
Medical Imaging : 
Image Segmentation & Classification

Hervé Delingette
Epione Team

Herve.Delingette@inria.fr

1Hervé Delingette



3. Medical Image 
Segmentation

3.1 Taxonomy of segmentation algorithms 
3.2 Validation of segmentation algorithms
3.3 Deterministic Filtering & Thresholding Approaches
3.4 Probabilistic Imaging Model
3.5 Expectation Maximisation for GMM
3.6 Image classification with bias field
3.7 Variational Bayes EM
3.8 STAPLE Algorithm

Hervé Delingette 2



Image 
Segmentation 

4D (3D+T)

Gated-SPECT

2D 3D

X- Ray MRI
Isolate a Region of Interest in a Medical Image
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Segmentation in clinical workflow

• Example of cardiovascular Imaging
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Segmentation 
Algorithms

• Various taxonomy of segmentation algorithms :
• Discrete vs Continuous
• Bottom-up vs Top-down approaches 
• Boundary vs Region approaches
• Supervised or non supervised 
• Intensity or Shape based

5



Discrete vs Continuous Image 
Representation
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Discrete Image Representation

𝐼 𝑥 Image Domain or Image Value can be either discrete or continuous

Discrete Continuous

Discrete Field of Integer

Continuous Array of Float Field of Float

Image Domain
Image Value

Array of Int

• Image as a 2D or 3D array
• Representation I[row][col]
• Image can be seen as a graph

• Image as a 2D or 3D field I(x)
• Requires definition of Interpolation and 

Extrapolation functions :
• Nearest Neighbor Interpolation
• Bi(Tri)Linear Interpolation
• (Cubic)Spline Interpolation

Continuous Image Representation



Discrete vs Continuous Image Segmentations
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Segmentation with Discrete Image Representation Segmentation with Continuous Image 
Representation

Define a binary variable 𝑧! ∈ 0,1
• 𝑧! = 1 if pixel is in foreground
• 𝑧! = 0 if pixel is in background

Can be generalized to a set of Labels ℒ = {0,1,… ,𝑀}

Segmentation obtained through discrete/ combinatorial 
optimization 

Define Regions {Ω"} inside which a structure 
is defined

Define close or open contours {𝜕Ω"}
Separating background from structure i

Segmentation obtained through variational 
principles

(calculus of variations…)



Bottom-up Approach
Medical Image

Feature Extraction

Feature Grouping

Region/Boundary
Extraction
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Top-down approach

Model Construction : 
Shape and Appearance

Model Initialisation

Model Optimization
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Region vs Boundary 
Methods

Region-based
segmentation

Boundary-based
segmentation

Image
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Supervision of Image Segmentation
• Supervised Image Segmentation Problems:

• Several examples of image segmentations are available
• Methods : machine learning, multi-atlas registration
• Very costly to produce annotated data

• Unsupervised Image Segmentation Problems :
• No examples are available
• Models of image content and shape  are used to produce 

image segmentation
• Weakly supervised Segmentation Problems :

• Only partial labels are available
• Semi supervised Segmentation Problems :

• Fully annotated images and images with no annotations
• Mixed supervised Segmentation Problem :

•  Fully annotated images and  weakly annotated images 

11



Supervision of Image Segmentation
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Image Segmentation Approaches

- 13
21/10/2024 13

No Typical Shape Typical Shape

Lesions in CT / MR

Contrast Agent 
in CT

Thresholding

Intensity-only
Classification

Intensity 
Only

gray matter white matter csf



Image Segmentation Approaches
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No Typical Shape Typical Shape

Grey / White matter 
in MR

Vessels / tumors / bones /lesions

Mathematical
Morphology

MRF (graph cuts, 
RW, watershed)

Intensity and 
connexity

between regions

Machine Learning 
(Deep Learning, RF, 

SVM, ,ML)

Camille Couprie, Leo Grady, Laurent Najman and Hugues Talbot , "Power watershed: A Unifying Graph-
Based Optimization Framework" , IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 33 

(7), pp 1384-1399 (2011)
Ezequiel Geremia, Olivier Clatz, Bjoern H. Menze, Ender Konukoglu, Antonio Criminisi, and Nicholas 

Ayache. Spatial Decision Forests for MS Lesion Segmentation in Multi-Channel Magnetic Resonance
Images. NeuroImage, 57(2):378-90, July 2011

https://www-sop.inria.fr/asclepios/bibWP/Author/GEREMIA-E.html
https://www-sop.inria.fr/asclepios/bibWP/Author/CLATZ-O.html
https://www-sop.inria.fr/asclepios/bibWP/Author/MENZE-BH.html
https://www-sop.inria.fr/asclepios/bibWP/Author/KONUKOGLU-E.html
https://www-sop.inria.fr/asclepios/bibWP/Author/AYACHE-N.html
https://www-sop.inria.fr/asclepios/bibWP/Author/AYACHE-N.html


Image Segmentation Approaches
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No Typical Shape Typical Shape

Liver

Heart

Bones

Atlas based 
Segmentation

Intensity 
and shape



Image Segmentation Approaches
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No Typical Shape Typical Shape

Liver

Heart

Atlas based 
Segmentation

Deformable 
Templates

Intensity 
and shape

Bones
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Validation of Segmentation Algorithm

• Intrinsic Validation : comparison against
• Observation of Physical Phantoms

• Difficult and expensive to build
• May not be representative of real data

• Simulated images (MNI Brain Atlas,…)
• Difficult to simulate artefacts

• Segmentation of experts 
• Large inter and intra variability of segmentation across experts
• May not be representative of population variability
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Phantoms for Validation of Segmentation

Whole Body Phantom (source Kyoto Kagaku ltd) 19



Simulation of Medical Images

MRI Sim

SPECT Image simulation

20
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0.5T MR of prostate Peripheral zone and segmentations

Segmentation of experts



Measuring the Validity of Segmentation

22

Image

Structure Segmented by
The algorithm

Structure Segmented by
The expert

True Negative

True Positive

False Positive

False Negative



Measuring the Validity of segmentation

True positive 
           A

False positive
(Type I error)
          B

False negative 
(Type II error)
           C

True negative
        
   D
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Expert Segmentation (Ground truth) 
Present Absent 

Segmented
= foreground 

Not segmented=
background 

Algorithm 
Segmentation 

Sensitivity = A / (A+C)

Specificity = D / (B+D)

Sensitivity (or recall):  proportion of 
voxels in the structure which have 
been segmented by the algorithm 

Specificity:  proportion of voxels that are not in 
the structure which have not been segmented by 

the segmentation algorithm 

Confusion Matrix



Measuring the Validity of segmentation

True positive 
           A

False positive
          B

False negative
           C

True negative
           D
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Expert Segmentation (Ground truth) 
Present Absent 

Segmented
= foreground 

Not segmented=
background 

Algorithm 
Segmentation 

PPV = A / (A+B)

NPV = D / (C+D)

Positive Predictive Value (PPV) or precision : 
The likelihood that a voxel segmented as 

foreground is actually a voxel belonging to the 
structure

Negative Predictive Value (NPV): The 
likelihood that a voxel not segmented as 

foreground is actually a background voxel



Measuring the Validity of segmentation

• Often there is an imbalance between foreground 
and background

• When background >> foreground then specificity 
and NPV are very close from 1
• Choose metrics independent from background size 

• Sensitivity (recall) and PPV (precision)

Hervé Delingette  25
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Comparing Segmentation Algorithms with ROC 
Curve (Receiver Operating Characteristic)
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Ideal classifier

chance

1-specificity

Sensitivity

always 
negative

Always 
positive

Often a segmentation algorithm depends on one 
parameter (a threshold)



ROC curves (Receiver Operating 
Characteristic)
• Use ROC curve to

optimize the algorithm
• Pick the value that leads

to a point closest from
the upper left corner
• Estimate performance of an 

algorithm by its area 
under the curve (AUCROC)
which is independent from 
the choice of a threshold
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Other measures of segmentation 
Performance
• Dice Index :

• Jaccard Index :

• These are region measures 
of segmentation performance

• May not be always
relevant
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YX
YX

s
+
Ç

=
2

X = ground truth
 binary object 

Y = segmented 
binary object 

YX
YX
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Boundary measure of segmentation 
performance
• Hausdorff Distance between surfaces

• Symmetric Hausdorff Distance between surfaces

• Often consider 95% quantile of 
(symmetric) Hausdorff distance
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Validation of Segmentation Algorithm (2)

• Extrinsic Validation : comparison against other 
segmentation algorithms

• Only possible when no ground truth exists (Inter-patient 
registration of images) or when it is not available

• Estimate consistency, repeatability and size of 
convergence basin
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Thresholding & 
Mathematical Morphology

• Main Idea : 
A structure is characterized by its intensity

values and its connectivity

• Basic Algorithm :
• Thresholding between 2 grey levels (windowing)
• Mathematical morphology operations

• Erosion and Dilation
• Closure & Opening
• Extraction of connected components

32

Valid for highly contrasted structures



Extraction of Connected
Components

• Input : a binary image & a choice of neighborhood
• Output : for each object voxel provides the index of 

the connected component to which that voxel belongs

• Algorithm performed efficiently in 2 passes
• Often sort components by size

33

Input 4-connectivity

1
2

3

4 5
6

8-connectivity

1 2



Application
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Brain Segmentation of MR 
Image 

Original  slices



Application
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4 slices after
thresholding

Brain Segmentation of MR 
Image 



Application
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4 slices after a 
single 3D erosion

Brain Segmentation of MR 
Image 



Application
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4 slices after
extraction of the 
largest connected

component

Brain Segmentation of MR 
Image 



Application
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4 slices after 3D 
conditional dilation 

Brain Segmentation of MR 
Image 



Application
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Brain Extraction
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Original Image

Thresholded Image

Eroded Image

Core Image Brain Segmented Image

Thresholding

Erosion

Extract largest
connected component

Conditional Dilatation



Limitations of 
Thresholding

• Difficulty to select threshold, e.g. from grey-
level histogram (Otsu’s method)

• Create staircase effects since assignment of 
one voxel to one class 
• Does not take into account the effect of partial 

volume effect (PVE)
• Does not assume any spatial correlation of 

voxel intensity (isolated voxels)

41

Use of classification methods
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Interest of Image 
Classification

Noise & Partial volume effect

Brain MRI

MR Bias Field



3. Medical Image Segmentation

• 3.1 Taxonomy of segmentation algorithms 
• 3.2 Validation of segmentation algorithms
• 3.3 Deterministic Filtering & Thresholding 
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• 3.5 Expectation Maximisation for GMM
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Probability Reminder

• Conditional Probability

• Total Probability

• Bayes Law
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Conditional & Marginal probability 

• Distribution of a pair (x,y) of random 
variables
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Conditional Probability p(y|x= -2)

Marginal Probability 𝑝 𝑥 = ∫ 𝑝 𝑥, 𝑦 𝑑𝑦Marginal Probability 𝑝 𝑦 = ∫ 𝑝 𝑥, 𝑦 	𝑑𝑥



Distance between distributions

• How similar are 2 probability distribution 
functions ?
• Kullback-Leibler Divergence or relative 

entropy:
• Non symmetric
• Always positive
• Null iff the two distributions are equal

•  Hellinger distance 
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Generic Probabilistic Imaging 
Model  

47

𝑝 𝑍|𝜃' 𝑝 𝑋|𝑍, 𝜃(

Labelling Process Imaging Process

Fundamental assumption : Image intensities depends on voxel class 

Z

X

𝜃!

𝜃"

Parameters 𝜃# and 𝜃$ may be parameters or random variables and are unknown



Generic Probabilistic Imaging 
Model  
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𝑝 𝑍|𝜃' 𝑝 𝑋|𝑍, 𝜃(

Labelling Process Imaging Process

Notations :
• 𝑥! intensity vector of voxel n of dimension d
• 𝑋 = 𝑥! set of image intensities
• 𝜃" set of imaging parameters (e.g. Gaussian

mixture parameters)

Notations :
• 𝑧! label of voxel n 

One in K coding 𝑧!# = 1 if voxel n
belongs to class k
𝑧!	is a vector of K binary variables

• 𝑍 = 𝑧! set of image labels
• 𝜃$ set of label parameters (e.g. atlas 

related parameters, shape parameters)



Hypothesis on Labelling Process

• Prior 𝑝 𝑍|𝜃" 	 𝑧# =
𝑧#$
…	
𝑧#%

• By construction ∑% 𝑝 𝑧#% = 1 = ∑% 𝑧#% =1
• Common choices :

• Random labeling : uninformative prior
• Homogeneous prior (same probability for all voxels):

 𝑝 𝑧!" = 1 = 𝑝 𝑧#" = 1 = 𝜋"         𝑝 𝑧* = ∑+ 𝑧*+𝜋+ = 𝑧* ⋅ 𝜋
• Labels from Atlas registration
• Labels from parametric model 

49



• Segmentation is an inverse problem consisting in 
estimating labels Z , and parameters 𝜃& and 𝜃" from 
the knowledge of Intensities X 

• Posterior probability :
• 𝑝 𝑍|𝑋, 𝜃# , 𝜃$ = , -|/,1! , /|1"

, -|1!,1"
  through Bayes Law 

• Likelihood  :
• Likelihood 𝑝 𝑋|𝑍, 𝜃$  is the probability of observing the data 

given the label and image parameters
• Marginal likelihood or Evidence :

• 𝑝 𝑋|𝜃$ , 𝜃# = ∑/ 𝑝 𝑋|𝑍, 𝜃$ 𝑝 𝑍|𝜃#  is a) is only a function of 
parameters 𝜃2 and 𝜃# thus suitable for i) optimization of 
parameters and ii) for model selection.

• It is often untractable but can be approximated by a lower 
bound

Segmentation Problem as 
Maximization of probability

50



Segmentation Problems

• Hard Segmentation :
• Objective is to estimate Z, i.e provide one 

label per voxel
• Soft Segmentation (aka classification)

• Objective is to estimate posterior probability 
of each voxel 𝑝 𝑧!" = 1|𝑋  such that they 
sum to 1

𝑝 𝑍|𝑋, 𝜃#, 𝜃$ =
𝑝 𝑋|𝑍, 𝜃$ 𝑝 𝑍|𝜃#

∑%∗ 𝑝 𝑋|𝑍∗, 𝜃$ 𝑝 𝑍∗|𝜃#
• Require estimating parameters 𝜃$ and 𝜃#
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Inference approaches

• Point estimates :
• Maximum Likelihood
• Maximum a posteriori

• Posterior estimates
• Exact inference
• Variational Bayes
• Stochastic Sampling

52

For random variables 
& parameters

For random variables 
only



Maximum Likelihood
• Can be used for parameters or random
variable
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+𝜃! = arg	max
(3	

𝑝 𝑋|𝑍, 𝜃! 	 Maximum Likelihood 
For image parameters

3𝑍 = arg	max
*

𝑝 𝑋|𝑍, 𝜃! 	 Maximum Likelihood
For label
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Imaging Term Label TermMaximum A Posteriori

Maximum a posteriori
• Maximize posterior probability or joint 

probability
• Bayes Law :𝑝 𝑍|𝑋, 𝜃# , 𝜃$ = , -|/,1! , /|1"

, -
= , -,/|1!,1"

, -

• If labels and intensity are independent 
(𝑝 𝑍 = ∏7 𝑝 𝑧7 ), (𝑝 𝑋 = ∏7 𝑝 𝑥7 )
then equivalent to assigning a label to 
each voxel 54

+𝑍, ,𝜃$,-𝜃# = arg	max
%,(,,(-

𝑝 𝑋|𝑍, 𝜃$ 	 𝑝 𝑍|𝜃#



Posterior estimates

• Exact posterior in simple cases 
𝑝 𝑍|𝑋, 𝜃8, 𝜃9 , 𝑝(𝜃8|𝑋), 𝑝 𝜃9 𝑍

• Approximate posterior distribution :

• Variational Bayes : seek 𝑞 𝑍 as 
approximation of 𝑝 𝑍|𝑋, 𝜃$, 𝜃# which
minimized 𝐷)* 𝑝 𝑍|𝑋, 𝜃$, 𝜃# ||𝑞(𝑍)

• Stochastic sampling (e.g. Gibbs sampling, 
MCMC)
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General Taxonomy of methods

Label Z Parameter 𝜃" Parameter 𝜃$
Maximum 
likelihood
Maximum a
posteriori
Exact Posterior
Variational Bayes
Stochastic
Sampling

56

Combination of difference inference methods for different variables



Notation Reminder
• K is the number of classes : 𝐾 ≥ 1
• N is the number of voxels
• d	is	the	dimension	of	the	feature	vector	𝑥!
• 𝑝 𝑧!" = 1|𝜃# is the prior on the label of class 

k at voxel n
• 𝑝 𝑧!" = 1|𝑥! is the posterior probability of 

having label k at voxel n
• 𝑝 𝑥!, 𝑧!" is the joint probability of having

voxel intensity 𝑥! and label k
• 𝑝 𝑥!" = 1|𝜃$, 𝜃# is the marginal likelihood
• 𝑝 𝑥!" = 1|𝜃$, 𝑍!	 is the likelihood 57



Example 1 : Multivariate 
Gaussian Image

• Hypothesis  :
• All voxels are independent : 𝑝 𝑋|𝜃$ =
∏! 𝑝 𝑥!|𝜃$  and 𝑝 𝑍 = ∏! 𝑝 𝑧! =1

• Only one class K=1 !! Everywhere 𝑧!+ = 1
• Voxel intensities 𝒙𝒏 are vectors :

• For instance intensity, gradient, second 
derivatives

• Multi sequence MR images : PD, T1, T2, Flair
• 𝒑 𝒙𝒏|𝜃$  is a multivariate Gaussian

58
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Gaussian Distribution

• We assume that for a given class of 
tissue k, the intensity follows a Gaussian 
Distribution 
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mean Standard deviation

𝑃 𝐼|𝜇", 𝜎" = 𝒩 𝐼|𝜇", 𝜎" =
1

2𝜋𝜎"-
exp −

𝐼 − 𝜇" -
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Multivariate Gaussian

• We suppose that at each voxel there is 
a feature vector x of size d

• Introduce mean vector 𝜇, covariance 
matrix Σ  as 𝑑×𝑑 positive definite matrix

60

Mean 
Vector

Covariance 
Matrix

Determinant of 
Covariance Matrix

𝒩 𝑥|𝜇, Σ = $

./ 4 0
exp − $

.
𝑥 − 𝜇 1 	Σ2$ 𝑥 − 𝜇



Example 1 : Maximum Likelihood

• For multivariate Gaussian 𝜃8 = 𝜇 , Σ
• Objective : given image X, estimate 

mean 𝜇 and covariance Σ
• Equivalently maximize the log likelihood

ln 𝑝 𝑋|𝜇, Σ = −
𝑁
2 ln Σ −

𝑑𝑁
2 ln 2𝜋 −

1
28
7AB

C

𝑥7 − 𝜇 DΣEB 𝑥7 − 𝜇
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Vector and Matrix Derivation

• For any vector x

• For any matrix A

• For symmetric Matrix A
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Maximum Likelihood Solution

• Maximizing w.r.t. the mean gives the 
sample mean

𝜇67 =
1
𝑁
G
#8$

9

𝑥#

Maximizing w.r.t covariance gives the 
sample covariance

ΣHI =
1
𝑁8
7AB

C

𝑥7 − 𝜇HI 𝑥7 − 𝜇HI D
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Example 2 : Gaussian Mixture

• Hypothesis :
• All voxels are independent : 𝑝 𝑋|𝑍 = ∏# 𝑝 𝑥#|𝑧#  

and 𝑝 𝑍 = ∏# 𝑝 𝑧#
• More than one class 𝐾 ≥ 2
• Voxel intensities 𝑥# are vectors
• Label Priors are unknown but homogeneous : 

∀𝑛,𝑚	𝑝 𝑧#% = 1 = 𝑝 𝑧:% = 1 = 𝜋%
• 𝑝 𝑥#|𝑧#% = 1 = 𝒩(𝑥#|𝜃%) is a multivariate 

Gaussian

• Notations : 𝜃S = 𝜇S, ΣS  𝜃 = 𝜃S, 𝜋S  
	 𝜃9 = 𝜋S 	𝜃8 = 𝜃S  

64
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Gaussian Mixture

• 𝑝 𝑥7|𝑧7 = ∑S 𝑧7S𝒩(𝑥7|𝜃S)
• Marginal likelihood obtained by law of 

total probability
p x4 =V

5;

p 𝑥!|𝑧! 𝑝 𝑧! =V
"

𝜋"𝒩(𝑥!|𝜃")

• Mixing coefficients 𝜋S are homogeneous

65

(
+67

8

𝜋+ = 1 0 ≤ 𝜋+ ≤ 1



Joint Probability
• Graphical model which reflects

the fact that Z explains X

• Define the joint probability
𝑝 𝑥# , 𝑧#% = 1 = 𝑝 𝑥# 𝑧#% = 1 𝑝 𝑧#% = 1 = 𝜋%𝒩(𝑥!|𝜃")

𝑝 𝑥!, 𝑧! =V
"

𝑧!" 𝜋%𝒩(𝑥!|𝜃")
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Sampling a Gaussian Mixture

• To generate a data point:
• first pick one of the components with 

probability pk 
• then draw a sample xi from that component 

following Gaussian law with parameter 𝜃"
• Repeat these two steps for each new 

data point
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Mixture of 3 Gaussians

68

Surface PlotContour of probability
distribution



Sampled Gaussian Mixture
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Gaussian Mixtures & 
posterior probabilities 

• Marginal Likelihood

• Use Bayes law to obtain the posterior 
probabilities

𝑝 𝑧*+ = 1 𝑥* =
𝑝 𝑥* 𝑧*+ = 1 𝑝(𝑧*+ = 1)

𝑝(𝑥*)
=

𝜋+𝒩 𝑥* 𝜇+ , Σ+) 
∑9678 𝜋9 	𝒩 𝑥*|𝜇9 , Σ9
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Posterior Probabilities
 (colour coded)
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Dense Posterior Probability MapPosterior Probability Map



Gaussian Mixture & Images

• If x is the image intensity then p(x) can 
be estimated with the normalized 
histogram
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Image
Histogram

Intensity x

Probability 
p(x)

Estimation of pdf on x
After kernel-based density

Estimation (Parzen windowing)



Gaussian Mixture & Histogram

• Assume that the probability p(x) can be 
decomposed into a sum of Gaussian 
distributions

73

Intensity x

Probability 
p(x)

Intensity x

Gaussian
Mixture

p(x)



Gaussian Mixture & Histogram

• Interpretation of posterior probability 
distributions  𝑝 𝑧S = 1 𝑥 = TU!

TU

Intensity x
O

P

P2

P3

Gaussian no 2
Gaussian no 3

Gaussian no 1
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P1

P(x) as
Sum of Gaussian



Problem to solve

• Given 
• Image X={xi} i=1..N
• Number of classes K

• What are :
• Gaussian distribution parameters  of each class 
𝜃! = 𝜃% = {𝜇% , Σ%}

• Mixture probabilities 𝜋"
• Posterior probabilities 

𝑝(𝑧!" = 1|𝑥!, 𝜃)
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𝜃 = 𝜃% , 𝜋% 	



Marginal Likelihood Function

76

Or the (marginal) Log-likelihood L

( ) ( )Õ
=

==L
N

n
nxpXp

1

|)|(, qqqp

Define the marginal likelihood as the probability of having 
the data, knowing the parameters

𝐿 𝜋, 𝜃 = logΛ 𝜋, 𝜃 = ∑! log ∑"𝜋"𝒩 𝑥!; 𝜇", 𝜎"  



Maximization of Log Likelihood ?

• Classical approach :
• Write log-Marginal Likelihood of data as a function of 𝜃
• Coordinate ascent : optimize with respect to each 

parameter 𝜃& successively 
• Differentiating the log likelihood with µk
and set equal to zero gives

Giving a non linear function of the unknown parameters.
Cannot be solved in closed form.
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3. Medical Image Segmentation

• 3.1 Taxonomy of segmentation algorithms 
• 3.2 Validation of segmentation algorithms
• 3.3 Deterministic Filtering & Thresholding Approaches
• 3.4 Probabilistic Imaging Model
• 3.5 Expectation Maximisation for GMM
• 3.6 Image classification with bias field
• 3.7 Variational Bayes EM
• 3.8 STAPLE Algorithm

Hervé Delingette 79



Expectation Maximisation 
Algorithm

• Iterative approach for estimating 
parameters of  (Gaussian) Mixture 
parameters

• General Idea  :
• New criterion : Add unknown variable u 

(posterior) and add constraint (KL divergence)
• Alternate maximization performed in closed 

form : equivalent to lower bound maximization 

81



Alternate maximisation
• Replace Log-Likelihood with a criterion easier 

to optimize but with additional unknowns
• Log-(marginal) likelihood :

• New criterion F 𝜃, 𝑢 :
• Add 𝑢 = {𝑢#%} as unknown. u is a vector of 𝑢#% 

which is the  posterior probability  

• By maximizing F with respect to u, 
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𝐿 𝜃 = log Λ 𝜃 = ∑# log 𝑝 𝑥#|𝜃 =	 ∑# log ∑% 𝜋%𝒩 𝑥#; 𝜇% , 𝜎%  

F 𝜃, 𝑢 = L 𝜃 − 𝐷)* 𝑢||𝑝 𝑧 𝑥

𝑢#% = 𝑝(𝑧#% = 1|𝑥#)



Why is it easier to optimize 
F 𝜃, 𝑢 ?

• General result :
• X = observed random variable
• Z = hidden random variable
• Joint probability
• Constraint on 𝑢!": ∑" 𝑢!" = 1
• Log likelihood :
• New criterion :
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𝑝 𝑥* , 𝑧* = 𝑝 𝑥*|𝑧* 𝑝 𝑧* = 𝑝 𝑧*|𝑥* 𝑝 𝑥*

𝐿 𝜃 =2
!

log 𝑝(𝑥!) =2
!

2
#

𝑢!# log 𝑝 𝑥!

F 𝜃, 𝑢 = ∑!∑# 𝑢!# log 𝑝 𝑥! − ∑!∑# 𝑢!# log 𝑢!#/𝑝 𝑧!#|𝑥!

F 𝜃, 𝑢 = ∑!∑# 𝑢!# log 𝑝 𝑥! , 𝑧!# − ∑!∑# 𝑢!# log 𝑢!#

We have « relaxed » the optimization problem by introducing
a new unknown variable



Interpretation
• New criterion involves 2 terms :

• F 𝜃, 𝑢  is the variational lower bound
• -F 𝜃, 𝑢  is the variational free energy= average energy -

entropy
• 𝑄 𝜃, 𝑢 = ∑L∑M 𝑢LM log 𝑝 𝑥LM , 𝑧LM = 𝔼N log 𝑝 𝑋, 𝑍  is the 

expectation of the complete likelihood
• ℍ 𝑢 = −∑L∑M 𝑢LM log 𝑢LM is the entropy of the 

approximate posterior probability
• 𝑄 𝜃, 𝑢 	is easier to optimize wrt 𝜃 because it involves 

complete likelihood = likelihood of observed and hidden 
variables 85

F 𝜃, 𝑢 = ∑*∑+ 𝑢*+ log 𝑝 𝑥*+ , 𝑧*+ − ∑*∑+ 𝑢*+ log 𝑢*+

𝑄 𝜃, 𝑢 ℍ 𝑢



• General result : 
• For	any	inverse	problem	where	Z	is	the
hidden	variable	and	X	observed	variable	:	

log 𝑝 𝑋 −𝐷_I 𝑢||𝑝 𝑍 𝑋
= 𝔼` log 𝑝(𝑋, 𝑍) + ℍ 𝑢

• Variational lower bound :
log	p 𝑋 ≥ 𝔼` log 𝑝(𝑋, 𝑍) + ℍ 𝑢

Evidence Lower Bound
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Z

X Observed

Hidden



Case of Gaussian Mixtures
• Log likelihood 
𝐿 𝜃 = log Λ 𝜃 = ∑# log ∑% 𝜋%𝒩 𝑥#; 𝜇% , 𝜎%  

• Function of parameters : 

𝑄 𝜃, 𝑢 =8
7

8
S

𝑢7S log 𝜋S𝒩(𝑥7|𝜇S, ΣS)

• Note that we have sum of log instead of 
log of sums !

• Criterion F 𝜃, 𝑢 = Q 𝜃, 𝑢 + ℍ 𝑢 is 
known as Hathaway criterion
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EM Algorithm 

• The algorithm optimizes alternatively 
between 𝑢 and 𝜃 = coordinate ascent

• Constraints : 
• E-step 

•  maximize 𝐹 𝜃, 𝑢  wrt u

• Equivalent to minimizing KL divergence between u 
and posterior probability
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F 𝜃, 𝑢 = L 𝜃 − 𝐷)* 𝑢||𝑝 𝑧 𝑥 = Q 𝜃, 𝑢 +ℍ 𝑢

Compute	uab =
c!𝒩 d" e!,f!) 

∑!#$
% c!	𝒩 d"|e!,f!

1=å
k

kp 1=å
k
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• M-step : maximize 𝐹 𝜃, 𝑢  or equivalently 
Q 𝜃, 𝑢  wrt 𝜃 = 𝜃#, 𝜃$
• Optimize with respect to mean 𝜇%
=>
=?:

= 0 

• Optimize with respect to covariance	Σ%
=>
=0:

= 0 

• Optimize with respect to prior probabilities
=>
=/:

= 0 

M-Step 

89

å

å

=

== N

n
nk

N

n
nnk

k

u

xu

1

1µ

( )( )

å

å

=

=

--
=S N

i
nk

N

n

T
knknnk

k

u

xxu

1

1
µµ

å
=

=
N

n
nkk u

N 1

1p



EM Algorithm for GMM

• Iterative scheme 
• Make initial guesses for the parameters
• Alternate between the following two 

stages:
1. E-step: evaluate posterior unk

2. M-step: update parameters (µk,Sk,pk) 
using ML results
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u)* =
𝜋#𝒩 𝑥! 𝜇# , Σ#) 

∑#+,- 𝜋# 	𝒩 𝑥!|𝜇# , Σ#
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EM as Iterated Lower Bound 
Maximisation 

• Equivalent view of EM algorithm :
• E-step leads to 𝑢 = 𝑝 𝑧|𝑥  and therefore makes 
𝐿 𝜃1 = 𝐹(𝜃1 , 𝑢).

• 𝐹(𝜃, 𝑢) is a lower bound of Log-likelihood 𝐿 𝜃  
since Kullback Leibler divergence is positive

• M-step optimizes 𝐹(𝜃, 𝑢) with respect to 𝜃 which is 
easier to maximize than log likelihood
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F 𝜃, 𝑢 = L 𝜃 − 𝐷-$ 𝑢||𝑝 𝑧 𝑥 = Q 𝜃, 𝑢 + ℍ 𝑢

L 𝜃 ≥ F 𝜃, 𝑢



Example of EM with 
2 Gaussian distributions

92



EM on Iris data
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Class Priors
• Initial hypothesis : homogeneous priors 𝑝 𝑧#% = 1 =
𝜋% is estimated

• Priors may be given by atlas registered on images. In 
this case 𝜃" are the registration parameters
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T1 template gray matter white matter csf

Prior 𝑝 𝑧!,	 on 
grey matter

Prior 𝑝 𝑧!&	 on 
White matter

Prior 𝑝 𝑧!.	 on 
cerebro spinal fluid

Atlas 

Affinely Registered 
Atlas

Courtesy of D. Vandermeulen

Example : BrainWeb at MNi 

http://www.bic.mni.mcgill.ca/brainweb/



EM for Image Intensity 
Classification

• Use the EM algorithm 
[Dempster77,Wells94] :

Expectation-Maximisation
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Responsabilities

Mixture Param.µk

uj(xi)

Sk pk



Brain Tissue 
Classification

• Typical application : use MR cerebral 
image
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Cerebro-spinal fluid White matterGrey matter

Courtesy of D. Vandermeulen

3 Classes Scalar feature 
= Intensity 



EM Classification - Algorithm
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Starting estimates for 
responsibilities

Compute Gaussian 
parameters from 
Responsibilities

Compute Responsibilities 
from Gaussian 

parameters

Converged ?
No Yes STOP

1µ

2µ
3µ

1s

2s 3s



Stage 1: Expectation 
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data distribution

classification

Courtesy of D. Vandermeulen

Compute 
Responsibilities

u;< =
𝜋+𝒩 𝑥* 𝜇+ , Σ+) 

∑+678 𝜋+ 	𝒩 𝑥*|𝜇+ , Σ+



Stage 2: Maximization
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classification

data

distribution

Courtesy of D. Vandermeulen
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Iterations EM

Courtesy of K. Van Leemput
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Results

White matter

Grey MatterCSF
Courtesy of K. Van Leemput



GMM and K-Means

• GMM with :
• Isotropic variance Σ" = 𝜖	𝐼𝑑

• Uniform prior : 𝜋" =
+
)

• Expectation of complete Lik. :
• Same as Fuzzy-Cmeans with m=1
• Same as K-means when :

•   𝜖 → 0
• 𝑢!" ∈ {0,1}
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u)* =
exp ⁄(−|𝑥! − 𝜇#||& 2𝜖)  

∑/+,- exp ⁄(−||𝑥! − 𝜇/||& 2𝜖)
→ 𝑟!# ∈ {0,1}

𝑄 𝜃 = −2
!

2
#

𝑢!# 𝑥! − 𝜇# &

2𝜖 	



K Means functional

• K Means algorithm consists in 
optimizing the functional :
• J 𝑟, 𝜇 = ∑!6+7 ∑"6+) 𝑟!" 𝑥! − 𝜇" -

• With the constraint that 𝑟!" ∈ 0,1 	and 
∑"6+) 𝑟!" = 1	 ∀𝑛

• J can  be seen as 
• minimizing the correlation between the assignment 

and the distance to cluster center
• Minimizing the compactness of the clusters
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K Means optimization

• Perform alternate optimization :
• Consider µk fixed and optimize on rnk 

• For each data xn choose which rnk  is 1

• Consider rnk fixed and optimize on µk
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𝑟!# = _1	if	 k = arg	𝑚𝑖𝑛/ 𝑥! − 𝜇# 	
0	otherwise

𝜕𝐽
𝜕𝜇#

= 22
!+,

0

𝑟!# 𝜇# − 𝑥! = 0

𝜇# =
∑!+,0 𝑟!#𝑥!
∑!+,0 𝑟!#

E-Step

M-Step



Good Initial Seeds (kmeans++)
• Choose the centers as far away as 

possible from each other but in a 
random manner.

• Algorithm :
• Choose one center at random 𝜇$
• While 𝑘 ≤ 𝐾

• Compute d; = arg	𝑚𝑖𝑛9=+ 𝑥* − 𝜇9
> the minimum 

distance of data 𝑥* to the already chosen centers
• Pick 𝜇+ among data with probability proportional to 𝑑*
• k=k++
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David Arthur and Sergei Vassilvitskii. k-means++: The advantages of careful seeding. “Proceedings of the eighteenth annual ACM-SIAM 
symposium on Discrete algorithms“, 2007 , pp. 1027–1035



Issues with EM for GMM
• Presence of bias field in MR images
• EM leads to only local maxima of Log-likelihood 
• Functional admits trivial solutions (zero covariance 

centered at data points) that can lead to bad estimate
• The covariance matrix Σ% should be invertible which is 

not guaranteed (may use pseudo-inverse)
• How to choose the number of classes 
• How to make the estimation robust 

to outliers ?
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