matches the
true density well, but the sampler rejects points beyond the cut locus, which happen
more frequently when τ is small and the distribution is approaching the uniform dis-
tribution on the sphere.
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τ = 50 τ = 20 τ = 1
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Figure 2.8 Monte Carlo simulation of the MLEs, µ̂ (top row), and τ̂ (bottom row). The true
parameter values are marked in red.

Next, to test the ML estimation procedures, we used the independence sampler
to repeatedly generate N = 100 random points on S 2 from a NS 2(µ, τ) density, where
µ = (0, 0, 1) was the north pole, and again we varied τ = 1, 20, 50. Then we computed
the MLEs, µ̂, τ̂, using the gradient ascent procedures above. Each experiment was re-
peated 1000 times, and the results are summarized in Figure 5.1.4. For the µ̂ estimates,
we plot a kernel density estimate of the points Logµµ̂. This is a Monte Carlo simula-
tion of the sampling distribution of the µ̂ statistic, mapped into the tangent space of the
true mean, TµM, via the Log map. Similarly, the corresponding empirical sampling
distribution of the τ̂ statistics are plotted as kernel density estimates. While the true
sampling distributions are unknown, the plots demonstrate that the MLEs have rea-
sonable behavior, i.e., they are distributed about the true parameter values, and their
variance decreases as τ increases.

5.2. Probabilistic Principal Geodesic Analysis
Principal component analysis (PCA) [Jol86b] has been widely used to analyze high-
dimensional Euclidean data. Tipping and Bishop proposed probabilistic PCA (PPCA)
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[TB99], which is a latent variable model for PCA. A similar formulation was inde-
pendently proposed by Roweis [Row98]. The main idea of PPCA is to model an
n-dimensional Euclidean random variable y as

y = µ + Bx + ε, (2.24)

where µ is the mean of y, x is a q-dimensional latent variable, with x ∼ N(0, I), B
is an n × q factor matrix that relates x and y, and ε ∼ N(0, σ2I) represents error. We
will find it convenient to model the factors as B = WΛ, where the columns of W are
mutually orthogonal, and Λ is a diagonal matrix of scale factors. This removes the
rotation ambiguity of the latent factors and makes them analogous to the eigenvectors
and eigenvalues of standard PCA (there is still of course an ambiguity of the ordering
of the factors). We now generalize this model to random variables on Riemannian
manifolds.

5.2.1. Probability Model
The PPGA model for a random variable y on a smooth Riemannian manifold M is

y|x ∼ NM

(
Exp(µ, z), τ−1

)
, z = WΛx, (2.25)

where x ∼ N(0, 1) are again latent random variables in Rq, µ here is a base point on M,
W is a matrix with q columns of mutually orthogonal tangent vectors in TµM, Λ is a
q × q diagonal matrix of scale factors for the columns of W, and τ is a scale parameter
for the noise. In this model, a linear combination of WΛ and the latent variables x
forms a new tangent vector z ∈ TµM. Next, the exponential map shoots the base point
µ by z to generate the location parameter of a Riemannian normal distribution, from
which the data point y is drawn. Note that in Euclidean space, the exponential map
is an addition operation, Exp(µ, z) = µ + z. Thus, PPGA coincides with (2.24), the
standard PPCA model, when M = Rd.

5.2.2. Inference
We develop a maximum likelihood procedure to estimate the parameters θ = (µ,W,Λ, τ)
of the PPGA model defined in (2.25). Given observed data yi ∈ {y1, ..., yN} on M, with
associated latent variable xi ∈ R

q, and zi = WΛxi, we formulate an expectation max-
imization (EM) algorithm. Since the expectation step over the latent variables does
not yield a closed-form solution, we develop a HMC method to sample xi from the
posterior p(x|y; θ), the log of which is given by

log
N∏

i=1

p(xi|yi; θ) ∝ −N log C −
N∑

i=1

τ

2
d
(
Exp(µ, zi), yi

)2
−
‖xi‖

2

2
, (2.26)

and use this in a Monte Carlo Expectation Maximization (MCEM) scheme to estimate
θ. The procedure contains two main steps:
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5.2.3. E-step: HMC
For each xi, we draw a sample of size S from the posterior distribution (2.26) using
HMC with the current estimated parameters θk. Denote xi j as the jth sample for xi, the
Monte Carlo approximation of the Q function is given by

Q(θ|θk) = Exi |yi;θk

 N∏
i=1

log p(xi|yi; θk)

 ≈ 1
S

S∑
j=1

N∑
i=1

log p(xi j|yi; θk). (2.27)

Hamiltonian Monte Carlo (HMC) [DKPR87] is a powerful gradient-based Markov
Chain Monte Carlo sampling method that is applicable to a wide array of continuous
probability distributions. It rigorously explores the entire space of a target distribution
by utilizing Hamiltonian dynamics as a Markov transition probability. The gradient
information of the log probability density is used to efficiently sample from the higher
probability regions.

Next, we derive an HMC procedure to draw a random sample from the poste-
rior distribution of the latent variables x. The first step to sample from a distribution
f (x) using HMC is to construct a Hamiltonian system H(x,m) = U(x) + V(m), where
U(x) = − log f (x) is a “potential energy”, and V(m) = − log g(m) is a “kinetic energy”,
which acts as a proposal distribution on an auxiliary momentum variable, m. An initial
random momentum m is drawn from the density g(m). Starting from the current point
x and initial random momentum m, the Hamiltonian system is integrated forward in
time to produce a candidate point, x∗, along with the corresponding forward-integrated
momentum, m∗. The candidate point x∗ is accepted as a new point in the sample with
probability

P(accept) = min(1, exp(−U(x∗) − V(m∗) + U(x) + V(m)).

This acceptance-rejection method is guaranteed to converge to the desired density f (x)
under fairly general regularity assumptions on f and g.

In the HMC sampling procedure, the potential energy of the Hamiltonian H(xi,m) =

U(xi) + V(m) is defined as U(xi) = − log p(xi|yi; θ), and the kinetic energy V(m) is a
typical isotropic Gaussian distribution on a q-dimensional auxiliary momentum vari-
able, m. This gives us a Hamiltonian system to integrate: dxi

dt = ∂H
∂m = m, and dm

dt =

− ∂H
∂xi

= −∇xiU. Due to the fact that xi is a Euclidean variable, we use a standard “leap-
frog” numerical integration scheme, which approximately conserves the Hamiltonian
and results in high acceptance rates. Now, the gradient with respect to each xi is

∇xiU = xi − τΛWT {dzi Exp(µ, zi)†Log(Exp(µ, zi), yi)}. (2.28)

M-step: Gradient Ascent
In this section, we derive the maximization step for updating the parameters θ =

(µ,W,Λ, τ) by maximizing the HMC approximation of the Q function in (2.27). This
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turns out to be a gradient ascent scheme for all the parameters since there are no
closed-form solutions.

Gradient for τ:
The gradient term for estimating τ is

∇τQ = −N
C′(τ)
C(τ)

−
1
S

N∑
i=1

S∑
j=1

d(Exp(µ, zi j), yi)2,

where the derivative C′(τ) is given in (2.22).

Gradient for µ:
From (2.26) and (2.27), the gradient term for updating µ is

∇µQ =
1
S

N∑
i=1

S∑
j=1

τdµ Exp(µ, zi j)†Log
(
Exp(µ, zi j), yi

)
.

Gradient for Λ:
For updating Λ, we take the derivative w.r.t. each ath diagonal element Λa as

∂Q
∂Λa =

1
S

N∑
i=1

S∑
j=1

τ(Waxa
i j)

T {dzi j Exp(µ, zi j)†Log(Exp(µ, zi j), yi)},

where Wa denotes the ath column of W, and xa
i j is the ath component of xi j.

Gradient for W:
The gradient w.r.t. W is

∇W Q =
1
S

N∑
i=1

S∑
j=1

τdzi j Exp(µ, zi j)† Log(Exp(µ, zi j), yi)xT
i jΛ. (2.29)

To preserve the mutual orthogonality constraint on the columns of W, we project the
gradient in (2.29) onto the tangent space at W, then updating W by shooting the geo-
desic on the Stiefel manifold in the negative projected gradient direction, see the detail
in [EAS98].

The MCEM algorithm for PPGA is an iterative procedure for finding the subspace
spanned by q principal components, shown in Algorithm 4. The computation time
per iteration depends on the complexity of exponential map, log map, and Jacobi field
which may vary for different manifold. Note the cost of the gradient ascent algorithm
also linearly depends on the data size, dimensionality, and the number of samples
drawn. An advantage of MCEM is that it can run in parallel for each data point.
Since the posterior distribution (2.26) is estimated by HMC sampling, to diagnose the
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Algorithm 4: Monte Carlo Expectation Maximization for PPGA
Input: Data set Y , reduced dimension q.
Initialize µ,W,Λ, σ.
while gradient is larger than some threshold do

Sample X according to (2.28)
Update µ,W,Λ, σ by gradient ascent.

convergence of the PPGA MCEM algorithm, we run parallel independent chains to
obtain univariate quantities of the full distribution.

5.2.4. PPGA of Simulated Sphere Data
Using the generative model for PGA (2.25), we forward simulated a random sam-
ple of 100 data points on the unit sphere S 2, with known parameters θ = (µ,W,Λ, τ),
shown in Table 2.1. Next, we ran the maximum likelihood estimation procedure to
test whether we could recover those parameters. We initialized µ from a random uni-
form point on the sphere. We initialized W as a random Gaussian matrix, to which
we then applied the Gram-Schmidt algorithm to ensure its columns were orthonormal.
Figure 2.9 compares the ground truth principal geodesics and MLE principal geode-
sic analysis. A good overlap between the first principal geodesic shows that PPGA
recovers the model parameters.

One advantage that the PPGA model has over the least-squares PGA formulation
is that the mean point is estimated jointly with the principal geodesics. In the stan-
dard PGA algorithm, the mean is estimated first (using geodesic least-squares), then
the principal geodesics are estimated second. This does not make a difference in the
Euclidean case (principal components must pass through the mean), but it does in the
nonlinear case. To demonstrate this, we give examples where data can be fit better
when jointly estimating mean and PGA than when doing them sequentially. We com-
pared the PPGA model with PGA and standard PCA (in the Euclidean embedding
space). The noise variance τ was not valid to be estimated in both PGA and PCA.
The estimation error of principal geodesics turned to be larger in PGA compared to
PPGA. Furthermore, the standard PCA converges to an incorrect solution due to its
inappropriate use of a Euclidean metric on Riemannian data. A comparison of the
ground truth parameters and these methods is given in Table 2.1.
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µ w Λ τ

Ground truth (−0.78, 0.48,−0.37) (−0.59,−0.42, 0.68) 0.40 100
PPGA (−0.78, 0.48,−0.40) (−0.59,−0.43, 0.69) 0.41 102
PGA (−0.79, 0.46,−0.41) (−0.59,−0.38, 0.70) 0.41 N/A
PCA (−0.70, 0.41,−0.46) (−0.62,−0.37, 0.69) 0.38 N/A

Table 2.1 Comparison between ground truth parameters for the simulated data and the MLE of
PPGA, non-probabilistic PGA, and standard PCA.

p
v

J(x)

M

Figure 2.9 Left: Jacobi fields; Right: the principal geodesic of random generated data on unit
sphere. Blue dots: random generated sphere data set. Yellow line: ground truth principal
geodesic. Red line: estimated principal geodesic using PPGA.
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