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Medical Image Analysis – MVA 2024-2025

Course notes : http://www-sop.inria.fr/teams/asclepios/cours/MVA/

 Tue. Oct 1 2024, 14:00 ENS 1Z25 [XP] Introduction to Medical Image Acquisition & Image Registration

 Tue. Oct 8 2024, 14:00 ENS 1Z25 [XP] Riemannian Geometry and Statistics

 Tue. Oct 15 2024, 14:00 ENS 1Z25 [HD] Image Filtering & Segmentation 

 Tue. Oct 22 2024: 14:00 ENS 1Z25 [HD] Image Segmentation based on Clustering and Markov 

Random Fields 

 Tue. Nov 5 2024: 14:00 ENS 1Z25 [XP] Analysis in the space of Covariance Matrices

 Tue. Nov 12 2024: 14:00 ENS 1Z25 [HD] Shape constrained image segmentation

 Tue. Nov 19 2024: 14:00 ENS 1Z25 [XP] Diffeomorphic Registration and Computational Anatomy

 Tue. Nov 26 2024: 14:00 ENS 1Z25 [HD] Biophysical Modeling

 Tue. Dec 3, 2024, 14:00 (Visio) [XP & HD] Exam 

01/10/2024 Xavier Pennec
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Course overview

Introduction

 Why do we need statistics on manifolds?

Simple statistics on interesting manifolds

 The Riemannian Geometric framework

 Simple Statistics
 Mean, Covariance, Gaussian, t-tests 

Application to registration

 Statistics on spine shapes

 Evaluation of registration accuacy

07/10/2024 Xavier Pennec
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MR Image Initial USRegistered US

Per-operative registration of MR/US images

Performance Evaluation?

07/10/2024 Xavier Pennec
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Variability of a registration algorithm

Registration algorithm

Estimated transformation

Hidden parameters

• Anatomy 

• Pathologies

Quantify the statistical Variability of the transformation: 

 Expected value (bias)

 Covariance matrix, std dev. (accuracy, precision)
 On the transformation ( rotation sr [rad], translation st [mm])

 Propagate on target points (TRE sx)

Image 1

• Distortions

• Noise         

Image 2

• Distortions

• Noise         

Geometric transformation

• Rigid  

• Deformations

07/10/2024 Xavier Pennec
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Modeling and Analysis of the Human Anatomy
 Estimate representative / average organ anatomies

 Model organ development across time

 Establish normal variability

 To detect and classify of pathologies from structural deviations

 To adapt generic (atlas-based) to patients-specific models

Computational Anatomy

Computational Anatomy, an emerging discipline, P. Thompson, M. Miller, NeuroImage special issue 2004

Mathematical Foundations of Computational Anatomy, X. Pennec, S. Joshi, MICCAI workshop, 2006

07/10/2024 Xavier Pennec
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Shape of RV in 18 patients

Methods of computational anatomy

Remodeling of the right ventricle of the heart in tetralogy of Fallot

 Mean shape

 Shape variability

 Correlation with clinical variables

 Predicting remodeling effect

07/10/2024 Xavier Pennec

Shapes: forms & deformations

“Shape space” embedding [Kendall]

 Shape = what remains from the object when we remove all 
transformations from a given group

 Transformation (rigid, similarity, affine) = nuisance factor

 Shape manifold =  quotient of the Object manifold by the group action

 Quotient spaces are non-linear (e.g. Rn / scaling = Sn)

 Kendall size & shape space:  (Rn)d/ SOn

Statistics on shape spaces?

807/10/2024 Xavier Pennec

Anatomical structures segmented in Brain Images

How to measure the variability across subjects?

Generic framework to deal with all object types?

9

Fiber tracts from DTISurface of deep  
brain structures

Sulcal lines at the 
surface of the cortex

Xavier Pennec



4

11

Diffusion Tensor Imaging

Covariance of the Brownian motion of water 
-> Architecture of axonal fibers

Very noisy data

 Tensor image processing

 Robust estimation

 Filtering, regularization 

 Interpolation / extrapolation

 Information extraction (fibers)

Symmetric positive definite matrices

 Convex operations are stable 
 mean, interpolation

 More complex operations are not
 PDEs, gradient descent… Diffusion Tensor Filed

(slice of a 3D volume)

Intrinsic computing on Manifold-valued images?

07/10/2024 Xavier Pennec

Statistical Analysis of Geometric Features

Geometric features belong to manifolds

 Curves, tracts
 Surfaces
 Tensors, covariance matrices
 Transformations / deformations

Algorithms for statistics on geometric manifolds
 Definition of mean / covariance / PCA / distributions of geometric features?

 Mathematical structure = algorithmic bases

1207/10/2024 Xavier Pennec
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Basic probabilities and statistics

Measure:               random vector x of pdf 

Approximation:

• Mean: 

• Covariance:

Propagation:

Noise model: additive, Gaussian...

Principal component analysis

Statistical distance: Mahalanobis and
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Some problems with geometric features

Extrinsic means of 3D rotations:               

Noise on 3D rotations:
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invariance w.r.t. the transformation group

07/10/2024 Xavier Pennec

Part 1: Foundations
 1: Riemannian geometry [Sommer, Fetcher, Pennec]

 2: Statistics on manifolds [Fletcher]

 3: Manifold-valued image processing with SPD matrices [XP]

 4: Riemannian Geometry on Shapes and Diffeomorphisms 
[Marsland, Sommer]

 5: Beyond Riemannian: the affine connection setting for 
transformation groups [Pennec, Lorenzi]

Part 2: Statistics on Manifolds and Shape Spaces
 6: Object Shape Representation via Skeletal Models (s-reps) and 

Statistical Analysis [Pizer, Maron]

 7: Inductive Fréchet Mean Computation on S(n) and SO(n) with 
Applications [Chakraborty, Vemuri]

 8: Statistics in stratified spaces [Ferage, Nye]

 9: Bias in quotient space and its correction [Miolane, 
Devilier,Pennec]

 10: Probabilistic Approaches to Statistics on Manifolds: 
Stochastic Processes, Transition Distributions, and Fiber Bundle 
Geometry [Sommer]

 11: Elastic Shape Analysis, Square-Root Representations and 
Their Inverses [Zhang, Klassen, Srivastava]

15

Part 3: Deformations, Diffeomorphisms and their Applications
 13: Geometric RKHS models for handling curves and surfaces in Computational Anatomy : currents, varifolds, f-

shapes, normal cycles [Charlie, Charon, Glaunes, Gori, Roussillon]

 14: A Discretize-Optimize Approach for LDDMM Registration [Polzin, Niethammer, Vialad, Modezitski]

 15: Spatially varying metrics in the LDDMM framework [Vialard, Risser]

 16: Low-dimensional Shape Analysis In the Space of Diffeomorphisms [Zhang, Fleche, Wells, Golland]

 17: Diffeomorphic density matching, Bauer, Modin, Joshi]

Published 09-2019, Elsevier

07/10/2024 Xavier Pennec
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Course overview

Introduction

 Why do we need statistics on manifolds?

Simple statistics on interesting manifolds

 The Riemannian Geometric framework

 Simple Statistics
 Mean, Covariance, Gaussian, t-tests 

Application to registration

 Statistics on spine shapes

 Evaluation of registration accuacy

07/10/2024 Xavier Pennec
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Riemannian geometry is a powerful structure to 
build consistent statistical computing algorithms
Shape spaces & directional statistics

 [Kendall StatSci 89, Small 96, Dryden & Mardia 98]

Numerical integration, dynamical systems & optimization

 [Helmke & Moore 1994, Hairer et al 2002]

 Matrix Lie groups [Owren BIT 2000, Mahony JGO 2002]

 Optimization on Matrix Manifolds [Absil, Mahony, Sepulchre, 2008] 

Information geometry (statistical manifolds)

 [Amari 1990 & 2000, Kass & Vos 1997]

 [Oller Annals Stat. 1995, Battacharya Annals Stat. 2003 & 2005]

Statistics for image analysis

 Rigid body transformations [Pennec PhD96]

 General Riemannian manifolds [Pennec JMIV98, NSIP99, JMIV06]

 PGA for M-Reps [Fletcher IPMI03, TMI04]

 Planar curves [Klassen & Srivastava PAMI 2003]

1707/10/2024 Xavier Pennec

Which non-linear space?

Constant curvatures spaces

 Sphere, 

 Euclidean, 

 Hyperbolic

Homogeneous spaces, Lie groups and symmetric spaces

Riemannian or affine connection spaces

Towards non-smooth quotient and stratified spaces

1807/10/2024 Xavier Pennec

Definition of a manifold
Intuitive idea

 “A manifold is a topological space which is locally Euclidean”

 “A Manifold is a topological space for which the neighborhood of 
each point is homeomorphic to the euclidean space”

 Homeomorphism: F is bijective and F and F-1 are continuous 
(no folding or tearing transformation)

Definition: Ck manifold of dimension n (N ≥ 1, k ≥ 1, or k = ∞)

 A topological space M, together with a Ck atlas on M. 

 Any equivalence class of atlases is called a differentiable structure 
of class Ck (and dimension n)

Differentiable manifolds
 When k = ∞, we say that M is a smooth manifold

 When k=1, M is a differential manifold

 When k=0, M is a topological manifold

1907/10/2024 Xavier Pennec
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Traditional atlas definition

Given: Manifold MGiven: Manifold M
Construct: Atlas A
Chart

 Region Uc in M (open disk)
 Region c in Rn (open disk)
 Function ac taking Uc to c

 Inverse

Atlas is collection of charts
 Every point in M in at least 

one chart
 Overlap regions
 Transition functions:

y01 = a1 o a0
-1 smooth

07/10/2024 20

•M
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1
0
a

0a

Xavier Pennec

07/10/2024 21Xavier Pennec

Differentiable manifolds

Computing on a manifold

 Extrinsic
 Embedding in ℝ௡

 Intrinsic
 Coordinates : charts

22

 Measuring?
 Lengths

 Straight lines

 Volumes

07/10/2024 Xavier Pennec
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Measuring extrinsic distances

Basic tool: the scalar product

wvwv t ,

• Norm of a vector
 vvv ,

p

v

23

g(t)
• Length of a curve

𝐿 𝛾 = ∫ 𝛾̇ 𝑡  𝑑𝑡

07/10/2024 Xavier Pennec

Bernhard Riemann 
1826-1866

Measuring extrinsic distances

Basic tool: the scalar product

wvwv t ,

• Norm of a vector

pp
vvv  ,

Bernhard Riemann 
1826-1866

wpGvwv t
p )(, 

24

• Length of a curve
𝐿 𝛾 = ∫ 𝛾̇ 𝑡  𝑑𝑡

07/10/2024 Xavier Pennec

• Geodesics

• Shortest path between 2 points

• Calculus of variations (E.L.) :
2nd order differential equation
(specifies acceleration)

• Free parameters: initial speed 
and starting point 

wpGvwv t
p )(, 

Bernhard Riemann 
1826-1866

Riemannian manifolds

Basic tool: the scalar product

Bernhard Riemann 
1826-1866

25

• Length of a curve
𝐿 𝛾 = ∫ 𝛾̇ 𝑡  𝑑𝑡

07/10/2024 Xavier Pennec
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Bases of Algorithms in Riemannian Manifolds

Operation Euclidean space Riemannian

Subtraction

Addition

Distance

Gradient descent )( ttt xCxx  

)(yLogxy x
xyxy 

xyyx ),(dist
x

xyyx ),(dist

)(xyExpy x

))( ( txt xCExpx
t

 

xyxy 

Reformulate algorithms with expx and logx
Vector -> Bi-point (no more equivalence classes)

Exponential map (Normal coordinate system):
 Expx = geodesic shooting parameterized by the initial tangent

 Logx = unfolding the manifold in the tangent space along geodesics 

 Geodesics = straight lines with Euclidean distance 

 Geodesic completeness: covers M \ Cut(x)

2607/10/2024 Xavier Pennec
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Cut locus

07/10/2024 Xavier Pennec
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Metric choice

Transformations (Lie group):

 Left (or right) invariant

 Practical computations

 No bi-invariant metric

Homogeneous manifolds

 Invariance wrt the isotropy group

 Practical computations

General Riemannian manifolds

 Exp and log through numerical optimization / integration

Id
gf  h)fg,dist(fh)dist(g, 1)(  

  gf  fg          δff  δfexp 1)(

f
 

y)gx,dist(gy)dist(x, 

  yf  xy        δxf  δxexp (-1)
xxx 

07/10/2024 Xavier Pennec
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Example on 3D rotations

Space of rotations SO(3):

 Manifold: Rt.R=Id  and det(R)=+1

 Lie group:
 Composition: R1 o R2 = R1.R2

 Inversion: R(-1) = Rt

Tangent space 

 At Identity (skew symmetric matrices)

 At any point by left or right translation

Metrics on SO(3)

 Left / right invariant metrics

 Induced by the ambient space: bi-invariance

07/10/2024 Xavier Pennec
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Example on 3D rotations

Group exponential

 One parameter subgroups

 Matrix exponential and Rodrigue’s formula

Exponential map for the bi-invariant metric

 Geodesic starting at identity = one parameter subgroups

 Geodesic everywhere by left (or right) translation

More details in the memo on rotations on the web 

07/10/2024 Xavier Pennec
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Course overview

Introduction

 Why do we need statistics on manifolds?

Simple statistics on interesting manifolds

 The Riemannian Geometric framework

 Simple Statistics
 Mean, Covariance, Gaussian, t-tests 

Application to registration

 Statistics on spine shapes

 Evaluation of registration accuacy
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Basic probabilities and statistics

Measure:               random vector x of pdf 

Approximation:

• Mean: 

• Covariance:

Propagation:

Noise model: additive, Gaussian...

Principal component analysis

Statistical distance: Mahalanobis and

dzzpz ).(. )  E(x xx 
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Random variable in a Riemannian Manifold

Intrinsic pdf of x

 For every set H 

𝑃 𝐱 ∈ 𝐻 = න 𝑝 𝑦 𝑑𝑀(𝑦)
ு

 Lebesgue’s measure 

 Uniform Riemannian Mesure 𝑑𝑀 𝑦 = det 𝐺 𝑦 𝑑𝑦

Expectation of an observable in M
 𝑬𝐱 𝜙 = ∫ 𝜙 𝑦 𝑝 𝑦 𝑑𝑀 𝑦

ெ

 𝜙 = 𝑑𝑖𝑠𝑡ଶ (variance) :  𝑬𝐱 𝑑𝑖𝑠𝑡 . , 𝑦 ଶ = ∫ 𝑑𝑖𝑠𝑡 𝑦, 𝑧 ଶ𝑝 𝑧 𝑑𝑀(𝑧)
ெ

 𝜙 = log 𝑝  (information) :  𝑬𝐱 log 𝑝 = ∫ 𝑝 𝑦 log (𝑝 𝑦 )𝑑𝑀 𝑦
ெ

 𝜙 = 𝑥 (mean) :  𝑬𝐱 𝐱 = ∫ 𝑦 𝑝 𝑦 𝑑𝑀 𝑦
ெ

 Integral only valid in Hilbert/Wiener spaces [Fréchet 44]

07/10/2024 33Xavier Pennec
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Statistical tools: Moments
Tensor moments of a random point on M

 𝔐ଵ 𝑥 = ∫ 𝑥𝑧 𝑑𝑃(𝑧)
ெ

Tangent mean: (0,1) tensor field

 𝔐ଶ(𝑥) = ∫ 𝑥𝑧 ⊗ 𝑥𝑧 𝑑𝑃(𝑧)
ெ

(0,2) tensor field

 𝔐௞(𝑥) = ∫ 𝑥𝑧 ⊗ 𝑥𝑧 ⊗ ⋯ ⊗ 𝑥𝑧 𝑑𝑃(𝑧)
ெ

k-contravariant tensor field

 𝜎ଶ 𝑥 = 𝑇𝑟௚ 𝔐ଶ 𝑥 = ∫ 𝑑𝑖𝑠𝑡ଶ 𝑥, 𝑧  𝑑𝑃(𝑧)
ெ

Mean square distance

Tangent mean and tangent covariance fields

 Tg mean: 𝔐ଵ 𝑥 = ∫ 𝑥𝑧 𝑑𝑃(𝑧)
ெ

 Tg cov: 𝐶𝑜𝑣 𝑥 =  𝔐ଶ 𝑥̅ − 𝔐ଵ 𝑥 ⊗ 𝔐ଵ 𝑥

07/10/2024 Xavier Pennec
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Several definitions of the mean

Tensor moments of a random point on M

 𝔐ଵ 𝑥 = ∫ 𝑥𝑧 𝑑𝑃(𝑧)
ெ

Tangent mean: (0,1) tensor field

 𝔐ଶ(𝑥) = ∫ 𝑥𝑧 ⊗ 𝑥𝑧 𝑑𝑃(𝑧)
ெ

(0,2) tensor field

 𝔐௞(𝑥) = ∫ 𝑥𝑧 ⊗ 𝑥𝑧 ⊗ ⋯ ⊗ 𝑥𝑧 𝑑𝑃(𝑧)
ெ

k-contravariant tensor field

 𝝈𝟐 𝒙 = 𝑻𝒓𝒈 𝕸𝟐 𝒙 = ∫ 𝒅𝒊𝒔𝒕𝟐 𝒙, 𝒛  𝒅𝑷(𝒛)
𝑴

Mean square distance

Fréchet mean set 
 Frechet mean [1948] = global minima of MSD

 Karcher mean [1977] = local minima of MSD

 Exponential barycenters [Emery & Mokobodzki 1991]

𝔐ଵ
 𝑥̅ = ∫ 𝑥̅𝑧 𝑑𝑃(𝑧)

ெ
= 0 (critical points if P(C) =0))

sometimes called Riemannian center of mass 
[Groove & Karcher 1973-1976] under uniqueness assumptions

Maurice Fréchet 
(1878-1973)

07/10/2024 Xavier Pennec

Fréchet expectation (1948)
Minimizing the variance

Existence

 Finite variance at one point

Characterization as an exponential barycenter (P(C)=0)

Uniqueness Karcher 77 / Kendall 90 / Afsari 10 / Le 10

 Unique Karcher mean (thus Fréchet) if distribution has support in a

regular geodesic ball with radius 𝑟 < 𝑟∗ =
ଵ

ଶ
min 𝑖𝑛𝑗 𝑀 , 𝜋/ 𝜅 (k upper

bound on sectional curvatures on M)
 Empirical mean: a.s. uniqueness [Arnaudon & Miclo 2013]

Other central primitives

    ),dist(E argmin 2xx y
y M

Ε

    0)().(.xxE           0  )(grad 2  
M

M zdzpy xx xxs

     aaa
1

),dist(E argmin xx y
y M

Ε

3607/10/2024 Xavier Pennec

37

A gradient descent (Gauss-Newton) algorithm

Vector space

Manifold

vHvvfxfvxf f
TT

..
2

1.)()( 

fHvvxx ftt  

 .      with  )1(

1

),()()())((exp
2

1 vvHvfxfvf fx 

    
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i
in

yx
2

yE 2  (y)2 xxs

IdH 2   2 
xs

 xyE     with  )(expx x1  vv
tt

Geodesic marching
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Algorithms to compute the mean

Karcher flow (gradient descent)

𝑥̅௧ାଵ = exp௫̅೟
𝜖௧ 𝑣௧   𝑤𝑖𝑡ℎ  𝑣௧ = E y𝐱 =

ଵ

୬
 ∑ log௫̅೟

(𝑥௜)௜

 Usual algorithm with 𝜖௧ = 1 can diverge on SPD matrices 
[Bini & Iannazzo, Linear Algebra Appl., 438:4, 2013]

 Convergence for non-negative curvature (p-means) 
[Afsari, Tron and Vidal, SICON 2013]

Inductive / incremental weighted means

 𝑥̅௞ାଵ = exp௫̅ೖ

ଵ

௞
 𝑣௞   𝑤𝑖𝑡ℎ  𝑣௞ = log௫̅ೖ

𝑥௞ାଵ

 On negatively curved spaces [Sturm 2003], 
BHV centroid [Billera, Holmes, Vogtmann, 2001]

 On non-positive spaces [G. Cheng, J. Ho, H. Salehian, B. C. Vemuri 2016]

Stochastic algorithm 
 [Arnaudon & Miclo, Stoch. Processes and App. 124, 2014]

3807/10/2024 Xavier Pennec
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Example on 3D rotations

Space of rotations SO(3):

 Manifold: RT.R=Id  and det(R)=+1

 Lie group ( R1 o R2 = R1.R2   & Inversion: R(-1) = RT )

Metrics on SO(3): compact space, there exists a bi-invariant metric

 Left / right invariant / induced by ambient space  <X, Y> = Tr(XT Y)

Group exponential

 One parameter subgroups = bi-invariant Geodesic starting at Id
 Matrix exponential and Rodrigue’s formula: R=exp(X)  and X = log(R)

 Geodesic everywhere by left (or right) translation

LogR(U) = R log(RT U)            ExpR(X) = R exp(RT X) 

Bi-invariant Riemannian distance

 d(R,U) = ||log(RT U)|| = q( RT U )

07/10/2024 Xavier Pennec
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Example with 3D rotations

Principal chart: 

Distance:

Frechet mean:

nr .  :ectorrotation v q

2
)1(

121 ),dist( rrRR 

Centered chart: 

mean = barycenter









 


i

),dist(min arg  
3

i
SOR

RRR
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tPCA vs PGA

tPCA
 Generative model: Gaussian
 Find the subspace that best explains the variance

Maximize the squared distance to the mean

PGA (Fletcher 2004, Sommer 2014)
 Generative model:

 Implicit uniform distribution within the subspace

 Gaussian distribution in the vertical space

 Find a low dimensional subspace (geodesic subspaces?) that 
minimizes the error 
 Minimize the squared Riemannian distance from the measurements to that 
sub-manifold (no closed form)

Different models in curved spaces (no Pythagore thm)

Extension to BSA (Pennec 2018)

07/10/2024 41Xavier Pennec
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Distributions for parametric tests

Uniform density:
 maximal entropy knowing X

Generalization of the Gaussian density:
 Stochastic heat kernel p(x,y,t) [complex time dependency] 
 Wrapped Gaussian [Infinite series difficult to compute]
 Maximal entropy knowing the mean and the covariance

Mahalanobis D2 distance / test:

 Any distribution:

 Gaussian:
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      rOk n /1.)det(.2 32/12/ ss   Σ

   rO /  Ric
3

1)1( ss  ΣΓ

yx..yx)y( )1(2  xxx

t



  n)(E 2 xx
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[ Pennec, JMIV06, NSIP’99 ]
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Gaussian on the circle

Exponential chart:

Gaussian: truncated standard Gaussian

[. ; .]    rrrx q 

standard Gaussian
(Ricci curvature → 0)

uniform pdf with

(compact manifolds)

Dirac

:r

:g

:0g
3/).( 22 rs 
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Computing on manifolds: a summary

The Riemannian metric easily gives
 Intrinsic measure and probability density functions

 Expectation of a function from M into R (variance, entropy)

Integral or sum in M: minimize an intrinsic functional
 Fréchet / Karcher mean: minimize the variance

 Filtering, convolution: weighted means

 Gaussian distribution: maximize the conditional entropy

The exponential chart corrects for the curvature at the 

reference point
 Gradient descent: geodesic walking

 Covariance and higher order moments

 Laplace Beltrami for free

[ Pennec, NSIP’99, JMIV 2006, Pennec et al, IJCV 66(1) 2006, Arsigny, PhD 2006]
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Course overview

Introduction

 Why do we need statistics on manifolds?

Simple statistics on interesting manifolds

 The Riemannian Geometric framework

 Simple Statistics
 Mean, Covariance, Gaussian, t-tests 

Application to registration

 Statistics on spine shapes

 Evaluation of registration accuacy

07/10/2024 Xavier Pennec
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Statistical Analysis of the Scoliotic Spine

Database
 307 Scoliotic patients from the Montreal’s 

Sainte-Justine Hospital.

 3D Geometry from multi-planar X-rays

Mean
 Main translation variability is axial (growth?)

 Main rotation var. around anterior-posterior axis 

PCA of the Covariance
 4 first variation modes have clinical meaning

[ J. Boisvert, X. Pennec, N. Ayache, H. Labelle, F. Cheriet,, ISBI’06 ]
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Statistical Analysis of the Scoliotic Spine

• Mode 1: King’s class I or III

• Mode 2: King’s class I, II, III 

• Mode 3: King’s class IV + V

• Mode 4: King’s class V (+II)

07/10/2024 Xavier Pennec
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MR-US Images

Pre - Operative MR Image

Acquisition of images : L. & D. Auer, M. Rudolf

axial

coronal sagittal

Per - Operative US Image

axial

coronal sagittal

07/10/2024 Xavier Pennec
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Per - Operative US Image

Typical Registration Result
with Bivariate Correlation Ratio

Pre - Operative MR Image

Registered

Acquisition of images : L. & D. Auer, M. Rudolf

axial

coronal sagittal

axial

coronal sagittal

07/10/2024 Xavier Pennec
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US Intensity 
MR Intensity and Gradient

07/10/2024 Xavier Pennec
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Accuracy Evaluation (Consistency)

222
/

2 2 USMRUSMRloop ssss 
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Validation using Bronze Standard

Best explanation of the observations (ML) :
 LSQ criterion 

 Robust Fréchet mean 

 Robust initialization and Newton gradient descent

 Grid scheduling for efficiency

Result

 2
21

2
21

2 ),,(min),(  TTTTd 

transrotjiT ss ,,,

 ij ijij TTdC )ˆ,(2

[ T. Glatard & al, MICCAI 2006,

Int. Journal of HPC Apps, 2006 ]
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Data (per-operative US)
 2 pre-op MR (0.9 x 0.9 x 1.1 mm)

 3 per-op US (0.63 and 0.95 mm)

 3 loops

Robustness and precision

Consistency of BCR

Results on per-operative patient images

Success var rot (deg) var trans (mm)
MI 29% 0.53 0.25
CR 90% 0.45 0.17

BCR 85% 0.39 0.11

var rot (deg) var trans (mm) var test (mm)
Multiple MR 0.06 0.06 0.10

Loop 2.22 0.82 2.33
MR/US 1.57 0.58 1.65

[Roche et al, TMI 20(10), 2001 ]

[Pennec et al, Multi-Sensor Image Fusion, Chap. 4, CRC Press, 2005]
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Mosaicing of Confocal Microscopic in Vivo Video Sequences. 

Cellvizio: Fibered confocal fluorescence imaging

FOV 200x200 µm
Courtesy of Mike Booth, MGH, Boston, MA FOV 2747x638 µm

Cellvizio

[ T. Vercauteren et al., MICCAI 2005, T.1, p.753-760 ]
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Common coordinate system

 Multiple rigid registration

 Refine with non rigid 

Mosaic image creation

 Interpolation / approximation 
with irregular sampling

MosaicFrame 6

Frame 1

Frame 2

Frame 3

Frame 4Frame 5

Mosaicing of Confocal Microscopic in Vivo Video Sequences. 

Courtesy of Mike Booth, MGH, Boston, MA FOV 2747x638 µm

[ T. Vercauteren et al., MICCAI 2005, T.1, p.753-760 ]
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