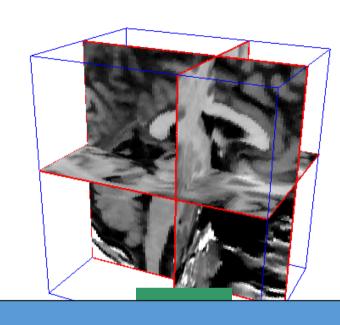
Medical Imaging: Image Segmentation & Classification

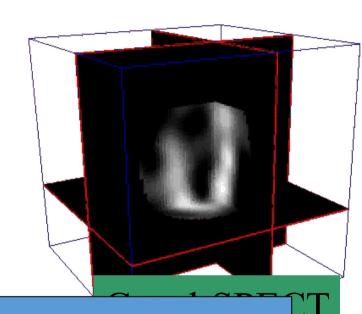
Hervé Delingette Epione Team Herve.Delingette@inria.fr

3. Medical Image Segmentation

- 3.1 Taxonomy of segmentation algorithms
- 3.2 Validation of segmentation algorithms
- 3.3 Deterministic Filtering & Thresholding Approaches
- 3.4 Probabilistic Imaging Model
- 3.5 Expectation Maximisation for GMM
- 3.6 Image classification with bias field
- 3.7 Variational Bayes EM
- 3.8 STAPLE Algorithm

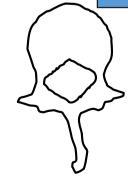
Image Segmentation

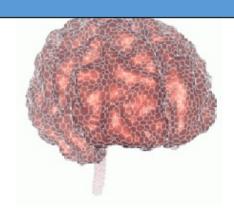


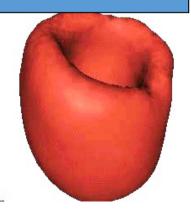


X- Ra

<u>Isolate a Region of Interest in a Medical Image</u>

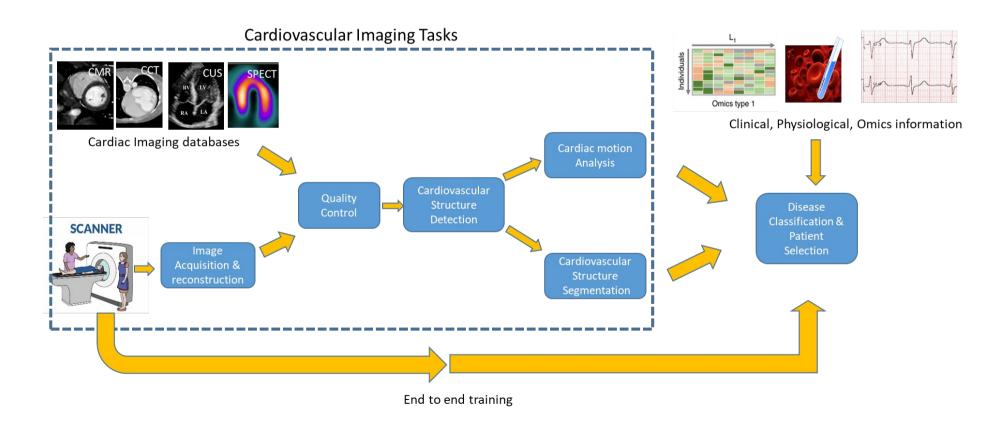






Segmentation in clinical workflow

Example of cardiovascular Imaging



Segmentation Algorithms

- Various taxonomy of segmentation algorithms :
 - Discrete vs Continuous
 - Bottom-up vs Top-down approaches
 - Boundary vs Region approaches
 - Supervised or non supervised
 - Intensity or Shape based

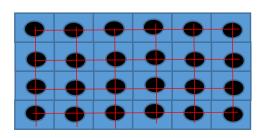
Discrete vs Continuous Image Representation

I(x) Image Domain or Image Value can be either discrete or continuous

Image Domain Image Value	Discrete	Continuous
Discrete	Array of Int	Field of Integer
Continuous	Array of Float	Field of Float

Discrete Image Representation

- Image as a 2D or 3D array
- Representation I[row][col]
- Image can be seen as a graph



- Image as a 2D or 3D field I(x)
- Requires definition of Interpolation and Extrapolation functions:

Continuous Image Representation

- Nearest Neighbor Interpolation
- Bi(Tri)Linear Interpolation
- (Cubic)Spline Interpolation

Discrete vs Continuous Image Segmentations

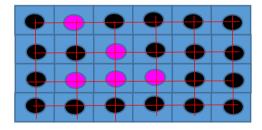
Segmentation with Discrete Image Representation

Segmentation with Continuous Image Representation

Define a binary variable $z_n \in \{0,1\}$

- $z_n = 1$ if pixel is in foreground
- $z_n = 0$ if pixel is in background

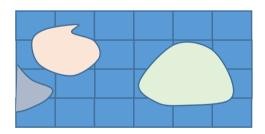
Can be generalized to a set of Labels $\mathcal{L} = \{0,1,...,M\}$



Segmentation obtained through discrete/ combinatorial optimization

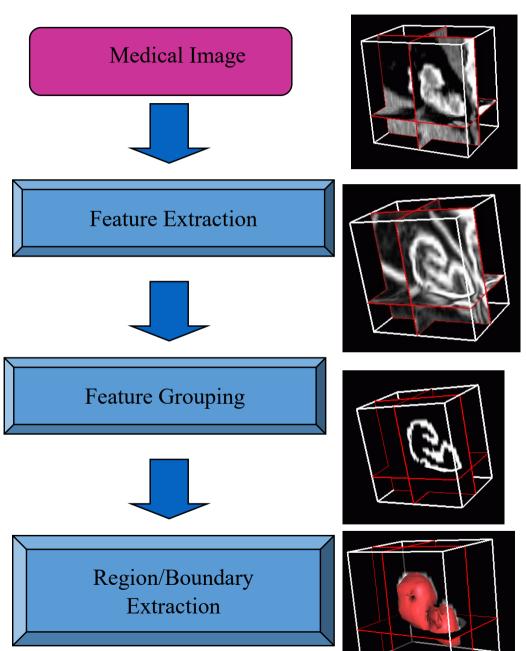
Define Regions $\{\Omega_i\}$ inside which a structure is defined

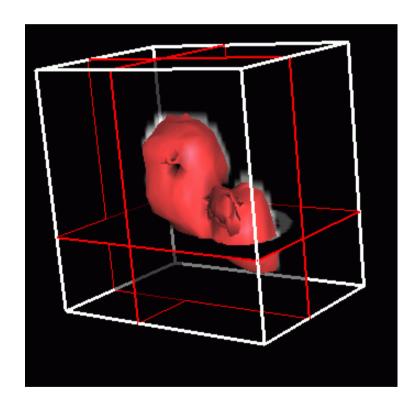
Define close or open contours $\{\partial \Omega_i\}$ Separating background from structure i



Segmentation obtained through variational principles (calculus of variations...)

Bottom-up Approach



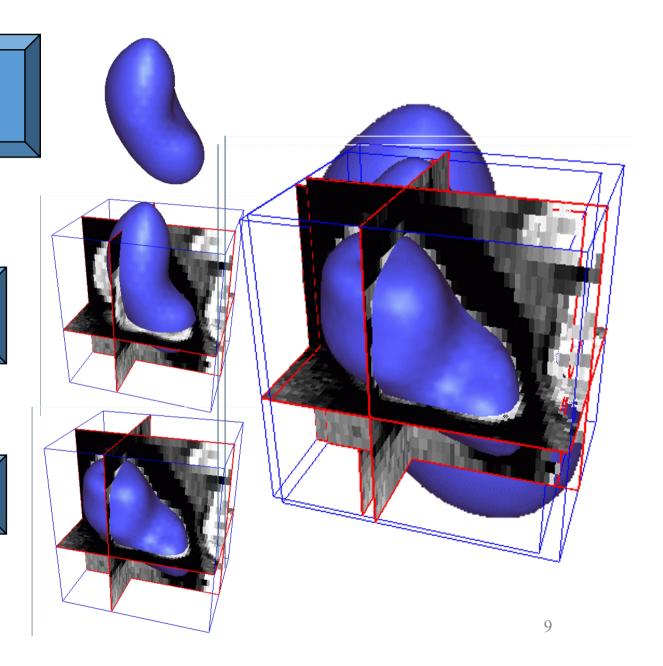


Top-down approach

Model Construction : Shape and Appearance

Model Initialisation

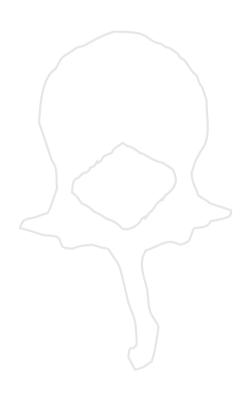
Model Optimization



Region vs Boundary Methods

Image

Region-based segmentation

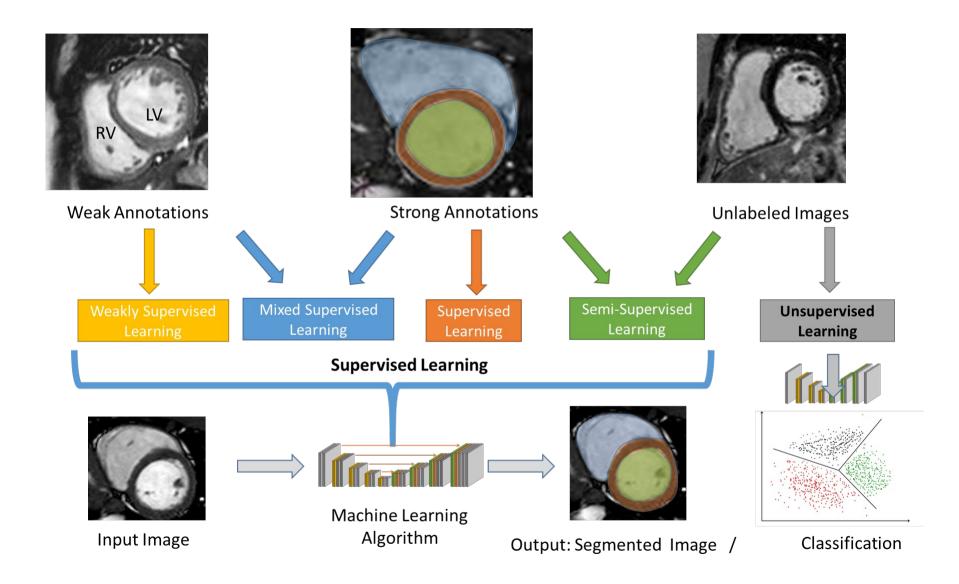


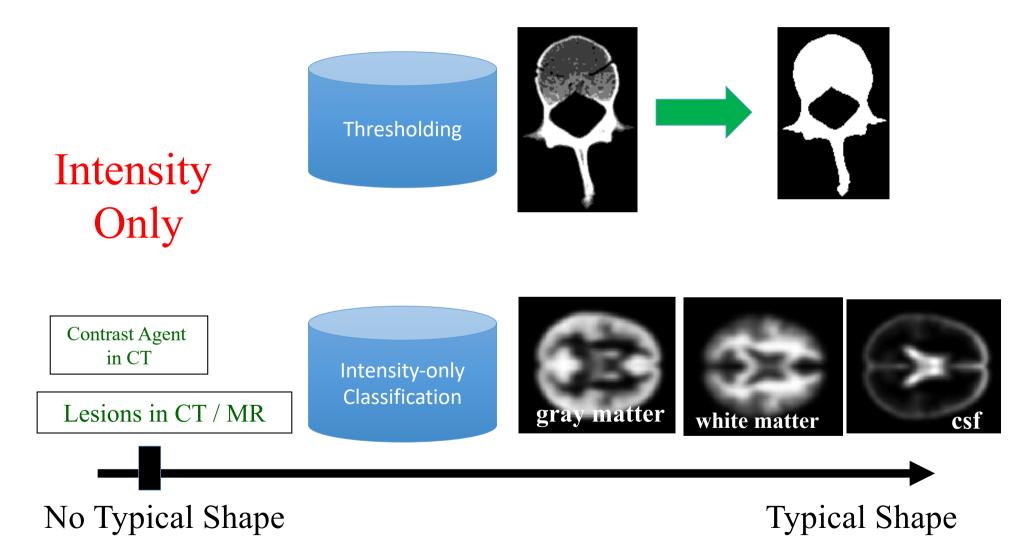
Boundary-based segmentation

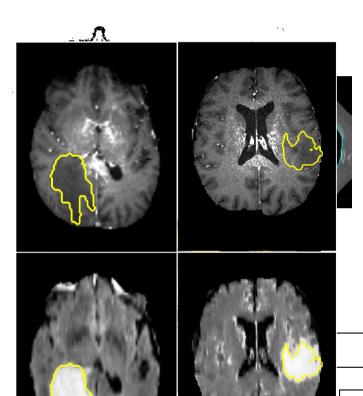
Supervision of Image Segmentation

- Supervised Image Segmentation Problems:
 - Several examples of image segmentations are available
 - Methods: machine learning, multi-atlas registration
 - Very costly to produce annotated data
- Unsupervised Image Segmentation Problems :
 - No examples are available
 - Models of image content and shape are used to produce image segmentation
- Weakly supervised Segmentation Problems :
 - Only partial labels are available
- Semi supervised Segmentation Problems :
 - Fully annotated images and images with no annotations
- Mixed supervised Segmentation Problem :
 - Fully annotated images and weakly annotated images

Supervision of Image Segmentation







Intensity and connexity between regions

Mathematical Morphology

MRF (graph cuts, RW, watershed)

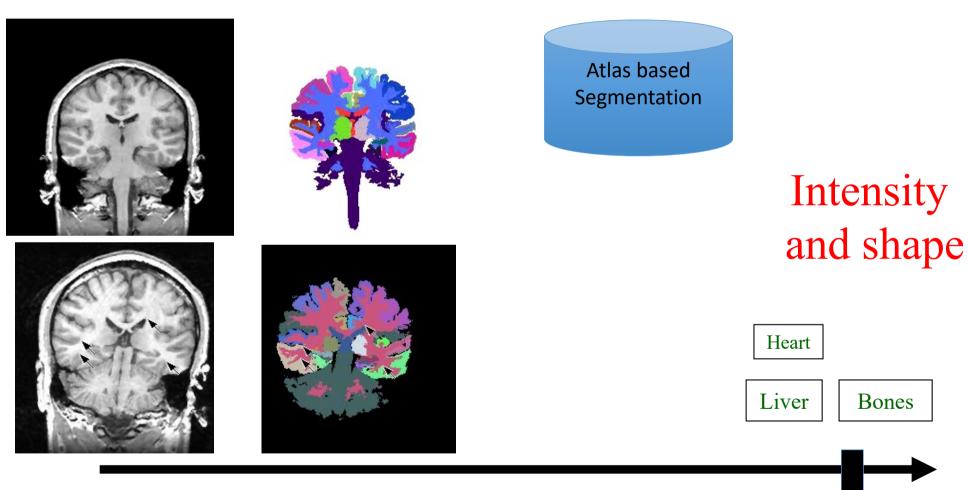
Vessels / tumors / bones /lesions

Grey / White matter in MR

Machine Learning (Deep Learning, RF, SVM, ,ML)

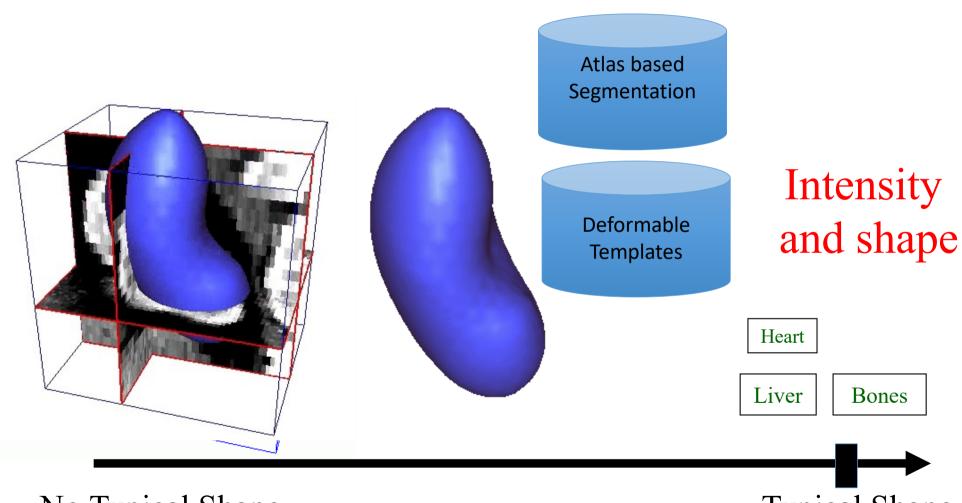
No Typical Shape

Typical Shape



No Typical Shape

Typical Shape



No Typical Shape

Typical Shape

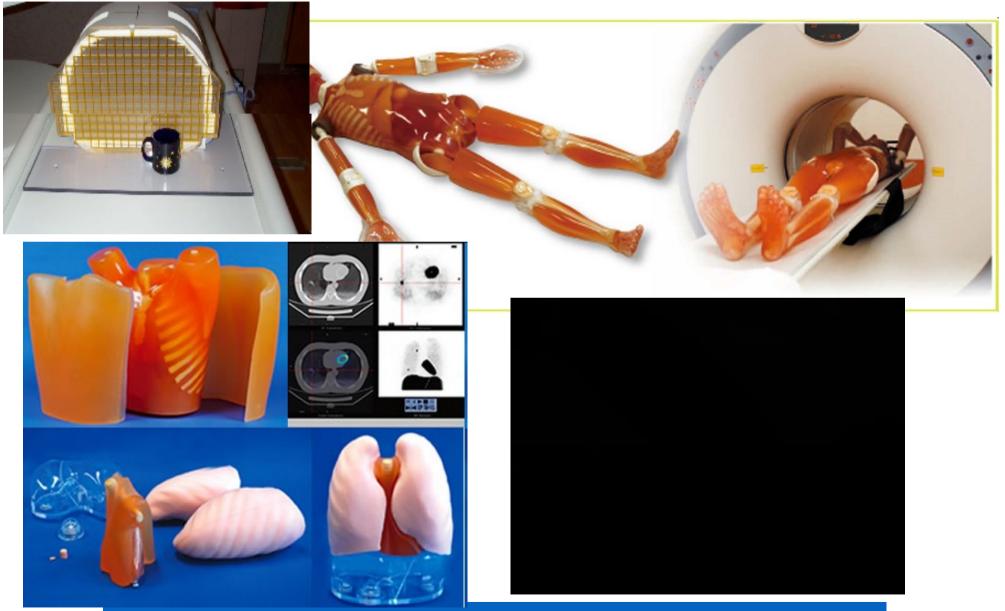
3. Medical Image Segmentation

- 3.1 Taxonomy of segmentation algorithms
- 3.2 Validation of segmentation algorithms
- 3.3 Deterministic Filtering & Thresholding Approaches
- 3.4 Probabilistic Imaging Model
- 3.5 Expectation Maximisation for GMM
- 3.6 Image classification with bias field
- 3.7 Variational Bayes EM
- 3.8 STAPLE Algorithm

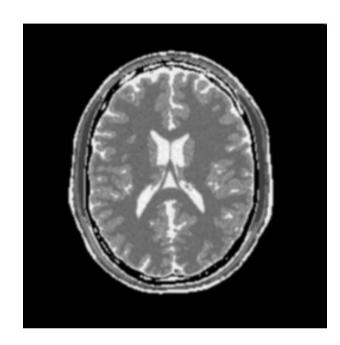
Validation of Segmentation Algorithm

- Intrinsic Validation : comparison against
 - Observation of Physical Phantoms
 - Difficult and expensive to build
 - May not be representative of real data
 - Simulated images (MNI Brain Atlas,...)
 - Difficult to simulate artefacts
 - Segmentation of experts
 - Large inter and intra variability of segmentation across experts
 - May not be representative of population variability

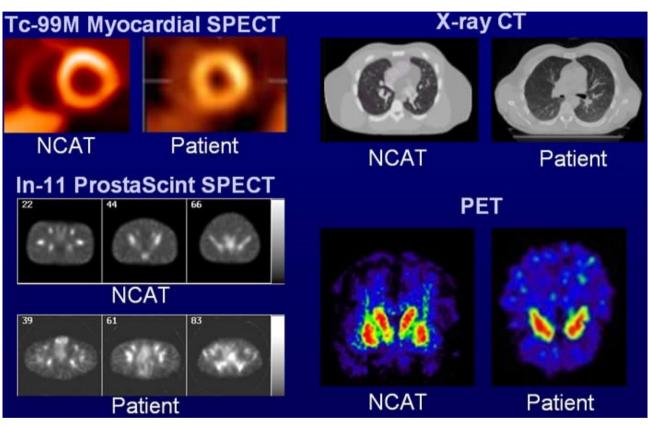
Phantoms for Validation of Segmentation



Simulation of Medical Images

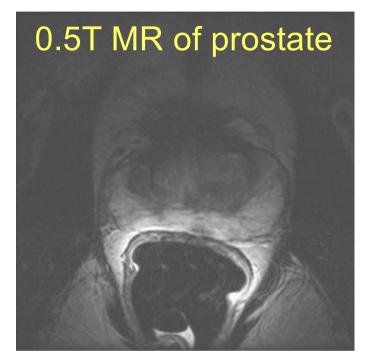


MRI Sim

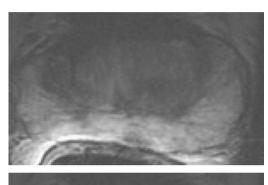


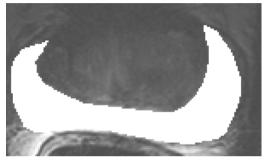
SPECT Image simulation

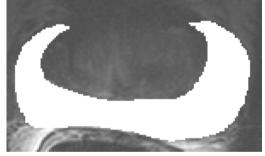
Segmentation of experts

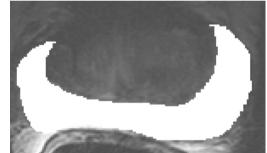


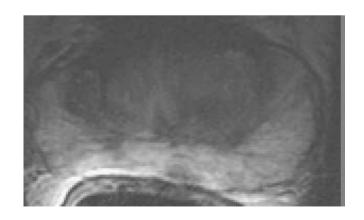
Peripheral zone and segmentations

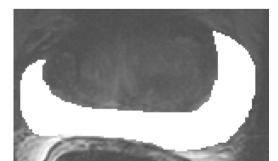


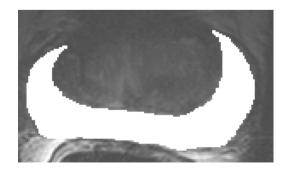




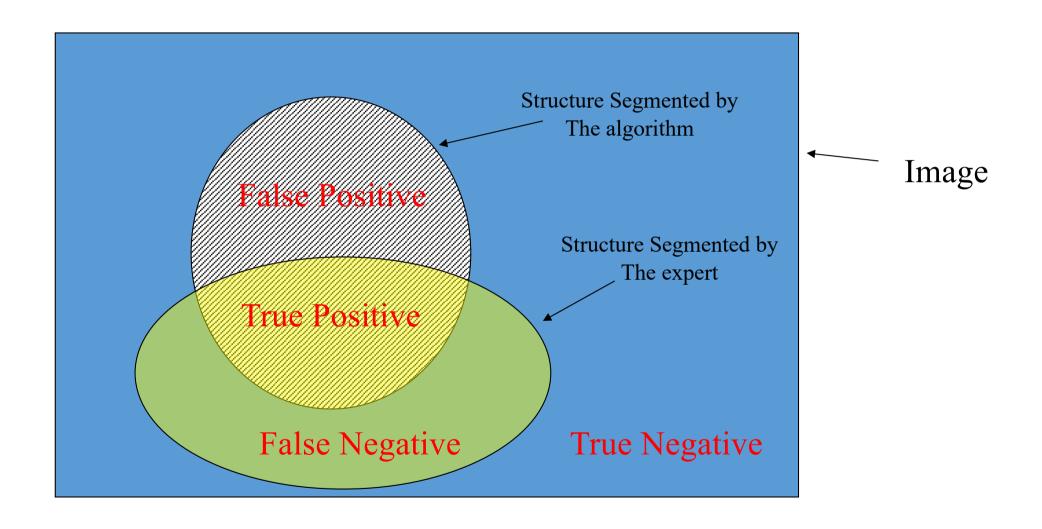








Measuring the Validity of Segmentation



Measuring the Validity of segmentation

Confusion Matrix

Expert Segmentation (Ground truth)

Algorithm Segmented = foreground Segmentation

Not segmented= background

Present	Absent
True positive	False positive
A	(Type I error)
	В
False negative	True negative
(Type II error)	
C	D

Sensitivity = A / (A+C)

Specificity = D / (B+D)

Sensitivity (or recall): proportion of voxels in the structure which have been segmented by the algorithm

Specificity: proportion of voxels that are not in the structure which have not been segmented by the segmentation algorithm

Measuring the Validity of segmentation

Expert Segmentation (Ground truth)

Segmented = foreground
Segmentation

Not segmented= background

Present	Absent
True positive	False positive
A	В
False negative	True negative
C	D

$$PPV = A / (A+B)$$

Positive Predictive Value (PPV) or precision :

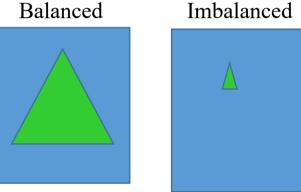
The likelihood that a voxel segmented as foreground is actually a voxel belonging to the structure

NPV = D / (C+D)

Negative Predictive Value (NPV): The likelihood that a voxel not segmented as foreground is actually a background voxel

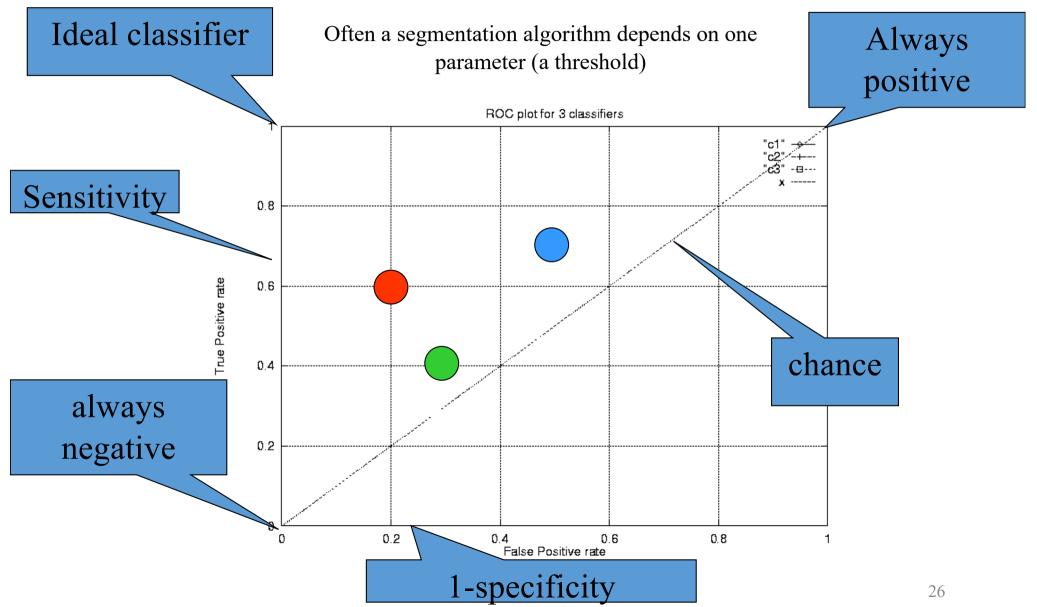
Measuring the Validity of segmentation

Often there is an imbalance between foreground and background



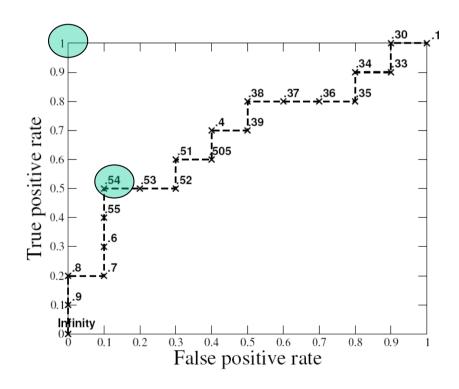
- When background >> foreground then specificity and NPV are very close from 1
- Choose metrics independent from background size
 - Sensitivity (recall) and PPV (precision)

Comparing Segmentation Algorithms with ROC Curve (Receiver Operating Characteristic)



ROC curves (Receiver Operating Characteristic)

- Use ROC curve to optimize the algorithm
- Pick the value that leads to a point closest from the upper left corner
- Estimate performance of an algorithm by its area under the curve (AUCROC) which is independent from the choice of a threshold



Other measures of segmentation Performance

• Dice Index:

 $S = \frac{2|X| + |Y|}{|X| + |Y|}$ $S = \frac{|X \cap Y|}{|X \cup Y|}$

X = ground truth binary object

Y = segmented binary object

• Jaccard Index:

 These are region measures of segmentation performance

 May not be always relevant

Dice Coefficient =
$$\frac{2*TP}{FN + (2*TP) + FP}$$

$$Jaccard\ Index = \frac{TP}{TP + FN + FP}$$

$$Sensitivity = \frac{TP}{TP + FN}$$

$$Precision = \frac{TP}{TP + FP}$$

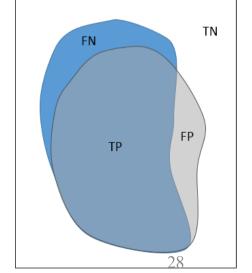
$$TP - true\ positive$$

Manual Segmentation

Automated Segmentation

TN - true negative

FP - false positive FN - false negative



Boundary measure of segmentation performance

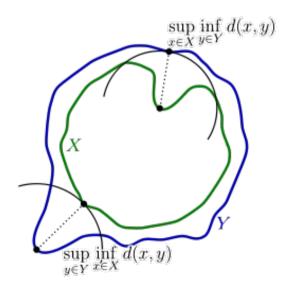
Hausdorff Distance between surfaces

$$d(X,Y) = Max_{x \in X} Min_{y \in Y} dist(x,y)$$

• Symmetric Hausdorff Distance between surfaces

$$\frac{d(X,Y)+d(Y,X)}{2}$$

• Often consider 95% quantile of (symmetric) Hausdorff distance



Validation of Segmentation Algorithm (2)

- <u>Extrinsic Validation</u>: comparison against other segmentation algorithms
 - Only possible when no ground truth exists (Inter-patient registration of images) or when it is not available
 - Estimate consistency, repeatability and size of convergence basin

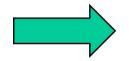
3. Medical Image Segmentation

- 3.1 Taxonomy of segmentation algorithms
- 3.2 Validation of segmentation algorithms
- 3.3 Deterministic Filtering & Thresholding Approaches
- 3.4 Probabilistic Imaging Model
- 3.5 Expectation Maximisation for GMM
- 3.6 Image classification with bias field
- 3.7 Variational Bayes EM
- 3.8 STAPLE Algorithm

Thresholding & Mathematical Morphology

Main Idea

A structure is characterized by its intensity values and its connectivity

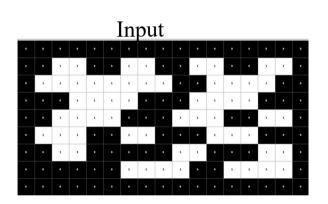


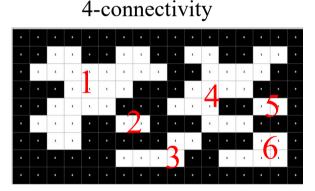
Valid for highly contrasted structures

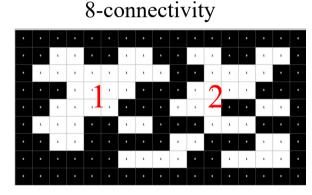
- Basic Algorithm :
 - Thresholding between 2 grey levels (windowing)
 - Mathematical morphology operations
 - Erosion and Dilation
 - Closure & Opening
 - Extraction of connected components

Extraction of Connected Components

- Input: a binary image & a choice of neighborhood
- Output: for each object voxel provides the index of the connected component to which that voxel belongs





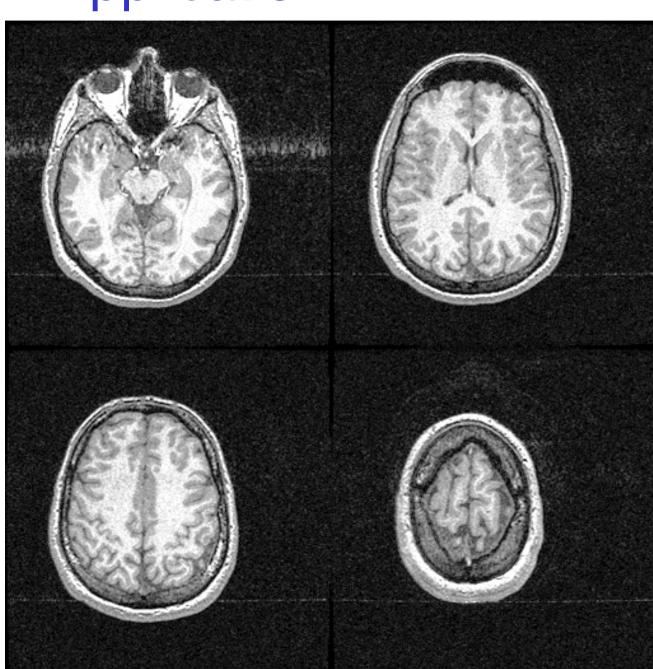


- Algorithm performed efficiently in 2 passes
- Often sort components by size

Application

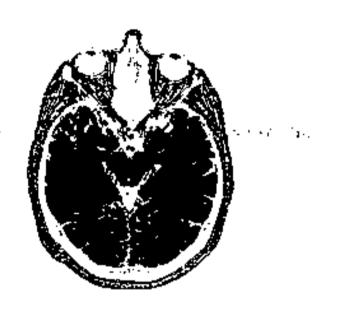
Brain Segmentation of MR Image

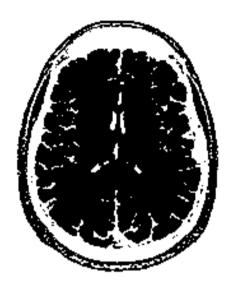
Original slices



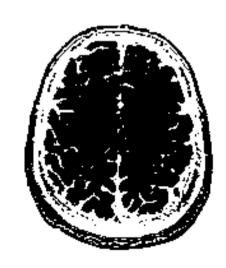
Application

Brain Segmentation of MR Image





4 slices after thresholding



Application

Brain Segmentation of MR Image

4 slices after a single 3D erosion

Application

Brain Segmentation of MR Image

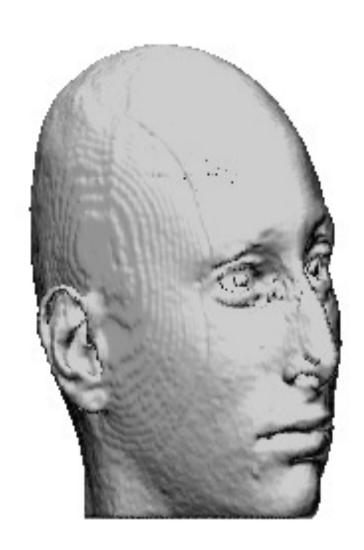
4 slices after extraction of the largest connected component

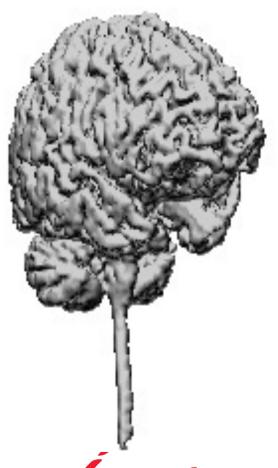
Application

Brain Segmentation of MR Image

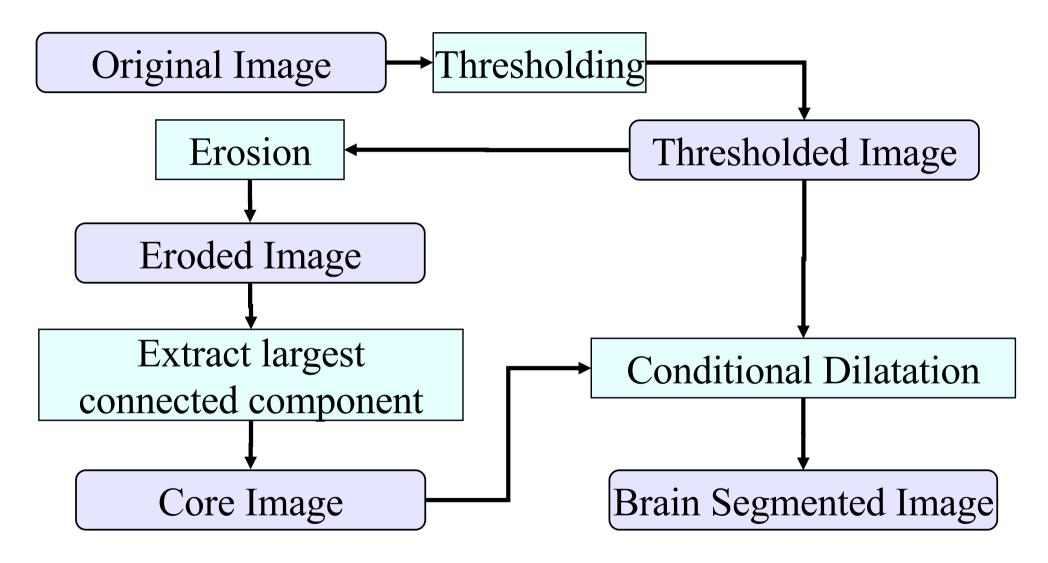
4 slices after 3D conditional dilation

Application



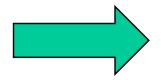


Brain Extraction



Limitations of Thresholding

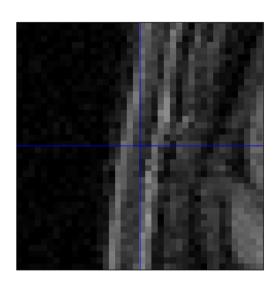
- Difficulty to select threshold, e.g. from greylevel histogram (Otsu's method)
- Create staircase effects since assignment of one voxel to one class
 - Does not take into account the effect of <u>partial</u>
 <u>volume effect</u> (PVE)
- Does not assume any spatial correlation of voxel intensity (isolated voxels)



Use of classification methods

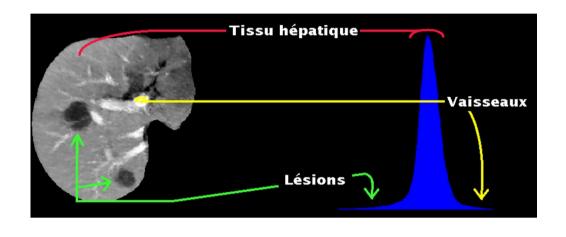
Interest of Image Classification

Noise & Partial volume effect



CT image with 3 classes:
Lesion, vessels &

parenchyma



Brain MRI

MR Bias Field

3. Medical Image Segmentation

- 3.1 Taxonomy of segmentation algorithms
- 3.2 Validation of segmentation algorithms
- 3.3 Deterministic Filtering & Thresholding Approaches
- 3.4 Probabilistic Imaging Model
- 3.5 Expectation Maximisation for GMM
- 3.6 Image classification with bias field
- 3.7 Variational Bayes EM
- 3.8 STAPLE Algorithm

Probability Reminder

Conditional Probability

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A, B)}{P(B)}$$
• Total Probability

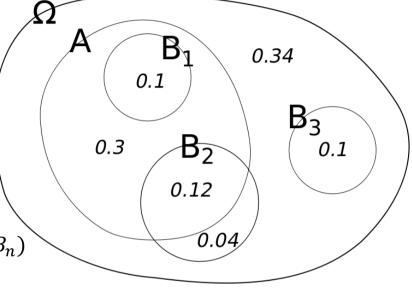
discrete

$$P(A) = \sum_{n} P(A \cap B_n) = \sum_{n} P(A|B_n)P(B_n) = \sum_{n} P(A,B_n)$$
continuous

$$p(A) = \int_{B} p(A|B_{x}) p(B_{x}) dB_{x}$$

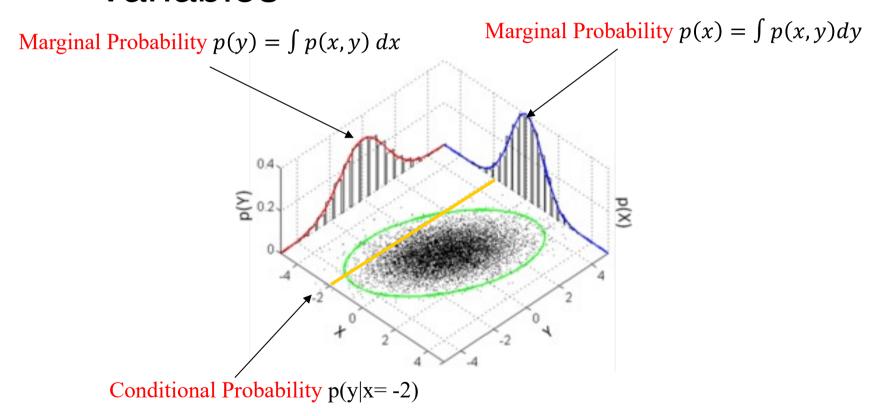
Bayes Law

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$



Conditional & Marginal probability

Distribution of a pair (x,y) of random variables

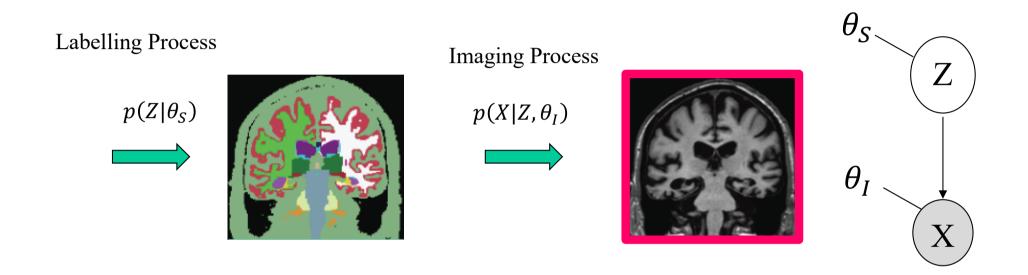


Distance between distributions

- How similar are 2 probability distribution functions?
 - Kullback-Leibler Divergence or relative entropy: $D_{kL}(P||Q) = \sum_{i} P(i) \log \frac{P(i)}{Q(i)}$
 - Non symmetric
 - Always positive
 - Null iff the two distributions are equal
 - Hellinger distance

$$D_H(P||Q)^2 = \frac{1}{2} \sum_{i} \left(\sqrt{P(i)} - \sqrt{Q(i)} \right)^2$$

Generic Probabilistic Imaging Model

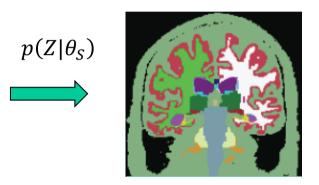


Fundamental assumption: Image intensities depends on voxel class

Parameters θ_S and θ_I may be parameters or random variables and are unknown

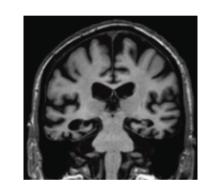
Generic Probabilistic Imaging Model

Labelling Process



Imaging Process

 $p(X|Z,\theta_I)$



Notations:

- z_n label of voxel n One in K coding $z_{nk} = 1$ if voxel n belongs to class k z_n is a vector of K binary variables
- $Z = \{z_n\}$ set of image labels
- θ_S set of label parameters (e.g. atlas related parameters, shape parameters)

Notations:

- x_n intensity vector of voxel n of dimension d
- $X = \{x_n\}$ set of image intensities
- θ_I set of imaging parameters (e.g. Gaussian mixture parameters)

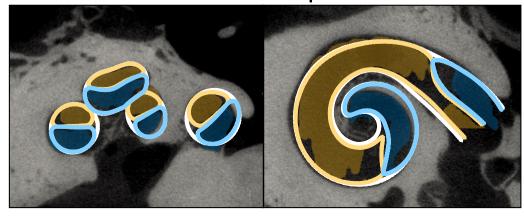
Hypothesis on Labelling Process

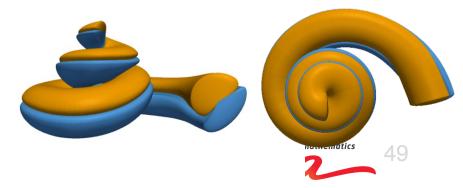
• Prior
$$p(Z|\theta_S)$$
 $z_n = \begin{bmatrix} z_{n1} \\ ... \\ z_{nk} \end{bmatrix}$

- By construction $\sum_{k} p(z_{nk} = 1) = \sum_{k} z_{nk} = 1$
- Common choices :
 - Random labeling : uninformative prior
 - Homogeneous prior (same probability for all voxels):

$$p(z_{nk} = 1) = p(z_{mk} = 1) = \pi_k$$
 $p(z_n) = \sum_k z_{nk} \pi_k = z_n \cdot \pi$

- Labels from Atlas registration
- Labels from parametric model





Segmentation Problem as Maximization of probability

- Segmentation is **an inverse problem** consisting in estimating labels Z, and parameters θ_i and θ_S from the knowledge of Intensities X
- Posterior probability :
 - $p(Z|X, \theta_S, \theta_I) = \frac{p(X|Z, \theta_I)p(Z|\theta_S)}{p(X|\theta_I, \theta_S)}$ through Bayes Law
- Likelihood :
 - Likelihood $p(X|Z, \theta_I)$ is the probability of observing the data given the label and image parameters
- Marginal likelihood or Evidence :
 - $p(X|\theta_I,\theta_S) = \sum_Z p(X|Z,\theta_I) p(Z|\theta_S)$ is a) is only a function of parameters θ_i and θ_S thus suitable for i) optimization of parameters and ii) for model selection.
 - It is often untractable but can be approximated by a lower bound

Segmentation Problems

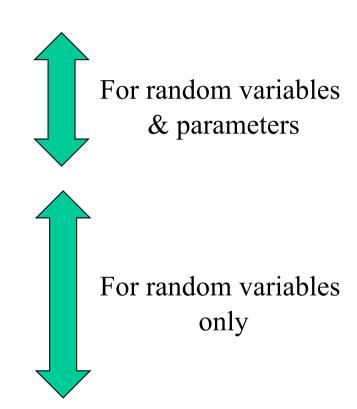
- Hard Segmentation :
 - Objective is to estimate Z, i.e provide one label per voxel
- Soft Segmentation (aka classification)
 - Objective is to estimate posterior probability of each voxel $p(z_{nk}=1|X)$ such that they sum to 1

$$p(Z|X,\theta_S,\theta_I) = \frac{p(X|Z,\theta_I)p(Z|\theta_S)}{\sum_{Z^*} p(X|Z^*,\theta_I)p(Z^*|\theta_S)}$$

• Require estimating parameters θ_I and θ_S

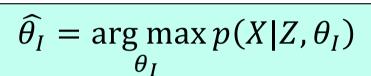
Inference approaches

- Point estimates :
 - Maximum Likelihood
 - Maximum a posteriori
- Posterior estimates
 - Exact inference
 - Variational Bayes
 - Stochastic Sampling



Maximum Likelihood

Can be used for parameters or random variable



$$\hat{Z} = \arg\max_{Z} p(X|Z, \theta_I)$$

$$(\widehat{\theta}_I, \widehat{Z}) = \underset{Z, \theta_I}{\operatorname{arg max}} p(X|Z, \theta_I)$$

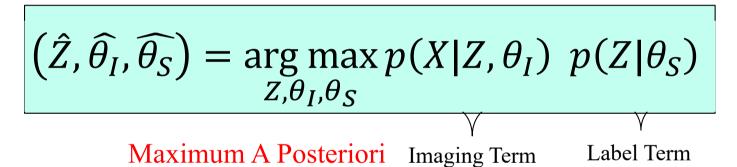
Maximum Likelihood For image parameters

 θ_I

Maximum Likelihood For label

Maximum a posteriori

- Maximize posterior probability or joint probability
- Bayes Law $p(Z|X, \theta_S, \theta_I) = \frac{p(X|Z, \theta_I)p(Z|\theta_S)}{p(X)} = \frac{p(X, Z|\theta_I, \theta_S)}{p(X)}$



• If labels and intensity are independent $(p(Z) = \prod_n p(z_n)), (p(X) = \prod_n p(x_n))$ then equivalent to assigning a label to each voxel

Posterior estimates

- Exact posterior in simple cases $p(Z|X,\theta_I,\theta_S), p(\theta_I|X), p(\theta_S|Z)$
- Approximate posterior distribution :
 - Variational Bayes : seek q(Z) as approximation of $p(Z|X,\theta_I,\theta_S)$ which minimized $D_{KL}(p(Z|X,\theta_I,\theta_S)||q(Z))$
 - Stochastic sampling (e.g. Gibbs sampling, MCMC)

General Taxonomy of methods

Combination of difference inference methods for different variables

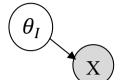
	Label Z	Parameter θ_I	Parameter θ_S
Maximum likelihood			
Maximum a posteriori			
Exact Posterior			
Variational Bayes			
Stochastic Sampling			

Notation Reminder

- K is the number of classes : $K \ge 1$
- N is the number of voxels
- d is the dimension of the feature vector x_n
- $p(z_{nk} = 1 | \theta_S)$ is the **prior** on the label of class k at voxel n
- $p(z_{nk} = 1 | x_n)$ is the **posterior** probability of having label k at voxel n
- $p(x_n, z_{nk})$ is the **joint probability** of having voxel intensity x_n and label k
- $p(x_{nk} = 1 | \theta_I, \theta_S)$ is the marginal likelihood
- $p(x_{nk} = 1 | \theta_I, Z_n)$ is the likelihood informatics mathematics

Example 1 : Multivariate Gaussian Image

Hypothesis:



- All voxels are independent : $p(X|\theta_I) = \prod_n p(x_n|\theta_I)$ and $p(Z) = \prod_n p(z_n) = 1$
- Only one class K=1 !! Everywhere $z_{n1} = 1$
- Voxel intensities x_n are vectors :
 - For instance intensity, gradient, second derivatives
 - Multi sequence MR images: PD, T1, T2, Flair
- $p(x_n|\theta_I)$ is a multivariate Gaussian

Gaussian Distribution

 We assume that for a given class of tissue k, the intensity follows a Gaussian Distribution

$$P(I|\mu_k, \sigma_k) = \mathcal{N}(I|\mu_k, \sigma_k) = \frac{1}{\sqrt{2\pi\sigma_k^2}} \exp\left(-\frac{(I - \mu_k)^2}{2\sigma_k^2}\right)$$
mean

Standard deviation

Multivariate Gaussian

- We suppose that at each voxel there is a feature vector x of size d
- Introduce mean vector μ , covariance matrix Σ as $d \times d$ positive definite matrix

$$\mathcal{N}(x|\mu,\Sigma) = \frac{1}{\sqrt{(2\pi)^d|\Sigma|}} \exp\left(-\frac{1}{2}(x-\mu)^t \Sigma^{-1}(x-\mu)\right)$$

$$\text{Covariance Mean Matrix Covariance Matrix}$$

$$\text{Covariance Matrix}$$

Example 1: Maximum Likelihood

- For multivariate Gaussian $\theta_I = \{\mu, \Sigma\}$
- Objective : given image X, estimate mean μ and covariance Σ
- Equivalently maximize the log likelihood

$$\ln p(X|\mu,\Sigma) = -\frac{N}{2}\ln|\Sigma| - \frac{dN}{2}\ln(2\pi) - \frac{dN}{2}\ln(2\pi)$$

$$\frac{1}{2} \sum_{n=1}^{N} (x_n - \mu)^T \Sigma^{-1} (x_n - \mu)$$

Vector and Matrix Derivation

• For any vector x

• For any matrix A

$$\frac{\partial \left(\frac{x^T A x}{2}\right)}{\partial x} = Ax$$

$$\frac{\partial \ln |A|}{\partial A} = \left(A^{-1}\right)^T = A^{-T}$$

For symmetric Matrix A

$$\frac{\partial(x^T A^{-1} y)}{\partial A} = -A^{-T} x y^T A^{-T}$$

Maximum Likelihood Solution

 Maximizing w.r.t. the mean gives the sample mean

$$\mu_{ML} = \frac{1}{N} \sum_{n=1}^{N} x_n$$

Maximizing w.r.t covariance gives the sample covariance

$$\Sigma_{ML} = \frac{1}{N} \sum_{n=1}^{N} (x_n - \mu_{ML})(x_n - \mu_{ML})^T$$

Example 2 : Gaussian Mixture

Hypothesis:

- All voxels are independent : $p(X|Z) = \prod_n p(x_n|z_n)$ and $p(Z) = \prod_n p(z_n)$
- More than one class $K \geq 2$
- Voxel intensities x_n are vectors
- Label Priors are unknown but homogeneous : $\forall n, m \ p(z_{nk}=1) = p(z_{mk}=1) = \pi_k$
- $p(x_n|z_{nk}=1)=\mathcal{N}(x_n|\theta_k)$ is a multivariate Gaussian
- Notations : $\theta_k = \{\mu_k, \Sigma_k\} \; \theta = \{\theta_k, \pi_k\}$ $\theta_S = \{\pi_k\} \; \theta_I = \{\theta_k\}$

Gaussian Mixture

- $p(x_n|z_n) = \sum_k z_{nk} \mathcal{N}(x_n|\theta_k)$
- Marginal likelihood obtained by law of total probability

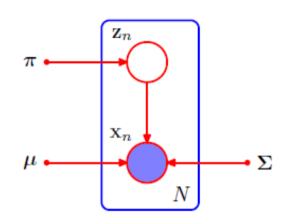
$$p(\mathbf{x}_n) = \sum_{z_n} p(x_n|z_n)p(z_n) = \sum_k \pi_k \mathcal{N}(x_n|\theta_k)$$

• Mixing coefficients π_k are homogeneous

$$\sum_{k=1}^{K} \pi_k = 1 \quad 0 \le \pi_k \le 1$$

Joint Probability

 Graphical model which reflects the fact that Z explains X



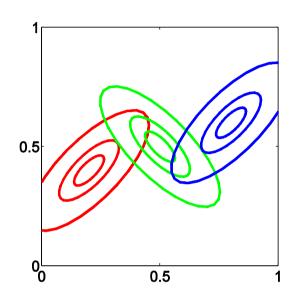
Define the joint probability

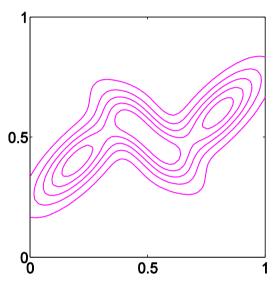
$$p(x_n, z_{nk} = 1) = p(x_n | z_{nk} = 1) p(z_{nk} = 1) = \pi_k \mathcal{N}(x_n | \theta_k)$$
$$p(x_n, z_n) = \sum_k z_{nk} \pi_k \mathcal{N}(x_n | \theta_k)$$

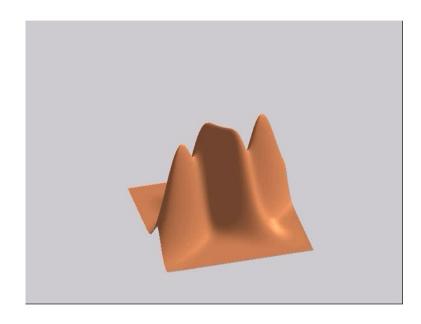
Sampling a Gaussian Mixture

- To generate a data point:
 - first pick one of the components with probability π_{k}
 - then draw a sample x_i from that component following Gaussian law with parameter θ_k
- Repeat these two steps for each new data point

Mixture of 3 Gaussians



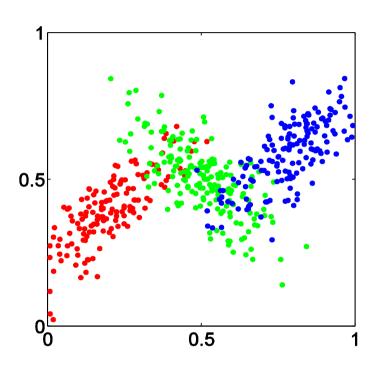


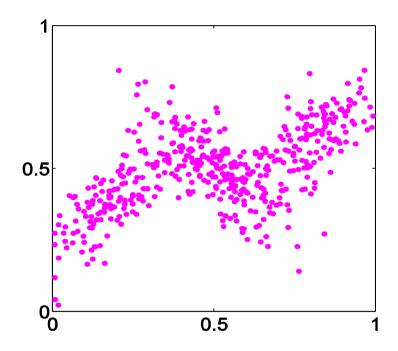


Contour of probability distribution

Surface Plot

Sampled Gaussian Mixture





Gaussian Mixtures & posterior probabilities

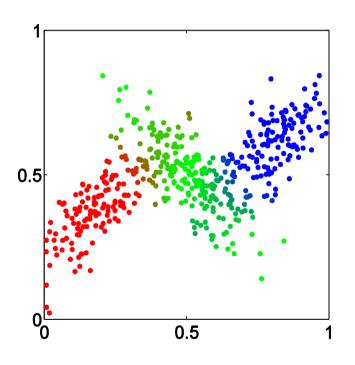
Marginal Likelihood

$$p(\mathbf{x}) = \sum_{z} p(x|z)p(z) = \sum_{k=1} \pi_k \mathcal{N}(x|\mu_k, \Sigma_k)$$

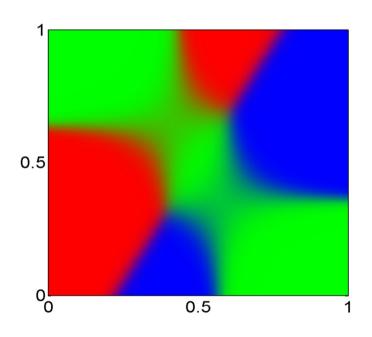
 Use Bayes law to obtain the posterior probabilities

$$p(z_{nk} = 1 | x_n) = \frac{p(x_n | z_{nk} = 1)p(z_{nk} = 1)}{p(x_n)} = \frac{\pi_k \mathcal{N}(x_n | \mu_k, \Sigma_k)}{\sum_{j=1}^K \pi_j \mathcal{N}(x_n | \mu_j, \Sigma_j)}$$

Posterior Probabilities (colour coded)



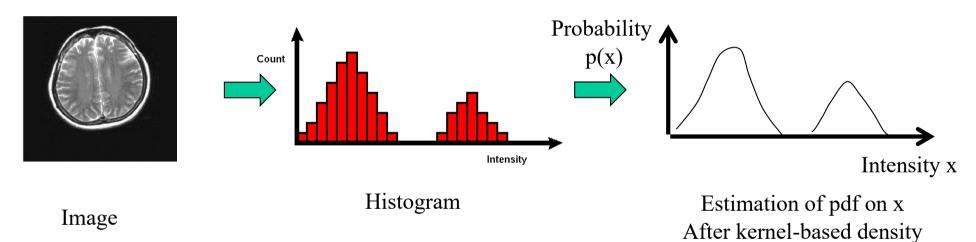
Posterior Probability Map



Dense Posterior Probability Map

Gaussian Mixture & Images

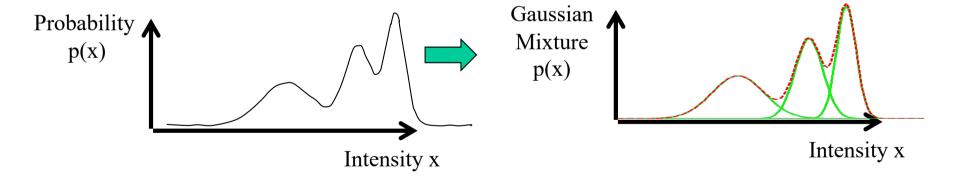
 If x is the image intensity then p(x) can be estimated with the normalized histogram



Estimation (Parzen windowing)

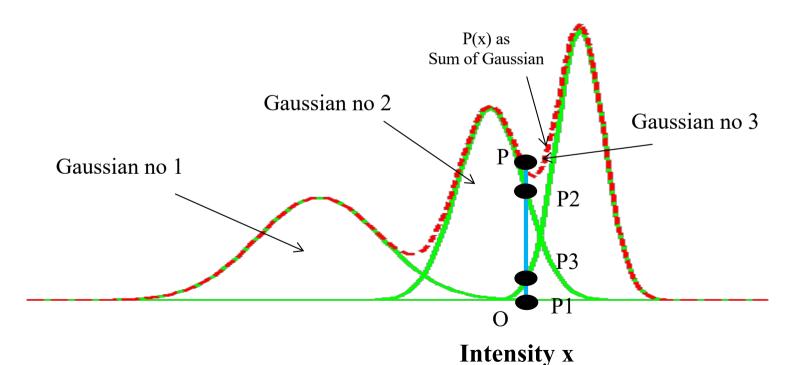
Gaussian Mixture & Histogram

 Assume that the probability p(x) can be decomposed into a sum of Gaussian distributions



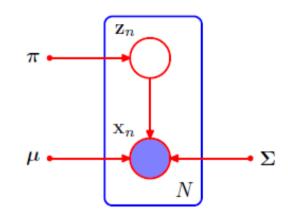
Gaussian Mixture & Histogram

• Interpretation of posterior probability distributions $p(z_k = 1|x) = \frac{OP_k}{OP}$



Problem to solve

- Given
 - Image X={x_i} i=1..N
 - Number of classes K



- What are :
 - Gaussian distribution parameters of each class $\theta_I = \{\theta_k\} = \{\mu_k, \Sigma_k\}$
 - Mixture probabilities $\{\pi_k\}$
 - Posterior probabilities

$$p(z_{nk} = 1 | x_n, \theta) \quad \theta = \{\theta_k, \pi_k\}$$

Marginal Likelihood Function

Define the marginal likelihood as the probability of having the data, knowing the parameters

$$\Lambda(\pi,\theta) = p(X \mid \theta) = \prod_{n=1}^{N} p(x_n \mid \theta)$$

Or the (marginal) Log-likelihood L

$$L(\pi, \theta) = \log \Lambda(\pi, \theta) = \sum_{n} \log(\sum_{k} \pi_{k} \mathcal{N}(x_{n}; \mu_{k}, \sigma_{k}))$$

Maximization of Log Likelihood?

- Classical approach :
 - Write log-Marginal Likelihood of data as a function of θ
 - Coordinate ascent : optimize with respect to each parameter θ_i successively
- Differentiating the log likelihood with μ_k and set equal to zero gives

$$\frac{\partial \Lambda}{\partial \mu_k} = \sum_{n=1}^{N} \frac{\pi_k G(x_n; \mu_k, \Sigma_k)}{\sum_{j=1}^{K} \pi_j G(x_n; \mu_j, \Sigma_j)} \Sigma_k^{-1} (x_n - \mu_k) = 0$$

Giving a non linear function of the unknown parameters.

Cannot be solved in closed form.

3. Medical Image Segmentation

- 3.1 Taxonomy of segmentation algorithms
- 3.2 Validation of segmentation algorithms
- 3.3 Deterministic Filtering & Thresholding Approaches
- 3.4 Probabilistic Imaging Model
- 3.5 Expectation Maximisation for GMM
- 3.6 Image classification with bias field
- 3.7 Variational Bayes EM
- 3.8 STAPLE Algorithm

Expectation Maximisation Algorithm

- Iterative approach for estimating parameters of (Gaussian) Mixture parameters
- General Idea :
 - New criterion : Add unknown variable u (posterior) and add constraint (KL divergence)
 - Alternate maximization performed in closed form : equivalent to lower bound maximization

Alternate maximisation

- Replace Log-Likelihood with a criterion easier to optimize but with additional unknowns
- Log-(marginal) likelihood :

$$L(\theta) = \log \Lambda(\theta) = \sum_{n} \log p(x_n | \theta) = \sum_{n} \log(\sum_{k} \pi_k \mathcal{N}(x_n; \mu_k, \sigma_k))$$

- New criterion $F(\theta, u)$:
 - Add $u = \{u_{nk}\}$ as unknown. u is a vector of u_{nk} which is the posterior probability

$$F(\theta, u) = L(\theta) - D_{KL}(u||p(z|x))$$

By maximizing F with respect to u,

$$u_{nk} = p(z_{nk} = 1|x_n)$$

Why is it easier to optimize $F(\theta, u)$?

- General result :
 - X = observed random variable
 - Z = hidden random variable
 - Joint probability $p(x_n, z_n) = p(x_n|z_n)p(z_n) = p(z_n|x_n)p(x_n)$
 - Constraint on u_{nk} : $\sum_k u_{nk} = 1$
 - Log likelihood : $L(\theta) = \sum_{n} \log p(x_n) = \sum_{n} \sum_{k} u_{nk} \log p(x_n)$
 - New criterion :

$$F(\theta, u) = \sum_{n} \sum_{k} u_{nk} \log p(x_n) - \sum_{n} \sum_{k} u_{nk} \log u_{nk} / p(z_{nk} | x_n)$$

$$F(\theta, u) = \sum_{n} \sum_{k} u_{nk} \log p(x_n, z_{nk}) - \sum_{n} \sum_{k} u_{nk} \log u_{nk}$$

Interpretation

New criterion involves 2 terms :

$$F(\theta, u) = \sum_{n} \sum_{k} u_{nk} \log p(x_{nk}, z_{nk}) - \sum_{n} \sum_{k} u_{nk} \log u_{nk}$$

$$Q(\theta, u)$$

$$\mathbb{H}(u)$$

- $F(\theta, u)$ is the variational lower bound
- -F(θ ,u) is the *variational free energy*= average energy entropy
- $Q(\theta, u) = \sum_{n} \sum_{k} u_{nk} \log p(x_{nk}, z_{nk}) = \mathbb{E}_{U}(\log p(X, Z))$ is the expectation of the complete likelihood
- $\mathbb{H}(u) = -\sum_{n} \sum_{k} u_{nk} \log u_{nk}$ is the **entropy** of the approximate posterior probability
- $Q(\theta, u)$ is easier to optimize wrt θ because it involves complete likelihood = likelihood of observed and hidden variables

Evidence Lower Bound

- General result :
 - For any inverse problem where Z is the (x) Observed hidden variable and X observed variable:

$$\log p(X) - D_{KL}(u||p(Z|X))$$

$$= \mathbb{E}_u(\log p(X,Z)) + \mathbb{H}(u)$$

• Variational lower bound :

$$\log p(X) \ge \mathbb{E}_u(\log p(X,Z)) + \mathbb{H}(u)$$

Hidden

Case of Gaussian Mixtures

Log likelihood

$$L(\theta) = \log \Lambda(\theta) = \sum_{n} \log(\sum_{k} \pi_{k} \mathcal{N}(x_{n}; \mu_{k}, \sigma_{k}))$$

Function of parameters :

$$Q(\theta, u) = \sum_{n} \sum_{k} u_{nk} \log \pi_{k} \mathcal{N}(x_{n} | \mu_{k}, \Sigma_{k})$$

- Note that we have sum of log instead of log of sums!
- Criterion $F(\theta, u) = Q(\theta, u) + H(u)$ is known as **Hathaway criterion**

informatics mathematics

EM Algorithm

• The algorithm optimizes alternatively between u and θ = coordinate ascent

$$F(\theta, u) = L(\theta) - D_{KL}(u||p(z|x)) = Q(\theta, u) + \mathbb{H}(u)$$

- Constraints: $\sum_{k} \pi_{k} = 1$ $\sum_{k} u_{nk} = 1$
- E-step
 - maximize $F(\theta, u)$ wrt u

Compute
$$u_{nk} = \frac{\pi_k \mathcal{N}(x_n | \mu_k, \Sigma_k)}{\sum_{k=1}^K \pi_k \mathcal{N}(x_n | \mu_k, \Sigma_k)}$$

Equivalent to minimizing KL divergence between u and posterior probability

M-Step

- M-step : maximize $F(\theta, u)$ or equivalently $Q(\theta, u)$ wrt $\theta = \{\theta_S, \theta_I\}$
 - Optimize with respect to mean μ_k

$$\frac{\partial Q}{\partial \mu_k} = 0 \qquad \Longrightarrow \qquad \mu_k = \frac{\sum_{n=1}^N u_{nk} x_n}{\sum_{n=1}^N u_{nk}}$$

• Optimize with respect to covariance Σ_k

$$\frac{\partial Q}{\partial \Sigma_k} = 0 \qquad \Longrightarrow \qquad \sum_{\sum_{k=1}^N u_{nk}} (x_n - \mu_k)(x_n - \mu_k)^T \sum_{k=1}^N u_{nk}$$

Optimize with respect to prior probabilities

$$\frac{\partial Q}{\partial \pi_k} = 0 \qquad \Longrightarrow \qquad \boxed{\pi_k = \frac{1}{N} \sum_{n=1}^N u_{nk}}$$

EM Algorithm for GMM

- Iterative scheme
 - Make initial guesses for the parameters
 - Alternate between the following two stages:
 - 1. E-step: evaluate posterior u_{nk}

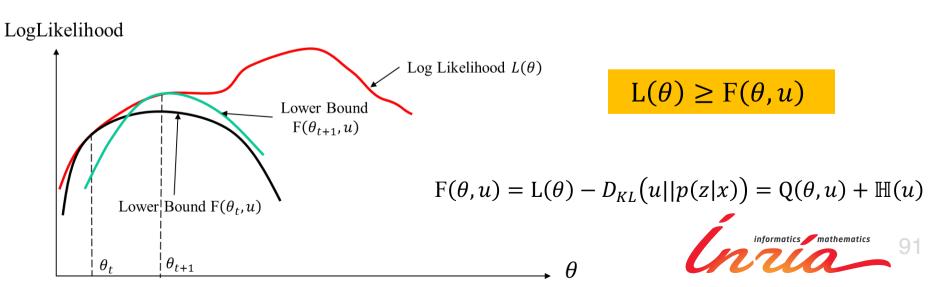
$$\mathbf{u}_{\mathrm{nk}} = \frac{\pi_k \mathcal{N}(x_n | \mu_k, \Sigma_k)}{\sum_{k=1}^K \pi_k \mathcal{N}(x_n | \mu_k, \Sigma_k)}$$

2. M-step: update parameters (μ_k, Σ_k, π_k) using ML results

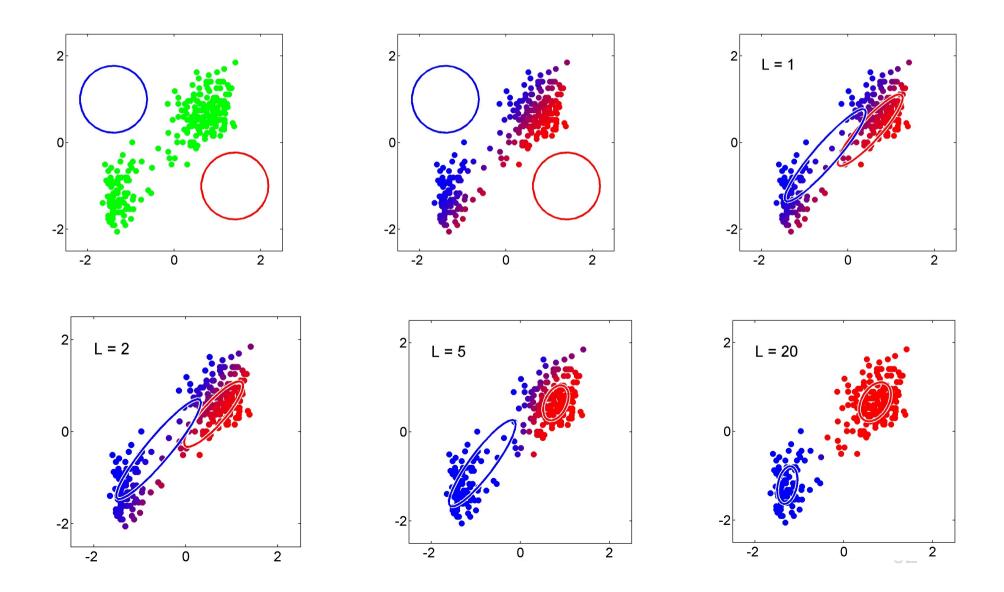
$$\mu_{k} = \frac{\sum_{n=1}^{N} u_{nk} x_{n}}{\sum_{n=1}^{N} u_{nk}} \quad \Sigma_{k} = \frac{\sum_{n=1}^{N} u_{nk} (x_{n} - \mu_{k}) (x_{n} - \mu_{k})^{T}}{\sum_{i=1}^{N} u_{nk}} \quad \pi_{k} = \frac{1}{N} \sum_{n=1}^{N} u_{nk}$$

EM as Iterated Lower Bound Maximisation

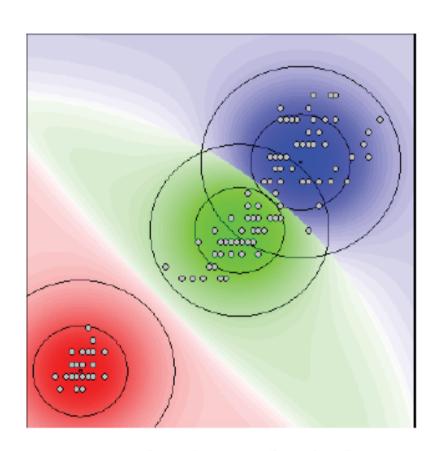
- Equivalent view of EM algorithm :
 - E-step leads to u = p(z|x) and therefore makes $L(\theta_t) = F(\theta_t, u)$.
 - $F(\theta, u)$ is a lower bound of Log-likelihood $L(\theta)$ since Kullback Leibler divergence is positive
 - M-step optimizes $F(\theta, u)$ with respect to θ which is easier to maximize than log likelihood



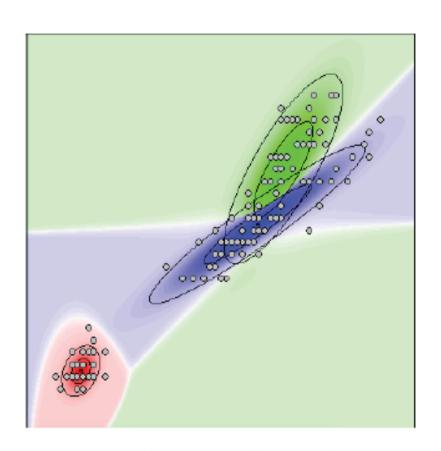
Example of EM with 2 Gaussian distributions



EM on Iris data



equal prior, spherical

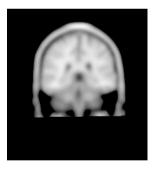


equal prior, ellipsoidal

Class Priors

- Initial hypothesis : homogeneous priors $p(z_{nk}=1)=\pi_k$ is estimated
- Priors may be given by atlas registered on images. In this case θ_S are the registration parameters

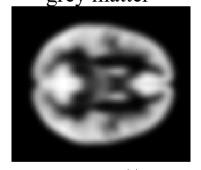
Atlas



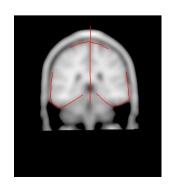
T1 template

Affinely Registered Atlas

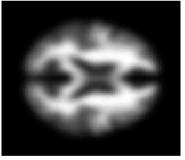
Prior $p(z_{n1})$ on grey matter



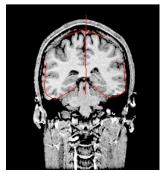
gray matter



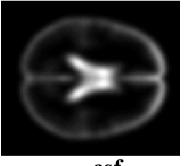
Prior $p(z_{n2})$ on White matter



white matter



Prior $p(z_{n3})$ on cerebro spinal fluid



csf

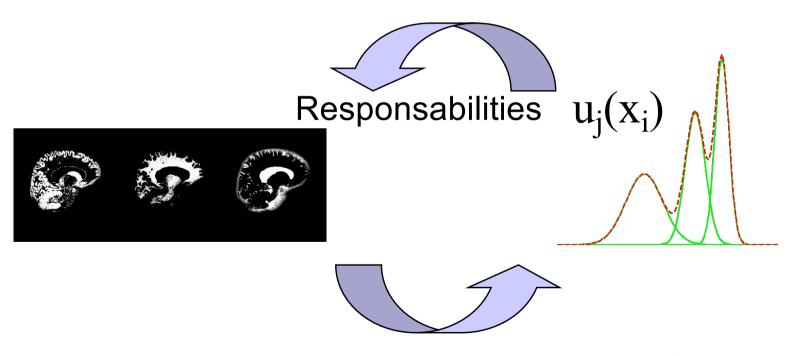
Courtesy of D. Vandermeulen

Example: BrainWeb at MNi http://www.bic.mni.mcgill.ca/brainweb/

EM for Image Intensity Classification

Use the EM algorithm
 [Dempster77, Wells94] :

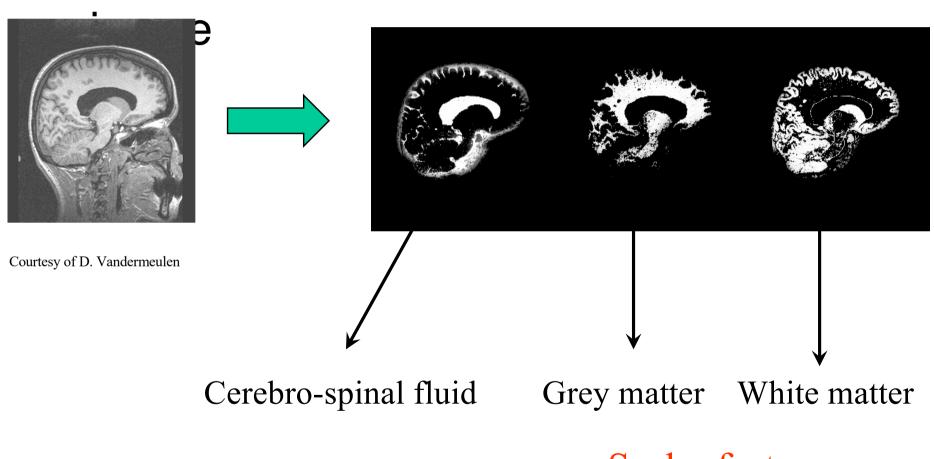
Expectation-Maximisation



Mixture Param. $\mu_{\kappa} \Sigma_{\kappa} \pi_{\kappa}$

Brain Tissue Classification

Typical application : use MR cerebral

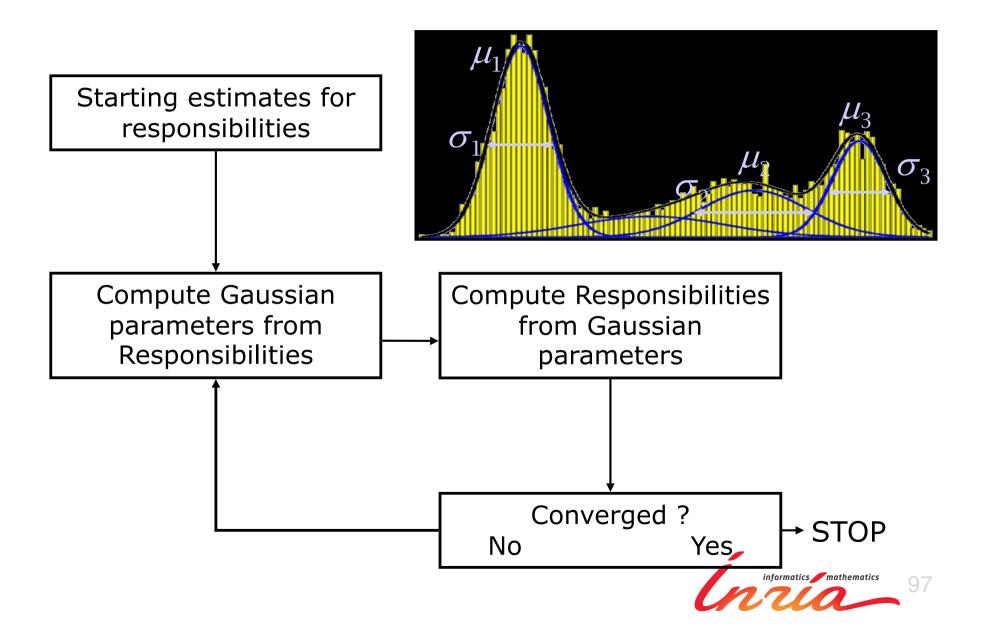


3 Classes

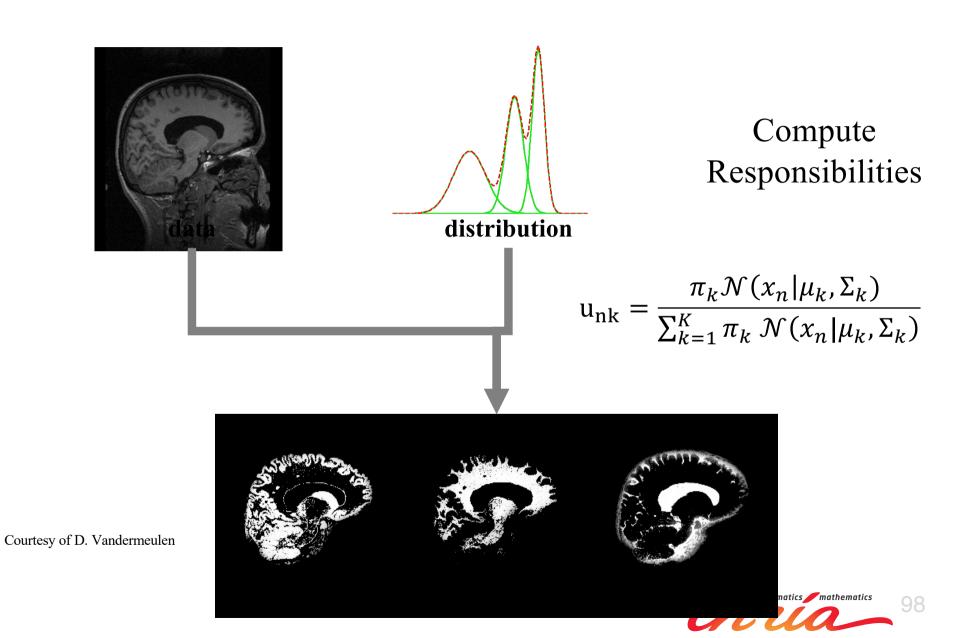
Scalar feature
= Intensity

[5]

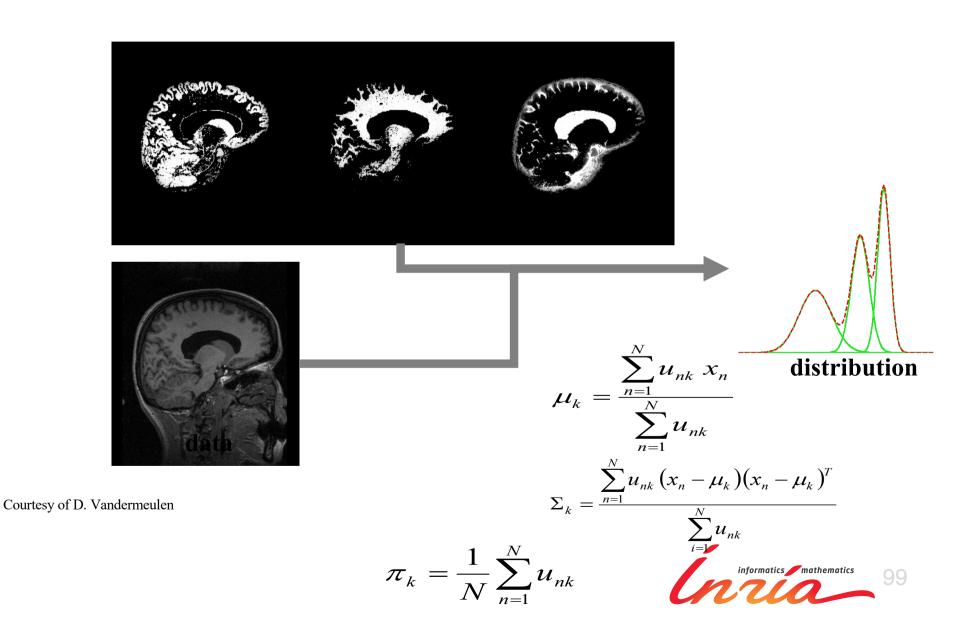
EM Classification - Algorithm



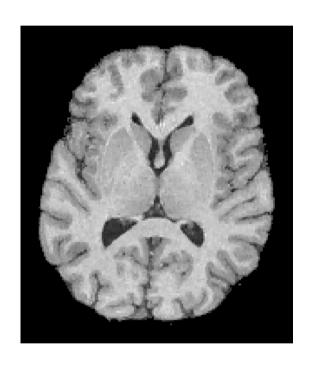
Stage 1: Expectation

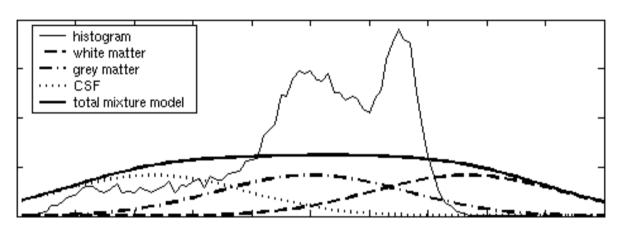


Stage 2: Maximization



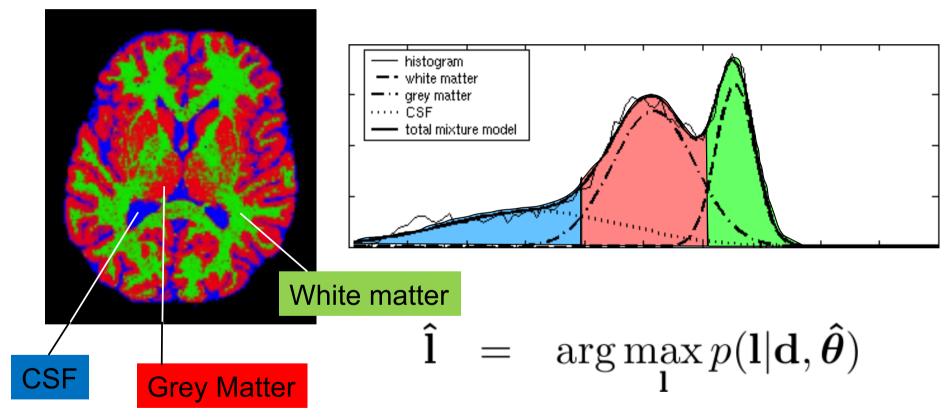
Iterations EM





Courtesy of K. Van Leemput

Results



Courtesy of K. Van Leemput

GMM and K-Means

- GMM with :
 - Isotropic variance $\Sigma_k = \epsilon Id$
 - Uniform prior : $\pi_k = \frac{1}{K}$
- Expectation of complete Lik. : $Q(\theta) = -\sum_{n} \sum_{k} \frac{u_{nk} |x_n \mu_k|^2}{2\epsilon}$
- Same as Fuzzy-Cmeans with m=1
- Same as K-means when :
 - $\epsilon \rightarrow 0$
 - $u_{nk} \in \{0,1\}$ $u_{nk} = \frac{\exp\left(-|x_n \mu_k||^2/2\epsilon\right)}{\sum_{j=1}^K \exp\left(-||x_n \mu_j||^2/2\epsilon\right)} \to r_{nk} \in \{0,1\}$

K Means functional

- K Means algorithm consists in optimizing the functional :
 - $J(r, \mu) = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \|x_n \mu_k\|^2$
 - With the constraint that $r_{nk} \in \{0,1\}$ and $\sum_{k=1}^{K} r_{nk} = 1 \ \forall n$
- J can be seen as
 - minimizing the correlation between the assignment and the distance to cluster center
 - Minimizing the compactness of the clusters

K Means optimization

- Perform alternate optimization :
 - Consider μ_k fixed and optimize on r_{nk}
 - For each data x_n choose which r_{nk} is 1

E-Step
$$r_{nk} = \begin{cases} 1 \text{ if } k = \arg\min_{j} ||x_n - \mu_k|| \\ 0 \text{ otherwise} \end{cases}$$

Consider r_{nk} fixed and optimize on μ_k

$$\frac{\partial J}{\partial \mu_k} = 2\sum_{n=1}^N r_{nk}(\mu_k - x_n) = 0$$
 M-Step
$$\mu_k = \frac{\sum_{n=1}^N r_{nk}x_n}{\sum_{n=1}^N r_{nk}}$$

Good Initial Seeds (kmeans++)

- Choose the centers as far away as possible from each other but in a random manner.
- Algorithm :
 - Choose one center at random μ_1
 - While $k \leq K$
 - Compute $d_n = \arg\min_{j < k} ||x_n \mu_j||^2$ the minimum distance of data x_n to the already chosen centers
 - Pick μ_k among data with probability proportional to d_n
 - k=k++

David Arthur and Sergei Vassilvitskii. k-means++: The advantages of careful seeding. "Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms", 2007, pp. 1027–1035

Issues with EM for GMM

- Presence of bias field in MR images
- EM leads to only local maxima of Log-likelihood
- Functional admits trivial solutions (zero covariance centered at data points) that can lead to bad estimate
- The covariance matrix Σ_k should be invertible which is not guaranteed (may use pseudo-inverse)
- How to choose the number of classes
- How to make the estimation robust to outliers?

