Medical Imaging : Image Filtering & Segmentation

Hervé Delingette

Epione Team

Herve.Delingette@inria.fr

Course teachers

• Hervé Delingette

• Xavier Pennec

Inria Research Centers

Ínnin_

Epione Research Team

- Biomedical Image/Data Analysis, Machine Learning
- 2. Imaging & Phenomics, Biostatistics

1.

- 3. Computational Anatomy, Geometric Statistics
- 4. Computational Physiology & Image-Guided Therapy
- 5. Computational Cardiology & Image-Based Interventio

Course Schedule

https://www-sop.inria.fr/asclepios/cours/MVA/

Liste of courses, slides, course notes and additional material

- Tuesday Oct 3, 2023, 14:00-17:15 (ENS Saclay, salle 2E30) Introduction to Medical Image Acquisition, Image Filtering [Hervé Delingette]
- Tuesday Oct 10, 2023, 14:00-17:15 (ENS Saclay, salle 3E34) Riemanian Geometry and Statistics [Xavier Pennec]
- Tuesday Oct 17, 2023, 14:00-17:15 (ENS Saclay salle 2E30) Analysis in the space of Covariance Matrices [Xavier Pennec]
- Tuesday Oct 24, 2024: 14:00-17:15 (ENS Saclay, salle 1B18) Basis of Image Segmentation [Hervé Delingette]
- Tuesday Nov 7, 2022: 14:00-17:15 (ENS Saclay, salle 2E30) Image Segmentation based on Clustering and Markov Random Fields [Hervé Delingette]
- Tuesday Nov 14, 2022, 14:00-17:15 (ENS Saclay, salle 3E34) Shape constrained image segmentation and Biophysical Modeling [Hervé Delingette]
- Tuesday Nov 21th : 14:00-17:15 (ENS Saclay, salle 1N82) Image Registration [Xavier Pennec]
- Tuesday Nov 28th : 14:00-17:15 (ENS Saclay, salle 2E30) Diffeomorphic Registration and Computational Anatomy [Xavier Pennec]
- Tuesday Dec 5th, 2023, 14:00-17:15 (Visio) Exam [Hervé Delingette, Xavier Pennec]

Course Exam

- 4 components :
 - Scientific Article Study :
 - 10 min oral presentation
 - 10 min Questions & Answers
 - 5-6 page report presenting the paper and putting it in perspective.
 - Implementation (optional)
 - May be performed in pairs or triplets depending on class size
 - Multiple choice Quizz : 10-15 questions

Medical Imaging Modalities

0.1Introduction
0.2 Tomography
0.3 Nuclear medicine
0.4 MRI
0.5 Echography

1895

First Nobel prize in Physics in 1901

Roentgen

Todays's Medical Imaging modalities

Source :T. Peters

Dynamic Images (4-D)

CT Scan

MRI

INRIA 2007 - CardioViz3D

Bio-signals

ECG

Temperature

Pressure Sensor

Per-operative

Main Medical Image Modalities

MRI

Density and structure of protons

PET / SPECT

X-ray absorption density

X-Scan

Ultrasound / echography

Density of Radioactive isotopes

Variations of acoustic impedance

More imaging modalities

- X-ray
- Magnetic resonance imaging
 - anatomic, functional, angiographic, diffusion, spectroscopic, tagged
- Transmission Tomography (X Scan)
- Nuclear Medicine :
 - Positron emission tomography (PET)
 - Single photon emission tomography (SPECT)
- Ultrasonography
- Histological Imaging, confocal in-vivo microscopy, molecular imaging,...

Characteristics of medical images

Intensity values are related to <u>physical tissue</u> <u>characteristics</u> which in turn may relate to a <u>physiological phenomenon</u>

Volumetric medical images

• Very often medical images are volumetric

Example of volumetric images : CT-scan (Scanner)

Size: 512 x 512 x 128 Resolution: 0.5 x 0.5 x 1 mm

Medical Imaging Modalities

0.1Introduction
0.2 Tomography
0.3 Nuclear medicine
0.4 MRI
0.5 Echography

Principle of (T International (1))

Principle of CT Imaging (2)

• Input X-Ray intensity : N_i

$$N_o = N_i e^{-\int_{-\infty}^{+\infty} \mu(x) dx}$$

- Exponential attenuation :
- Objective :
 - measure $\mu(x)$ = absorption coefficient of X-ray

Computed Tomography

- Principle :
 - Reconstruct *n* dimensional function (image) from projected data of (*n*-1) dimension
- Radon Transform (1917)
 - "Two dimension and three dimension object can be reconstructed from the infinite set of projection data".

Radon transform

•Scanner measures 1D projection of X-ray absorption values : $-log\left(\frac{N_i}{N_o}\right) = \int_{-\infty}^{+\infty} \mu(x) dx$

• Parameterize line by angle α and offset s

$$R\mu(\alpha,s) = \int_{L(\alpha,s)} \mu(x) dx = \int_{-\infty}^{+\infty} \mu(t\sin\alpha + s\cos\alpha, s\sin\alpha - t\cos\alpha) dt$$

• Radon Transform :

Fourier Slice Theorem

1D Fourier Transform of Projected slice of 2D field $\mu(x,y)$

Reconstruction Principle

• Backprojection based on inverse Radon Transform

 $n_{\alpha} = (\cos \alpha, \sin \alpha) \qquad \qquad \widetilde{\mu(x)} = \frac{1}{2\pi} \int_{\alpha=0}^{2\pi} R\mu(\alpha, n_{\alpha}, x) d\alpha$

 In practice use filtered back-projection to remove blur

Model Image

Simple Backprojection Filtered Backprojection

Basic principle of CT

-Reconstruction of 2 dimensional image-

Spiral (3D) CT

- X-ray tube and detectors rotate 360 deg
- Patient table is continuously moving
- Produce an helix of image projections
- 3D reconstruction

Development of Computed Tomography

History

CT Scan Imaging

- Measure absorption coefficient of X-ray rel tissue
- Invasive image modality (ionizing rays)
- Absolute Hounsfield Unit

- HU(water)=0, HU(air)= -1024, HU(Bone)=175 to 3000
- Coded on signed 12 bits

$$HU(\mu) = 1024 \frac{\mu - \mu_{\text{water}}}{\mu_{\text{water}}}$$

ullet

CT Scan

Medical Imaging Modalities

0.1Introduction

0.2 Tomography

- 0.3 Nuclear medicine
 - 0.4 MRI

0.5 Echography

Principle of nuclear imaging

Introduction into the patient body of a couple (vector molecule / radio-isotope)

- Vector Molecule \Rightarrow Targeted organ (drug,
protein, blood cells...)Radio-isotope \Rightarrow Allow the detection of th
 - $\Rightarrow \quad \text{Allow the detection of the} \\ \text{molecule}$
- Emission imaging : the targeted organ emits radioactivity
 - \Rightarrow Reflect the metabolic function of the organ
 - \Rightarrow Metabolic or functional imaging
 - \rightarrow Local relative concentration (relative)
 - \rightarrow Concentration evolves along time

Nuclear Medicine / radioactivity

Image: Nucleus (Rutherford)Nucleon = proton or neutronA= nucleon numberIsobarsFor A = constantZ = proton numberIsotopesFor Z = constantN = neutron numberIsotonesFor N = constant

Radioactivity (Curie)Alpha Particle:Helium nucleus (2 protons + 2 neutrons)Beta Particle :1/ electron β -2/ positon β + \rightarrow 2 photons γ (511 kev)Gamma Particle:Photon

Nuclear Medicine

• Density of radioactive tracers

Single photon gamma imaging (SPECT)

Radio-isotopes (Gamma particles)

Single photon emitters							
Molecule	Half-	Energy	Generation				
	Life						
Technetium Tc 99m	6 h	140 kev	Portative generator				
Iodine I 131	8 j	360 kev	Reacteur (fission)				
Iodine I 123	13 h	159 kev	Cyclotron (industry)				
Thallium Tl 201	73 h	80 kev	Cyclotron (industry)				

Krypton (Kr 81 m), Gallium (Ga 67), Indium (In 111), Xenon (Xe 133, gaz)

SPECT = Single Photon Emission Computed Tomography

Single photon gamma imaging

Heart (myocardium perfusion) Stress/rest exam

perfusion/ perfusion \Rightarrow Healthy areaperfusion/ (hypo/non-)perfusion \Rightarrow Zone at risk (ischemia)(hypo/non-)perfusion/ (hypo/non-)perfusion \Rightarrow Infarcted Area

Positon emission tomography (PET)

Radio-isotopes

Emission : positron (β +)

- \rightarrow Annihilation
- \rightarrow 2 photons of 511 kev at 180°

Positron emitters

Molecule	Half-life	Generation
Carbon ¹¹ C	20 mn	cyclotron (medical)
Nitrogen ¹³ N	10 mn	cyclotron (medical)
Oxygen ¹⁵ O	2 mn	cyclotron (medical)
Fluor ¹⁸ F	112 mn	cyclotron (medical)

Physiol	ogical	mol	ecul	es ,
water	U	\rightarrow	H	$[_{2}O^{15}]$

glucose \rightarrow fluoro-deoxyglucose (F¹⁸DG)

Positon emission tomography (PET)

PET Scan

https://www.youtube.com/watch?v=GHLBcCv4rqk
Medical Imaging Modalities

0.1Introduction
 0.2 Tomography
 0.3 Nuclear medicine
 0.4 MRI
 0.5 Echography

Magnetic resonance imaging

• Density and structure of protons

Magnetic resonance imaging

Sagittal

Coronal or Frontal

Axial or Transverse

dimension: 256 x 256 x 128 résolution: 1x1x1.5 mm

MRI: a few dates

1946: MR phenomenon - Bloch et Purcell
1952: Nobel prize - Bloch et Purcell
1950-1970: development but no imaging
1980: MRI feasibility
1986 - ...: real development

MRI: One modality with multiple sequences

Anatomic MRI: T1, T2, Proton Density weighted images Angiographic MR Functional MR: cognitive studies Diffusion MR: brain connectivity MR Spectroscopy

No absolute quantification

Magnetism at the molecular level

Electric charges in motion magnetic momentum Precession motion in a magnetic field

Bloch's Equations

• Link between spin and magnetic momentum

$$\vec{\mu} = \gamma \, \vec{\omega}$$
 $\vec{\mu}$ Nuclear magnetic momentum
 $\vec{\mu} = \gamma \, \vec{\omega}$ γ Gyromagnetic ratio
 $\vec{\omega}$ Angular momentum(spin)

•Fundamental motion equation

$$I\frac{d\vec{\omega}}{dt} = \vec{m}$$
 \vec{m} Total Momentum (mechanics)

. In a magnetic field
$$ec{m} = ec{\mu} imes ec{B}$$

Bloch's Equations Thus $\frac{d\vec{\mu}}{dt} = \gamma \left(\vec{\mu} \times \vec{B}\right)$ $\vec{B}_0 = \begin{pmatrix} 0 \\ 0 \\ B_0 \end{pmatrix} \longrightarrow \vec{\mu} = \begin{pmatrix} \mu_t \cos\left(\omega_L t + \varphi\right) \\ -\mu_t \sin\left(\omega_L t + \varphi\right) \\ \mu_{z_0} \end{pmatrix}$

Larmor's frequency $\omega_L = \gamma B_0$

Magnetism at the macroscopic level

Resonance

Magnetic Resonance / excitation

Electro-magnetic field at Larmor's frequency $\omega_L = \gamma B_0$

Hydrogen protons enter into resonance

Flip of the macroscopic momentum M

Magnetic Resonance / relaxation

Return to equilibrium / B_0 : time constant T_1

$$\frac{dM_z}{dt} = \gamma \left(\vec{M} \times \vec{B}\right)_z - \frac{M_z}{T_1}$$

Spin dephasing: Time constant T₂

$$\frac{dM_{x,y}}{dt} = \gamma \left(\vec{M} \times \vec{B}\right)_{x,y} - \frac{M_{x,y}}{T_2}$$

Magnetic Resonance / relaxation						
TISSUE	T1 (ms)		T2(ms)			
Muscle	550	870	45			
Heart	580	865	55			
Liver	325	490	50			
Kidney	495	650	60			
Spleen	495	650	58			
Fat	215	262	85			
Brain, grey matter	655	920	100			
Brain, white matter	540	785	90			

MRI basics in video

https://www.youtube.com/watch?v=djAxjtN_7VE

MRI / frequency selection

•X encoding by frequency

•Y encoding by phase

•Several measures are necessary

Anatomical MRI

Proton density

 T_1

 T_2

Angiographic MRI

INFLOW Phases

Maximum intensity projection (MIP)

Angiographic MRI

X-Scan / radiology Selective injection of a contrast agent in one artery

Tagged MRI

Avantages of MRI

- Non-Invasive: MRI does not depend on potentially harmful ionizing radiation, as do standard x-ray and CT scans.
- MRI scans are not obstructed by bone, gas, or body waste, which can hinder other imaging techniques
- Can see through bone (the skull) and deliver high quality pictures of the brain's delicate soft tissue structures
- Images of organs and soft tissues

Drawbacks of MRI

- Pacemakers not allowed
- Not suitable for claustrophobic persons
- Tremendous amount of noise during a scan
- MRI scans require patients to hold very still for extended periods of time. MRI exams can range in length from 20 minutes to 90 minutes or more.
- Orthopedic hardware (screws, plates, artificial joints) in the area of a scan can cause severe artifacts
- High cost

Medical Imaging Modalities

0.1Introduction0.2 Tomography0.3 Nuclear medicine0.4 MRI0.5 Echography

Echography

• Local variation of acoustic impedance

Echography

Gall Blader

Summary of Main Medical Imaging Modalities CT-Scanner

Measure

Density and structure of Protons

Nuclear Imaging

Measure

Density of injected isotopes

Measure

Density of X-Ray absorption

Measure

Variations of

Acoustic

Impedance

Ultrasound

Medical Imaging Classification (1)

• Dimensionality

Medical Imaging Classification (2)

• Anatomical vs functional Imagery

Multiparametric Images

MRI T1, T2

Angio MRI

DTI

fMRI

1. Medical Image Representation & Visualization

1.1 Image representation : discrete or continuous 1.2 Image Visualization

Medical Imaging Classification (1)

• Dimensionality

Medical Imaging Classification (2)

• Anatomical vs functional Imagery

MRI

Anatomical

contrast agent

PET scan Functional

Hervé Delingette

71

Medical Image Processing vs Computer Vision

	Computer Vision	Medical Image Processing		
•••	Projective Geometry	Complex Image Formation		
	Occluding Objects	Large Datasets		
	Intensity depends on lighting	Patient Images		
00	Easy to acquire	Cartesian Geometry		
		Statistics Information		
	Low dimensionality	Intensity links to physics		
		Patient Images		

Discrete Image Representation (1)

• Domain is considered as a 2D/3D regular grid 2D Array I

I[col][row]

3D Array I

I[plane][col][row]

Discrete Image Representation (2)

- Pixel / Voxel values can be :
 - Discrete :
 - Integer : char (MRI), signed short (CT-scan)
 - Labels of structures
 - Continuous :
 - Float / double
- Images can be seen as a graph
 - Nodes are pixel / voxel centers
 - Edges between adjacent elements
 - Grid Duality

Neighborhood Different types of neighborhood in 2D

4 -neighborhood

8 -neighborhood

6 -neighborhood

Neighborhood

- Some generalizes to higher dimensions
- Corresponds to a choice of metric norm

Neighborhood

- 3 types of neighborhood for a 3D image :
 - 6-neighborhood : adjacency through faces
 - 18-neighborhood : adjacency through faces and edges
 - 26-neighborhood : adjacency through faces and edges and vertices

Continuous Image representation

- Image seen as 2D or 3D Fields : $I(x), x \in \mathbb{R}^n, n = 2,3$
- Requires to define interpolation functions

Image Domain		
Image Value	Discrete	Continuous
Discrete	Array of Int	Field of Integer
Continuous	Array of Float	Field of Float

1D Interpolation functions

Source : Joe Michael Kniss - Direct Volume Rendering

Bilinear Interpolation (2D Field)

• Bilinear Interpolation : 3 linear interpolations

$$I(u, v) = (1 - u)(1 - v)I_{i,j} + u v I_{i+1,j+1} + (1 - u)v I_{i,j+1} + u (1 - v)I_{i+1,j}$$

Trilinear Interpolation (3D Field)

• 7 linear interpolations

$$I(u, v, w) = (1 - u)(1 - v)(1 - w)I_{i,j,k} + u v w I_{i+1,j+1,k+1} + (1 - u)v w I_{i,j+1,k+1} + u (1 - v)w I_{i+1,j,k+1} + (1 - u)v (1 - w)I_{i,j+1,k} + u (1 - v)(1 - w)I_{i+1,j,k} + u v (1 - w)I_{i+1,j+1,k} + (1 - u) (1 - v)w I_{i,j,k+1}$$

Hervé Delingette

Image interpolation

Hervé Delingette

Medical Image Format

- Industrial standard :
 - **DICOM** : Digital Imaging and COmmunications in Medicine
 - More a communication standard for interoperability than an image format
- Academic standard :
 - Must support volumetric images, generic voxel format (short, double, array of double), voxel size, metadata
 - ITK based : MHA, MHD
 - NIFTI : Neuroimaging Informatics Technology Initiative

1. Medical Image Representation & Visualization

1.1 Image representation : discrete or continuous

1.2 Image Visualization

- MedInria : https://med.inria.fr
 - Free & Multiplatform, plugin based.

Menu

• Windowing

- CT images are coded on 2 bytes (2¹⁶ values).
- The human eye can only see a limited (200 ?) number of shades of grey !

 Need to perform windowing i.e. map a range of intensity values in the [0,255] range

- Windowing
 - Predefined windows on CT as Hounsfield units are absolute

• Volumetric Images

How to visualize a 3D image on a 2D screen ?

John Doe Image ste: 256x256 EmptyStudy X: 128 px value: 77 Abdomen.small X: 138.24 mm Y: 138.24 mm Α EmptyStud Abdomen.sma WW/WL: 1205 / 224 zoom: 100 Silce: 42 / 96 Location: 82 mm Axial View John Doe EmptyStudy Abdomen.small John Doe EmptyStudy Image size: 256x96 Voxel size: 1.08x_2 sze: 1.08x 2 X: 128 px Y: 41 px value: 77 px Y: 41 px value: 77 Abdomen.smc X: 138.24 m WW/WL zoom: 100 Silce: 129 / 25Hervé Delingette zoom: 100 Silce: 129 / 256 Location: 138.24 r

Multiplanar Reformating

- Volumetric Images
 - Radiological Convention to name the 3 orthogonal slices.
 - Axial, coronal and saggital

