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Image
Segmentation




Segmentation in clinical workflow

* Example of cardiovascular Imaging

Cardiovascular Imaging Tasks L
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Segmentation
Algorithms

* Various taxonomy of segmentation algorithms :
* Discrete vs Continuous
* Bottom-up vs Top-down approaches
* Boundary vs Region approaches
e Supervised or non supervised

Intensity or Shape based



Discrete vs Continuous Image

Representation

I(x) Image Domain or Image Value can be either discrete or continuous

Discrete

Continuous

Array of Int

Array of Float Field of Float

Discrete Image Representation

Continuous Image Representation

Image as a 2D or 3D array
Representation I[row][col]
Image can be seen as a graph

Image as a 2D or 3D field I(x)
Requires definition of Interpolation and
Extrapolation functions :

* Nearest Neighbor Interpolation

* Bi(Tri)Linear Interpolation

e (Cubic)Spline Interpolation



Discrete vs Continuous Image Segmentations

Segmentation with Continuous Image

Segmentation with Discrete Image Representation .
Representation

Define a bipary Val.ria.ble zn €10,1} Define Regions {€;} inside which a structure
* 2z, = 1ifpixel is in foreground is defined

e z, = 01f pixel is in background

Can be generalized to a set of Labels £ = {0,1, ..., M} Deﬁne. close or open contours {011 } _
Separating background from structure 1

Segmentation obtained through discrete/ combinatorial Segmentation obtained through variational
optimization principles
(calculus of variations...)




Bottom-up Approach




Top-down approach




Region vs Boundary
Methods

Image Region-based Boundary-bgsed
segmentation segmentation



Supervision of Image Segmentation

* Supervised Image Segmentation Problems:
» Several examples of image segmentations are available
 Methods : machine learning, multi-atlas registration
* Very costly to produce annotated data

* Unsupervised Image Segmentation Problems :
* No examples are available

* Models of image content and shape are used to produce
image segmentation

* Weakly supervised Segmentation Problems :
* Only partial labels are available

* Semi supervised Segmentation Problems :
* Fully annotated images and images with no annotations

* Mixed supervised Segmentation Problem :
* Fully annotated images and weakly annotated images
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Supervision of Image Segmentation

Weak Annotations Strong Annotations Unlabeled Images

Mixed Supervised Supervised Semi-Supervised
Learning Learning Learning
Supervised Learning |/Ir M

Machine Learning
Input Image Algorithm Output: Segmented Image / Classification

Hervé Delingette 12



Image Segmentation Approaches

Thresholding

Intensity
Only

Contrast Agent
in CT

Intensity-only ﬁ
) ) Classification
Lesions in CT / MR L it white matter

No Typical Shape Typical Shape
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Image Segmentation Approaches

Intensity and

connexity
between regions

Vessels / tumors / bones /lesions

Grey / White matter
in MR

No Typical Shape Typical Shape
. Camille Couprie, Leo Grady, Laurent Najman and Hugues Talbot , "Power watershed: A Unifying Graph-

iR A e e T L0 LRl ORio SN AP A Ree, vol. 33 »
Avache. Spatial Decision Forests for MS Lest%l, %ﬁ%‘?ﬁﬂ‘i‘%’é‘é‘ (%Ml)lltl- hannel Magnetic Resonance

Images. Neurolmage, 57(2):578-90, July2011



https://www-sop.inria.fr/asclepios/bibWP/Author/GEREMIA-E.html
https://www-sop.inria.fr/asclepios/bibWP/Author/CLATZ-O.html
https://www-sop.inria.fr/asclepios/bibWP/Author/MENZE-BH.html
https://www-sop.inria.fr/asclepios/bibWP/Author/KONUKOGLU-E.html
https://www-sop.inria.fr/asclepios/bibWP/Author/AYACHE-N.html
https://www-sop.inria.fr/asclepios/bibWP/Author/AYACHE-N.html

Image Segmentation Approaches

Intensity
and shape

Heart

Liver Bones

No Typical Shape Typical Shape
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Image Segmentation Approaches

Intensity
and shape

Heart

Liver Bones

No Typical Shape Typical Shape
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Validation of Segmentation Algorithm

* Intrinsic Validation : comparison against

* Observation of Physical Phantoms
 Difficult and expensive to build
* May not be representative of real data

* Simulated images (MNI Brain Atlas,...)
e Difficult to simulate artefacts
e Segmentation of experts

* Large inter and intra variability of segmentation across experts
* May not be representative of population variability

18



Phantoms for Validation of Segmentation




Simulation of Medical Images

Tc-99M Myocardial SPECT X-ray CT

o0 M

NCAT Patient
In 11 ProstaScmt SPECT

NCAT Patient

MRI Sim

SPECT Image simulation

20



Segmentation of experts

0.5T MR of prostate Peripheral zone and segmentations




Measuring the Validity of Segmentation




Measuring the Validity of segmentation

Confusion Matrix

Expert Segmentation (Ground truth)

Present Absent
Segmented True positive False positive
Algorithm = foreground (Type I error)
Segmentation
Not segmented= . :
background False negative True negative
(Type II error)

Sensitivity = A/ (A+C)

Specificity =D / (B+D)

Sensitivity (or recall): proportion of
voxels in the structure which have
been segmented by the algorithm

Specificity: proportion of voxels that are not in
the structure which have not been segmented by
the segmentation algorithm 23



Measuring the Validity of segmentation

Expert Segmentation (Ground truth)

Present Absent
Segmented True positive False positive
Algorithm = foreground
Segmentation False negative True negative
Not segmented=
background

PPV = A/ (A+B)

NPV =D / (C+D)

Positive Predictive Value (PPV) or precision :
The likelihood that a voxel segmented as
foreground i1s actually a voxel belonging to the
structure

Negative Predictive Value (NPV): The
likelihood that a voxel not segmented as

foreground i1s actually a background voxel
24



Measuring the Validity of segmentation

e Often there is an imbalance between foreground
and background

Balanced Imbalanced

* When background >> foreground then specificity
and NPV are very close from 1

* Choose metrics independent from background size
» Sensitivity (recall) and PPV (precision)

Hervé Delingette 25



Comparing Segmentation Algorithms with ROC
Curve (Receiver Operating Characteristic)

Often a segmentation algorithm depends on one
parameter (a threshold)

ROC plot for 3 classifiers
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ROC curves (Receiver Operating
Characteristic)

* Use ROC curve to
optimize the algorithm

* Pick the value that leads
to a point closest from G- l--a
the upper left corner T
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 Estimate performance of an
algorithm by its area
under the curve (AUCROC)
which is independent from
the choice of a threshold
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Other measures of segmentation
Performance

| 2|X Y]
* Dice Index : > ‘X‘ + ‘Y‘ X = ground truth
‘ XA Y‘ binary object
* Jaccard Index : S = ‘X UY‘ Y = segmented

binary object
* These are region measures

of segmentation performance

Dice C o _ 2*xTP
ice Coef ficient = FN+ (2+TP) + FP
d Index = e
Jaccard Index = &b pN T Fp
* May not be always consitvity =7
TP + FN
relevant o
T€Cl$l0n—w

TP - true positive

TN - true negative Manual Segmentation D
FP - false positive

FN - false negative Automated Segmentation [:]




Boundary measure of segmentation
nerformance

* Hausdorff Distance between surfaces
d (X Y ) = Max__, Min yeya’ist(x, y)
* Symmetric Hausdorff Distance between surfaces
d(X,Y)+d(Y,X)

2

e Often consider 95% quantile of
(symmetric) Hausdorff distance

29



Validation of Segmentation Algorithm (2)

Extrinsic Validation : comparison against other
segmentation algorithms

* Only possible when no ground truth exists (Inter-patient
registration of images) or when it is not available

e Estimate consistency, repeatability and size of
convergence basin

30
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Thresholding &
Mathematical Morphology

 Main Idea :

A structure Is characterized by its intensity
values and its connectivity

‘ Valid for highly contrasted structures
- Basic Algorithm :
- Thresholding between 2 grey levels (windowing)

- Mathematical morphology operations
- Erosion and Dilation
* Closure & Opening
- Extraction of connected components




Extraction of Connected
Components

- Input : a binary image & a choice of neighborhood

- Qutput : for each object voxel provides the index of
the connected component to which that voxel belongs

4-connectivity 8-connectivity

Input

- Algorithm performed efficiently in 2 passes
- Often sort components by size



Application

Brain Segmentation of MR
Image

Original slices




Application

Brain Segmentation of MR
Image

4 slices after
thresholding




Application

Brain Segmentation of MR
Image

4 slices after a
single 3D erosion




Brain Segmentation of MR
Image

4 slices after
extraction of the
largest connected

component

Application




Application

Brain Segmentation of MR
Image

4 slices after 3D
conditional dilation




Application




Brain Extraction

[ Original Image

q

Thresholding

l

(

Erosion

!

[ Eroded Image

J

!

L

Thresholded Image ]

Extract largest

connected component

A 4

—  (Conditional Dilatation

[ Core Image

]7

l

[Brain Segmented Image]




Limitations of
Thresholding

- Difficulty to select threshold, e.g. from grey-
level histogram (Otsu’s method)

- Create staircase effects since assignment of
one voxel to one class

- Does not take into account the effect of partial
volume effect (PVE)

- Does not assume any spatial correlation of
voxel intensity (isolated voxels)

‘ Use of cla551ﬁcat10n methods

::::::::::::::::::::::




Interest of Image
Classification

Noise & Partial volume effect

Tissu hépatique

Liver from

CT image g _
with 3 ‘ "= Vaisseaux

classes :

Lesion, J ‘. A Lésions )
vessels & i g
parenchyma

Brain MRI
Corrected
Image with _~ image
_ _ bias
MR Bias Field artefact >

y 4
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Probability Reminder

- Conditional Probability
i) LG - S0

- Total Probability

discrete

P(A)= Y P(ANB,) = ) PAIBP(B) = ) P(AB,)

n

continuous

p(A) = j p(AIB, )p(B,)dB,
B

- Bayes Law

P(B|A)P(A4)

P(A|B)= P(B)




Conditional & Marginal probability

- Distribution of a pair (x,y) of random
variables

Marginal Probability p(y) = [ p(x,y) dx Marginal Probability p(x) = [ p(x,y)dy

p(Y)

o
o N
L /
v/
N
Yy
o s
4 %
! } A5
{ 0 *
%, L. o
e 5 L 4
l".- i . g
o RN
URTEREAL D
e

(x)d

Conditional Probability p(y[x=-2)



Distance between distributions

- How similar are 2 probability distribution
functions ?
- Kullback-Leibler Divergence or relative
entropy: b.(rl) = Zp(l) 1ogQ8
* Non symmetric
 Always positive
 Null iff the two distributions are equal

 Hellinger distance
PPl =3 ) (VP@ -~ V2@)’



Generic Probabilistic Imaging
Model

Os

Labelling Process Imaging Process \@
p(2165) | px120) |

Fundamental assumption : Image intensities depends on voxel class

Parameters 65 and 6; may be parameters or random variables and are unknown

y 4

: informatics / mathematics



Labelling Process

Generic Probabilistic Imaging
Model

p(Z|6s)

Notations :

* 2z, label of voxel n .
One in K coding z,,;, = 1 if voxel n *
belongs to class k .

Zy 1s a vector of K binary variables

Z = {z,} set of image labels

O set of label parameters (e.g. atlas
related parameters, shape parameters)

p(XlZ, HI)

Imaging Process

Notations :

Xy, Intensity vector of voxel n of dimension d
X = {x,} set of image intensities

0; set of imaging parameters (e.g. Gaussian
mixture parameters)

y 4

: informatics / mathematics



Hypothesis on Labelling Process

"z

« Prior p(Z|0s) z, =

Znk
» By construction ), p(z,x = 1) = X Znk =1
-« Common choices :

- Random labeling : uninformative prior

- Homogeneous prior (same probability for all voxels):
P(zne = 1) = p(Zme = 1) = my P(zn) = Xk Znk Ty = 2 " T

- Labels from Atlas registration

- Labels from parametric model




Segmentation Problem as
Maximization of probabillity

Segmentation is an inverse problem consisting in
estimating labels Z , and parameters 6; and 65 from
the knowledge of Intensities X O

Posterior probability :

_ pX|Z,6p)p(Z|65s)
p(Z|X,6s,0;) = > X101.09) through Bayes Law 0, \

Likelihood - @

- Likelihood p(X|Z, 6,) is the probability of observing the data
given the label and image parameters

Marginal likelihood or Evidence

e p(X|0,,65) =), p(X|Z,6,)p(Z|6;) is a) is only a function of
parameters 6; and 6 thus suitable for i) optimization of
parameters and ii) for model selection.

It is often untractable but can be approximateg-y a lower
informatics,mathematics

bound e 4 /a/_.



Segmentation Problems

- Hard Segmentation :
- Objective is to estimate Z, i.e provide one
label per voxel
- Soft Segmentation (aka classification)

- Objective is to estimate posterior probability
of each voxel p(z,,;, = 1|X) such that they
sum to 1

p(X|Z,6,)p(Z|6s)
2.z P(X|Z*,0)p(Z*|05)
- Require estimating parameters 6; and 6,

p(Z|XI HS) 8[) —

informatirs,mathematics
-~ g %



Inference approaches

- Point estimates :

- Maximum Likelihood For random variables
- Maximum a posteriori & parameters

- Posterior estimates
- Exact inference
- Variational Bayes
- Stochastic Sampling

For random variables
only

informati athematics



Maximum Likelihood @

- Can be used for parameters or random

variable O
0, = arg maxp(X|Z,0,) Maximum Likelihood
91 For image parameters
Z = arg maxp(X|Z,6,) Maximum Likelihood
4 For label

(6,2) = argmax p(X|Z, 6;)
Z,0p



Maximum a posteriori

- Maximize posterior probability or joint \
probability o @
N - _ pX|z,6Pp(Z|0s) _ p(X,Z|601,65)
Bayes Law p(z|x,6,,6,) = e =

(Z 0;, 95) = arg maxp(X|Z,0;) p(Z|6s)
Z,0;1,0¢
Y Y

Maximum A Posteriori Imaging Term Label Term

- |f labels and intensity are independent

(p(Z2) =1lnp(z0), (p(X) =[] p(xn))

then equivalent to assigning a Iabel to
each voxel —




Posterior estimates

- Exact posterior in simple cases
p(Z‘X) HI) 85)5 p(HI|X), p(HS‘Z)
- Approximate posterior distribution :

- Variational Bayes : seek q(Z) as
approximation of p(Z|X, 6;, 65) which
minimized Dy, (p(Z|X, 6}, 65)11q(Z))

- Stochastic sampling (e.g. Gibbs sampling,
MCMC)



General Taxonomy of methods

Combination of difference inference methods for different variables

Maximum
likelihood

Maximum a
posteriori

Exact Posterior
Variational Bayes

Stochastic
Sampling



Notation Reminder

« Kisthe numberofclasses : K > 1
« N is the number of voxels

dis the dimension of the feature vector x,,

p(z, = 1|6s) is the prior on the label of class
K at voxel n

p(z, = 1|x,) is the posterior probability of
having label k at voxel n

p(x,,, Znk) 1S the joint probability of having
voxel intensity x,, and label k

p(x = 116;, 65) is the marginal likelihood
p(nk = 116),Z, ) is the likelihoog/,, =775~



Example 1 : Multivariate
Gaussian Image

- Hypothesis

- All voxels are independent : p(X|0;) =
[Inp(xn|0;) and p(Z) = 1, p(z,)=1
- Only one class K=1 !l Everywhere z,,; = 1

- Voxel intensities x,, are vectors :

 For instance intensity, gradient, second
derivatives

- Multi sequence MR images : PD, T1, T2, Flair
e p(x,|0;) is a multivariate Gaussian

y 4
informatirs,mathematics
v V4 b



Gaussian Distribution

- We assume that for a given class of
tissue k, the intensity follows a Gaussian
Distribution

N2
P(I\py, o) = N U|uy, ox) = . exp ( U~ ) )

2 2
/ \ N 2107 Tk

Standard deviation

mean



Multivariate Gaussian

- We suppose that at each voxel there is
a feature vector x of size d

» Introduce mean vector u, covariance
matrix £ as dXxd positive definite matrix

1

Jamdz P (_%(x AR “))

\

Covariance Determinant of
Matrix Covariance Matrix

N(x|w2) =

Mean
Vector



Example 1 : Maximum Likelihood

For multivariate Gaussian 8; = {u ,X }
Objective : given image X, estimate
mean u and covariance X

Equivalently maximize the log likelihood

Nl (2
5 In T) —

N
Inp(X|u,X) = —EIH\Z\

N
1
E 2 (xn — H)Tz_l(xn — )
n=1



Vector and Matrix Derivation

xTij
2
= Ax

- For any matrix A O

5111‘/1‘ (-1)7 e

- For symmetrlc Matrix A

* For any vector x
a(

d(xTA- y)
0A

—A Txyt AT



Maximum Likelihood Solution

- Maximizing w.r.t. the mean gives the
sample mean

N
1
HmL = Nz Xn
n=1

Maximizing w.r.t covariance gives the
sample covariance

N
1
Ly = N 2 (2 — ppr) O — .UML)T
n=1



Example 2 : Gaussian Mixture

- Hypothesis :

- All voxels are independent : p(X|Z2) = [1,, p(x,,|2;,)
and p(Z) — Hn p(Zn)

* More than one class K > 2 @

- Voxel intensities x,, are vectors (2)

- Label Priors are unknown but homogeneous :
Vn,mp(zp = 1) = p(Zme = 1) = i

o p(xp|zZnx = 1) = N (x,|6;) is a multivariate
Gaussian

- Notations : Qk = {,le, Zk} 60 = {Hk, ﬂk}
Os = i} 0; = 1Ok}



Gaussian Mixture

o p(xXnl|zn) = Xk Znk N (x| 6k)
- Marginal likelihood obtained by law of
total probability

p(n) = ) Palz)P(zn) = ) T (01

k
- Mixing coefficients m;, are homogeneous



Joint Probabillity

- Graphical model which reflects
the fact that Z explains X

)
1
Xn ;

-
N
4

- Define the joint probability

| —

p(xn'znk =1) = p(xnlznk — 1)p(an =1) = T[kN(xnlgk)

p(Xp, Zy) = z Znk TN (X3 | Ok)

k

informati athematics
Dy b



Sampling a Gaussian Mixture

- To generate a data point:

- first pick one of the components with
probability

- then draw a sample x; from that component
following Gaussian law with parameter 6,

- Repeat these two steps for each new
data point

informatirs,mathematics
v b 4 b



Mixture of 3 Gaussians

1 ' 1

iR

0 : .
0 0.5 1 00 05 1

Contour of probability

distribution Surface Plot

y 4
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Sampled Gaussian Mixture
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Gaussian Mixtures &
posterior probabilities

- Marginal Likelihood

pC) = ) p(IDP() = ) mN (I, %)

k=1

- Use Bayes law to obtain the posterior
probabilities

p(xnlznk — 1)P(an = 1) _ nkN(xnl.uk»Zk)
p(xn) Xi=1 T N (xnlu;, %)

p(an — 1|xn) —



Posterior Probabilities
(colour coded)

0.5 AR S o

0 05 1

Posterior Probability Map Dense Posterior Probability Map

y 4
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Gaussian Mixture & Images

- |f x iIs the image intensity then p(x) can
be estimated with the normalized
histogram

Prol;azzi)lity
. =
L_ /\ >

Intensity x

Intensity

Histogram Estimation of pdf on x
After kernel-based density
Estimation (Parzen windowing)

Image

y 4
informatics,mathematics
A —



Gaussian Mixture & Histogram

- Assume that the probability p(x) can be
decomposed into a sum of Gaussian
distributions

Probability (1}\/211.11st51an
1xture AN IR
p(x) FEAV/ AN
p(x) o~ 4
\
> >

Intensity x

Intensity x



Gaussian Mixture & Histogram

- Interpretation of posterior probability

. . . OP
distributions p(z, = 1|x) = OPk
P(x) as
Sum of Gaussian
Gaussian no 2 ‘ |
Gaussian no 3
Gaussian no 1 P Y
P2
7
0 Pl

Intensity x

y 4
: informatics , mathematics



Problem to solve

T e—

- Given
» Image X={x;} i=1..N
« Number of classes K
- What are :

- Gaussian distribution parameters of each class
0; = {0k} = {uk, 2k}

- Mixture probabilities {m; }

- Posterior probabilities

P(Znk = 1|xn, 0) 6 ={6), 7, }




Marginal Likelihood Function

Define the marginal likelihood as the probability of having
the data, knowing the parameters

N
A(z,0)=px|10)=]]pr(,06)
n=1
Or the (marginal) Log-likelithood L

L(m,0) = log A(1r,0) = Yy log(2p N (Xn; 1 0% )



Maximization of Log Likelihood 7

- Classical approach :
- Write log-Marginal Likelihood of data as a function of 6

- Coordinate ascent : optimize with respect to each
parameter 6; successively

Differentiating the log likelihood with
and set equal to zero gives

X 7, G DI _
'uk =l T, G(x AL 2 )

Giving a non linear function of the unknown parameters.
Cannot be solved in closed form.

informatirs,mathematics
-~ %
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Expectation Maximisation
Algorithm

- |terative approach for estimating
parameters of (Gaussian) Mixture
parameters

* (General Idea :

* New criterion : Add unknown variable u
(posterior) and add constraint (KL divergence)

- Alternate maximization performed in closed
form : equivalent to lower bound maximization

y 4
informatics,m athematics
%



Alternate maximisation

- Replace Log-Likelihood with a criterion easier
to optimize but with additional unknowns

- Log-(marginal) likelinood :
L(B) = lOgA(@) — Zn lng(ane) — Zn log(Zk ﬂkN(xn;.uk'O-k))

- New criterion F(0,u):

« Add u = {u,;} as unknown. u is a vector of u,,,
which is the posterior probability

F(6,u) = L(6) — Dy (ul|p(z]x))
- By maximizing F with respect to u,

Unk = P(Znk = 1]|x,)



Why is it easier to optimize
F(O,u)?

- General result :

- X = observed random variable
Z = hidden random variable
Joint probability p(x,, z,) = p(ralza)p(za) = p(zalxn)P (x)
Constraint on uy,;,: Y U = 1
Log likelihood : 1) = Y ogpeen) = 3> unilogpen)
New criterion : " "

F(H: u) = Zn Zk Unk log p(xn) - Zn Zk Unk log unk/p(znk |xn)

F(H: u) = Zn Zk Unk log p(xn» an) — Zn Zk Unk lOg Unk

We have « relaxed » the optimization problem by introducing informatics g mathematics
. e b4
a new unknown variable aA—



Interpretation
- New criterion involves 2 terms :

F(O,u) = Zn Zk Uny log p(xnk' an) - Zn Zk Unk log Uy

\ } \ }
| |

Q(8,u) HI ()

« F(6,u) is the variational lower bound

- -F(6,u) is the variational free energy= average energy -
entropy

* Q(0,u) = Xn Lg Uni log p(xng, Zni) = Ey(logp(X, Z)) is the
expectation of the complete likelihood

e H(u) = =Xy Xk Unk log uyy, is the entropy of the
approximate posterior probability

 Q(0,u) is easier to optimize wrt 8 because it involves
complete likelihood = likelihood of observed and hidden

y 4
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Evidence Lower Bound

@ Hidden

- General result :
Observed

e For any inverse problem where Z is the
hidden variable and X observed variable:

log p(X) — Dy (ullp(Z1X))
= E,(logp(X,Z)) + H(u)

- Variational lower bound :
log p(X) = E, (logp(X,Z)) + H(u)




Case of Gaussian Mixtures

- Log likelihood
L(0) = log A(8) = Xnlog(Xy eV (Xn; Uk, 0%))
- Function of parameters :

Q6,u) = Z Z Ung log T N (X | g, L)
n k

- Note that we have sum of log instead of
log of sums !

» Criterion F(6,u) = Q(8,u) + H(w)is
known as Hathaway criterion



EM Algorithm

- The algorithm optimizes alternatively
between u and 6 = coordinate ascent

F(6,u) = L(8) — Dy (ullp(zlx)) = Q(6,u) + H(w)
- Constraints : Y 7, =1 Yu, =1
. E-step ' k

« maximize F(6,u) wrt u

TN (x 2
Compute|Up, = = kN (xn | g, Zx)
D=1 Tk N (n | Uk, Zk)

- Equivalent to minimizing KL divergence between u
and posterior probability -

informatirs,mathematics
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M-Step

» M-step : maximize F(6,u) or equivalently
Q(8,u) wrt 8 = {65, 0,}

* Optimize with respect to mean y,

aQ

dug

 Optimize with respect to covariance Z;

2Q
0%

=0

=0

=)

=)

: ‘,unk xn
_ n=l1
_ N
: :unk
=1

Ay

N
Z unk (xn - ﬂk )('xn - /’lk )T
— n=l1

DI

N
: :unk
i=1

- Optimize with respect to prior probabilities

0Q
aTL'k

=0

=)

53
7Tr = N~ U,k




EM Algorithm for GMM

- lterative scheme

- Make initial guesses for the parameters

» Alternate between the following two
stages:

1. E-step: evaluate posterior ug

_ T[kN(xnl.uk Zk)
k 1 e NV (e [ e, Zie)
2. M-step: update parameters (u,2,my)
using ML results

Upk =

N N
Z” K Xn Z_:unk ('xn_/’lk)('xn_ll“lk)T 7T, = %

N

n=1 —
N
i=1

M-

unk




EM as lterated Lower Bound
Maximisation

- Equivalent view of EM algorithm :

LoglLikelihood

- E-step leads to u = p(z|x) and therefore makes
L(6;) = F(6;,u).

e F(0,u) is a lower bound of Log-likelihood L(6)
since Kullback Leibler divergence is positive

- M-step optimizes F(6,u) with respect to 8 which is
easier to maximize than log likelihood

/ Log Likelihood L(8)

L(6) = F(O,u)

F(6,u) = L(8) — Dg, (ullp(zlx)) = Q(6,w) + H(w)

y 4

Lower|Bound F(6;,u)

informatics,mathematics
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Example of EM with
2 Gaussian distributions

N
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EM on Iris data

slelhe. £ o
A 2 ’
0 OO0 COn V; sl wer wer v
v A
B D 10 / L * 19y
) SPESL D s pue b

A2 L) 9
A

0O CD

equal prior, spherical equal prior, ellipsoidal

: informatics , mathematics




Class Priors

- Initial hypothesis : homogeneous priors p(z,,, = 1) =
m, IS estimated

- Priors may be given by atlas registered on images. In
this case 6 are the registration parameters

Prior p(z,,3 ) on

Atlas Prior p(z,, ) on  Prior p(z,; ) on . .
cerebro spinal fluid

orey matter White matter

T1 template gray matter white matter csf
. Courtesy of D. Vandermeulen
Affinely Registered
Atlas Example : BrainWeb at MNi

http://www.bic.mni.mcgill.ca/brainweb/

informatirs,mathematics
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EM for Image Intensity

Classification

- Use the EM algorithm
[Dempster77,Wells94] .

Expectation-Maximisation

Responsabilities  u;(X;)

p, ?\lm‘/\?\

______



Brain Tissue

Classification
- Typical application : use MR cerebral

Courtesy of D. Vandermeulen

\4

\/
Cerebro-spinal fluid Grey matter White matter

Scalar feature

3 Classes = Intensity

—



EM Classification - Algorithm

Starting estimates for
responsibilities

Y

\b\‘\\ B / =

S, //;//;r-“ llll :
Il-t:t‘!‘ Iﬁi‘-‘ﬂl £

_ TR LU T T L LA

\4

Compute Gaussian Compute Responsibilities
parameters from : from Gaussian
Responsibilities parameters

\ 4

Converged ?
No Yes,




Stage 1: Expectation

Compute
| Responsibilities

______

. ﬂkN(xnlllk,Zk)
k 1 Tk N(xnl.uk;zk)

Courtesy of D. Vandermeulen



Stage 2: Maximization

i
i
1
|
n \
'“\ y
f vy
Yo
! T
IRV
/1'\\\\ [’l :
/ \ /i \
/ - i
/ \
N _____.‘,/ \\ _____
E u,, x, distribution
_ n=1
/le — N
: :unk
n=1
Y T
Zunk (xn _/le )(xn _/le)
Courtesy of D. Vandermeulen >, = n=1 -
Z“nk

1 N
— informatics,m athematics
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lterations EM

— histogram
= = white matter
- | =" grey matter
----- CSF
= total mixture model

Courtesy of K. Van Leemput
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Results

— histogram

= = white matter

- | =+ grey matter

----- CSF

— total mixture model

White matter

1 = argmlaxp(l\d,é)
Courtesy of K. Van Leemput

informatics , mathematics
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GMM and K-Means

- GMM with :
- Isotropic variance X, = € Id

: : 1
» Uniform prior : m;, = ~

- Expectation of complete Lik. : o) = zzun"'xn ul”
- Same as Fuzzy-Cmeans with m=1
- Same as K-means when :

c €-0(
exp (=[x, — e l|?/2€)

e U, € {0,1} T S exp (< [1xn — w117/26)

- 1, € {0,1}



K Means functional

- K Means algorithm consists in
optimizing the functional :

o J(r,u) = 11\{:1 Zlk(=1 Tk 1%n — .Uk”2
- With the constraint that r,,;, € {0,1} and
Zl,gzlrnk =1 Vn
- Jcan be seen as

* minimizing the correlation between the assignment
and the distance to cluster center

- Minimizing the compactness of the clusters




K Means optimization

- Perform alternate optimization :

- Consider b, fixed and optimize on r,;
» For each data x,, choose which r, is 1

E-Step ro = 1if k= arg minj!lxn — Ul
0 otherwise

- Consider r, fixed and optimize on p,

N
aJ
6_= ernk(ﬂk —x,) =0
M-Step i n=1
Zg:lrnkxn
Ui = N
n=1rnk



Good Initial Seeds (kmeans++)

- Choose the centers as far away as

possible from each other but in a
random manner.

- Algorithm :

- Choose one center at random u,
- Whilek <K

- Compute d, = arg min;||x, — ,u]-”Z the minimum
distance of data x,, to the already chosen centers

« Pick u;, among data with probability proportional to d,,

* k=k++

David Arthur and Sergei Vassilvitskii. k-means++: The advantages of careful seeding. “Proceedings of the eighteenth annual ACM-SIAM
symposium on Discrete algorithms*, 2007 , pp. 1027-1035 7

informatics,mathematics
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Issues with EM for GMM

Presence of bias field in MR images
EM leads to only local maxima of Log-likelihood

Functional admits trivial solutions (zero covariance
centered at data points) that can lead to bad estimate

The covariance matrix X, should be invertible which is
not guaranteed (may use pseudo-inverse)

How to choose the number of classes

How to make the estimation robust
to outliers ?



