Medical Imaging : Connexity and Shape Constrained Image segmentation

> Hervé Delingette Epione Team Herve.Delingette@inria.fr

Hervé Delingette

4. Connexity and Shape Constrained Image segmentation

- 4.1 Label Connexity Hypothesis : Markov Random Field
 - Definition of prior
 - Graph cut algorithm
 - Neighborhood EM
 - Grab Cut
- 4.2 Introduction to shape and deformable Models
- 4.3 Snakes algorithm
- 4.4 Level Set Algorithm
- 4.5 Point Distribution Model
- 4.6 Multi-atlas Algorithm

Image Segmentation Approaches

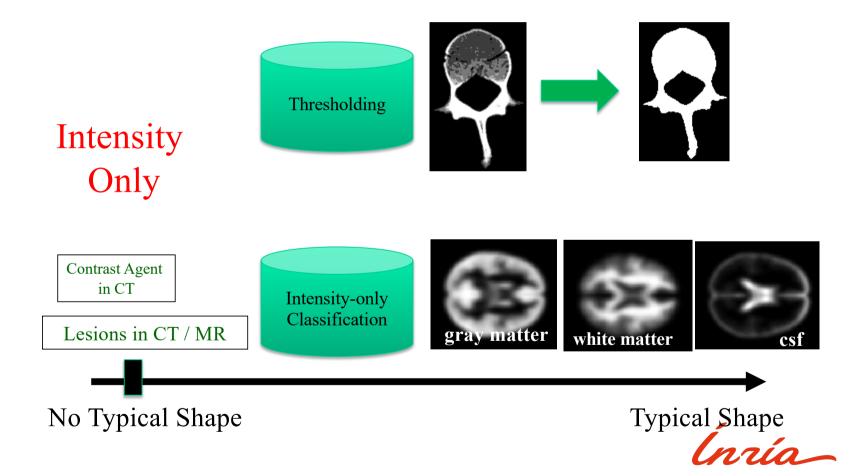
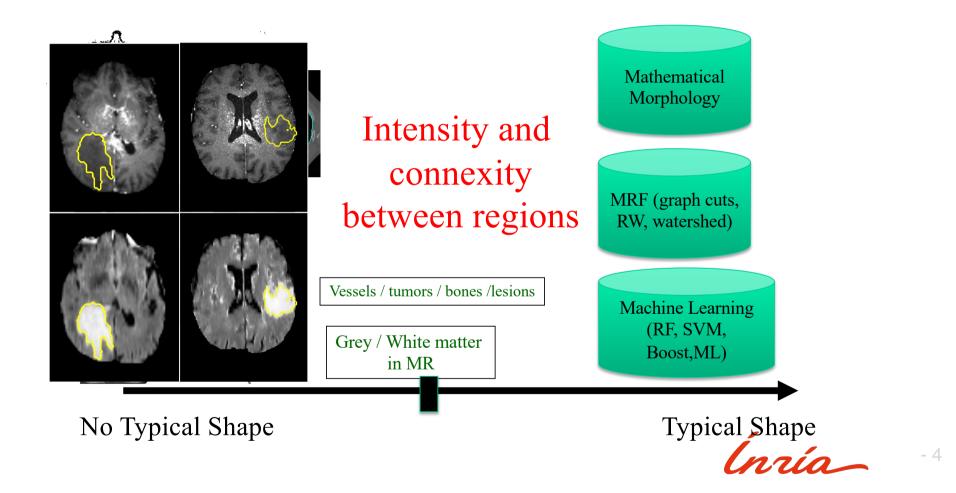
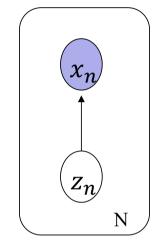


Image Segmentation Approaches



MoG Segmentation Hypothesis

- So far considered independent voxels
 - Z_n variable specifying the class of voxel n
 - X_n variable representing the intensity

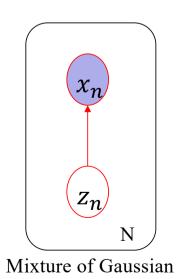


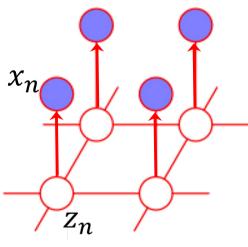
- Class membership only dependent on voxel intensity (thresholding)
- But may not be realistic in the presence of noise & partial volume effect

naía -

MRF Segmentation Hypothesis

- In Markov Random Fields :
 - Label variables z_n are no longer independent but depend on their neighbors
 - Intensity variables x_n only depends on the class label (variable z_n)





Markov Random Field

Ínaía -

Markov Random Field

• Intensity prior depends on neighboring values :

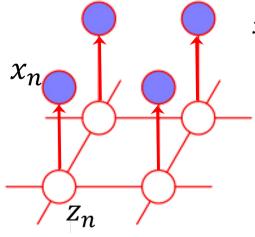
 $p(Z_n|Z_{-n}) = p(Z_n|Z_{N(n)})$

Label at voxel n

Set of Labels of all image voxels except Voxel n

Labels of Neighboring voxels Of voxel n

Graphical Model



 x_n are independent only if z_n are known (conditional independence)

$$p(X) \neq \prod_{n} p(x_{n})$$
$$p(X|Z) = \prod_{n} p(x_{n}|z_{n})$$

Íngia -

Challenges in MRF

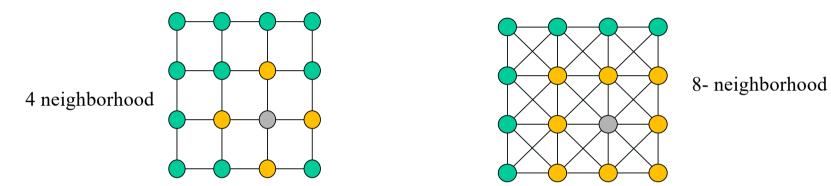
• Posterior probability is no longer tractable $p(Z|X) = \frac{p(X|Z)p(Z)}{\sum_{Z'} p(X|Z')p(Z')}$ Intractable sum over 2^N terms $p(z_n|X) = \sum_{Z_1} \sum_{Z_2} \dots \sum_{Z_{n-1}} \sum_{Z_{n+1}} \sum_{Z_N} p(Z|X)$

Intractable marginalization over N-1 term

Ínnía -

Definition of Label Prior in MRF

• Images seen as Graph

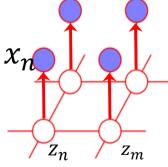


- Label Prior p(Z) depends on neighborhood :
 - 2D images : 4 or 8 neighborhood
 - 3D images : 6, 18 or 26 neighborhood

Definition of Label Prior in MRF

- Label prior p(Z) is defined on a graph 4 neighborhood : $p(Z_n|Z_{-n}) = f(Z_{n-1}, Z_{n+1}, Z_{n-R}, Z_{n+R})$
- Hammersley-Clifford theorem gives the expression of p(Z):
 - There exists functions ψ and ϕ such that

$$\log p(Z|\theta) = \frac{-1}{T} \sum_{edges(n,m)} \psi(z_n, z_m, \theta) - \frac{1}{T^*} \sum_n \phi(z_n, \theta)$$



Binary term

Unary term

 $\psi(z_n, z_m, \theta)$ is any function of 2 Binary vectors : it enforces how likely are two labels are different $\phi(z_n, \theta) = \phi_n$ Gives how likely voxel n belongs to class k

Potts Model for Label Prior

- Idea : neighboring voxels should have similar labels.
- Definition Ising when K=2 :
 - One hot encoding : $Z_n = (Z_{n1}, Z_{n2} \dots Z_{nK})^T$
 - $\psi(z_n, z_m, \theta) = -\sum_{k=1}^K f_{nm} z_{nk} z_{mk}$,
 - In another words :

• $\psi(z_n, z_m, \theta) = -f_{nm}$ if $Z_n = Z_m$ and $\psi(z_n, z_m, \theta) = 0$ if $Z_n \neq Z_m$,

- Alternative 1 : $\psi(z_n, z_m, \theta) = f_{nm} ||Z_n Z_m||^2$
- Coefficient definition : neighboring voxels having similar intensity should have the same labels.

$$f_{nm} = \exp{-\beta(x_n - x_m)^2}$$
 (nria

Joint Probability in MRFs

- Definition of joint probability :
 - $p(X, Z|\theta) = p(Z)p(X|Z)$
- Log joint probability

Conditional independence
Conditional independence

$$\Lambda(Z,\theta) = \log p(X,Z|\theta) = \log p(Z|\theta) + \sum_{n} \log p(x_{n}|z_{n},\theta)$$
Categorical variable

$$\Lambda(Z,\theta) = \log p(Z|\theta) + \sum_{n} \sum_{k} z_{nk} \log p(x_{n}|z_{nk} = 1,\theta)$$
Energy

$$-\Lambda(Z,\theta) = \frac{1}{T} \sum_{edges(n,m)} \psi(z_{n}, z_{m}, \theta) + \frac{1}{T^{*}} \sum_{n} \phi(z_{n}, \theta) - \sum_{n} \sum_{k} z_{nk} \log p(x_{n}|z_{nk} = 1,\theta)$$
Unary terms
Unary terms

Algorithms for solving MRF

- Many existing algorithms :
 - 1) Graph cut Algorithm :
 - Fast
 - solve for hard memberships z_{nk}
 - Unique solution for K=2 if some constraints on f_{nm} are met
 - Several extensions for K>2

• 2) Neighborhood EM

- solve for soft memberships $p(z_n|x_n)$
- Simple Extension of GMM
- Fixed point Iterative method
- 3) Grab Cut

Ínsia-

Graph cuts

- Binary case & Ising model :
 - 2 labels case $y_i \in \{0,1\}$
 - Minimize energy : $E(Y) = \sum_{i,j} c_{ij} y_i (1 - y_j) + \sum_i d_i y_i \text{ , with } d_i > 0$
 - Submodular constraint for unique solution

$$c_{ij} + c_{ji} \ge 0$$

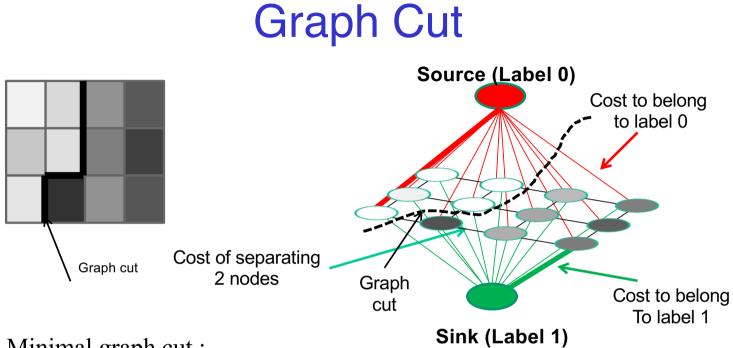
• Minimize E(Y)

Minimize a graph cut

Combinatorial problem

D.M. Greig, B.T. Porteous and A.H. Seheult (1989), *Exact maximum a posteriori estimation for binary images*, Journal of the Royal Statistical Society Series B, **51**, 271–279.

Innín_

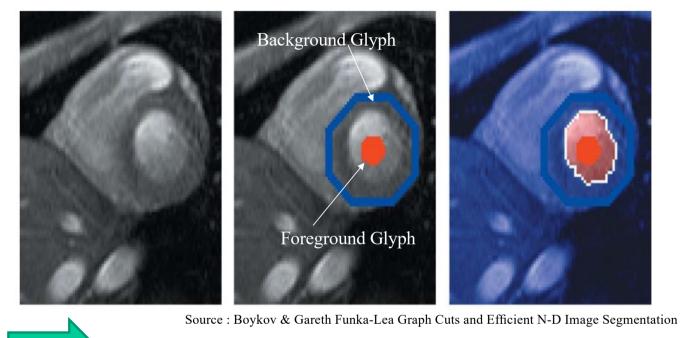


- Minimal graph cut :
 - Set of edges whose removal create several connected components:
 - Cost of a cut :

$$cut(A,B) = \sum_{p \in A, q \in B} c_{p,q}$$

Maximize the flux between the source and the sink nodes

Interactive Segmentation Algorithm



Manual glyph from user to guide segmentation

Graph cut Segmentation

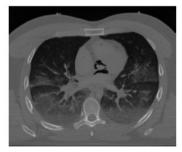
• Combinatorial algorithm for graph cut :

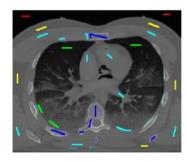
Ford & Fulkerson Algorithm (1951)

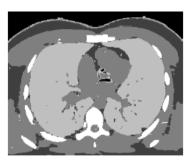
BoyKov & Kolmogorov Algorithm (2004)

Y. Boykov and V. Kolmogorov. An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(9):1124–1137, September 2004.

Multi Label Segmentation with
 α-expansion algorithm [Veksler 99] [Boykov 99]







R. Kéchichian, S. Valette, M. Desvignes, R. Prost: Efficient multi-object segmentation of 3D medical images using clustering and graph cuts. ICIP 2011

Innía

Neighborhood EM

- Hypothesis :
 - Posterior probability $p(z_n|X)$ is intractable therefore estimate an approximation
 - Each tissue class is represented by a Gaussian distribution $p(x_n|z_{nk} = 1) = \mathcal{N}(x_n|\theta_k)$
 - The label prior is a Potts model and global prior per class

$$\log p(\mathbf{Z}) = -\frac{\beta}{2} \sum_{k} \sum_{edges(m,n)} c_{nm} z_{nk} z_{mk} + \sum_{n} \sum_{k} \pi_{k} z_{nk}$$

C. Ambroise, M. Dang, G. Govaert: Clustering of Spatial Data by the EM Algorithm. In geoENV I-Geostatistics for Environmental Applications (1997), pp. 493-504.

nnin

Mean Field approximation

- A.ka Variational Bayes approach
 - Look for an approximation of posterior parameters as product $q(Z) = \{q_n\}$ of factorized terms $p(Z = \{z_n\}|X) \approx \prod_n q_n(z_n)$
 - Therefore NK unknown q_{nk} s.t

$$q_n(z_n) = \sum_k q_{nk} z_{nk} \& \sum_k q_{nk} = 1 = \sum_{z_n} q_n(z_n)$$

 Find the set q which minimizes the Kullback Leibler divergence between q and true posterior p(Z|X)

Ínnía -

Mean Field Criterion

- Reminder EM criterion for GMM :
 - Maximize $=F(\pi, \theta, u)$

 $\mathsf{F}(\pi,\theta,u) = \mathsf{L}(\pi,\theta) - D_{KL}(u||p(z|x)) = \mathsf{Q}(\theta,u) + \mathsf{H}(u)$

• Evidence Lower bound :

 $D_{KL}(q||p(Z|X)) = -\log p(X) - \mathbb{E}_q \left(\log p(X,Z)\right) - H(q)$

 Neighborhood EM criterion same as GMM but with additional term R(q)

minimize $D_{KL}(q|p(Z|X)) = -H(q) + R(q) - Q(q) + \log p(X)$

• Where
$$R(q) = \frac{\beta}{2} \sum_{k} \sum_{edges(n,m)} c_{nm} q_{nk} q_{mk}$$

Ínnín-

Neighborhood EM

- Only E-step changed compared to regular EM for GMM
- New E-step :
 - Fixed point iteration

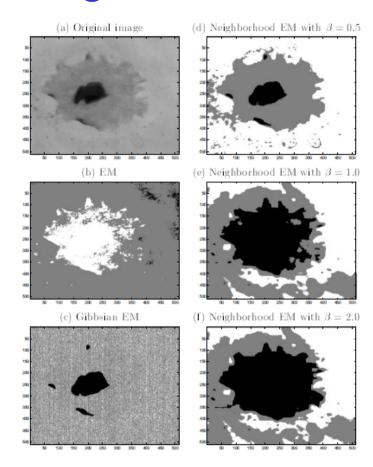
$$q_{nk} = \frac{\pi_k \mathcal{N}(x_n | \theta_k) \exp \beta \sum_m c_{mn} q_{nm}}{\sum_l \pi_l \mathcal{N}(x_n | \theta_l) \exp \beta \sum_m c_{mn} q_{nm}}$$

Same M-step

$$\mu_{k} = \frac{\sum_{n=1}^{N} q_{nk} x_{n}}{\sum_{n=1}^{N} q_{nk}} \quad \Sigma_{k} = \frac{\sum_{n=1}^{N} q_{nk} (x_{n} - \mu_{k}) (x_{n} - \mu_{k})^{T}}{\sum_{i=1}^{N} q_{nk}} \quad \pi_{k} = \frac{1}{N} \sum_{n=1}^{N} q_{nk}$$

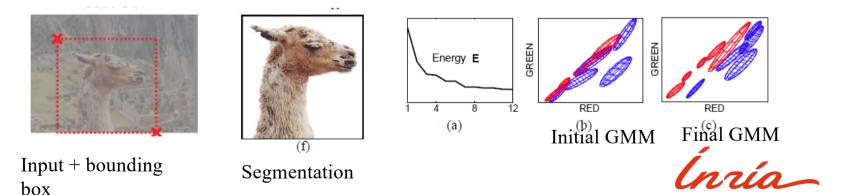
(naío 21

Neighborhood EM

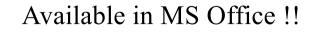


Grab Cut

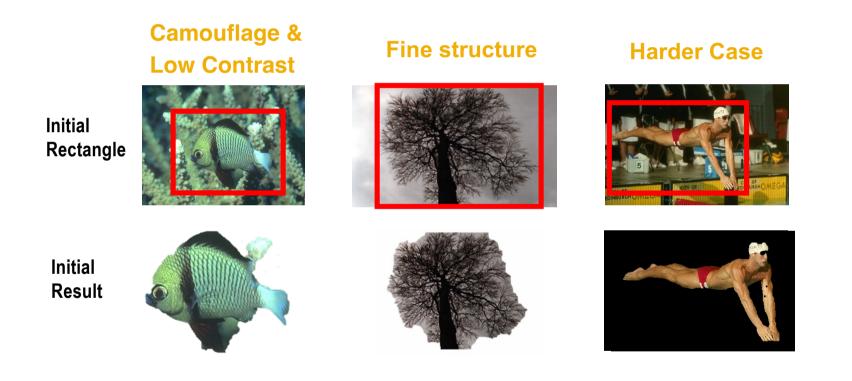
- Algorithm combines :
 - Model intensity of foreground and background as mixture of Gaussians (vs one Gaussian for each class)
 - Iterate between :
 - hard segmentation using graph cuts
 - Estimation of Gaussian components



Grab Cut Examples



Difficult Examples



Grabcut: Interactive foreground extraction using iterated graph cuts, Carsten Rother, V. Kolmogorov, Andrew Blake, Siggraph 2004

4. Connexity and Shape Constrained Image segmentation

- 4.1 Label Connexity Hypothesis : Markov Random Field
- 4.2 Introduction to shape and deformable Models
- 4.3 Snakes algorithm
- 4.4 Level Set Algorithm
- 4.5 Point Distribution Model
- 4.6 Multi-atlas Algorithm

Shape Constraints in Image Segmentation

- MRFs enforce connectivity between neighboring voxels : region approach
- Deformable shapes / models :
 - Work on boundaries between regions -> dual approach
 - Define constraints on the boundaries :
 - Minimize length
 - Minimize curvature
 - Shape constraints

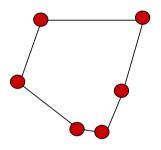
Ínaía-

29

22/11/2024

Parametric Shape representation

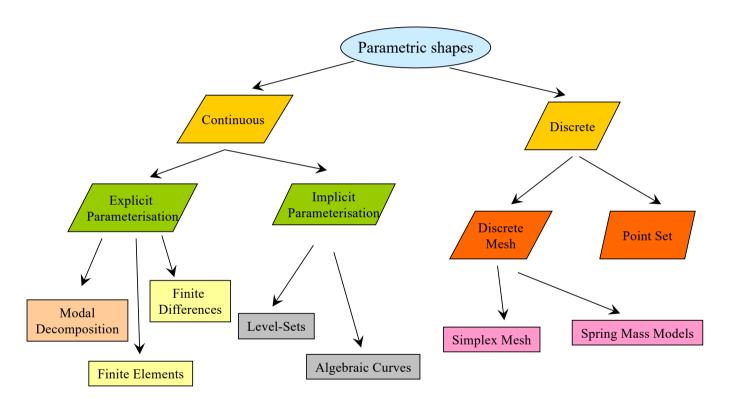
- Parametric representation of a shape :
 - Shape controlled by (intrinsic) parameters
- Examples :
 - Vertex position of a mesh
 - Scalar field for level sets
 - Fourier coefficients,...



Deformation in the object space

naía -

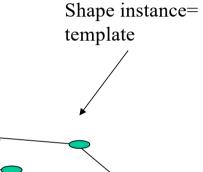
Shape representation



22/11/2024

Shape representation As Template Transformation

- Template Transformation :
 - Define a single shape instance in \mathbb{R}^n as template
 - Parameterise the deformation of the embedding space $\phi(x): \mathbb{R}^n \to \mathbb{R}^n$
- Examples :
 - Rigid Transformation (translation + rotation)
 - Affine Transformation (translation + linear transform)



Define $\phi(x)$ as an affine transform

34

22/11/2024

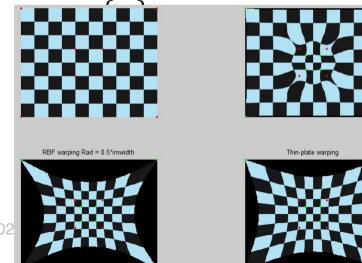
Simple Transformations

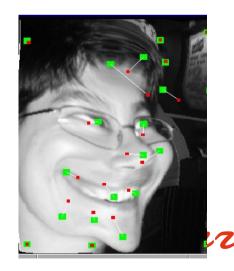
T _{reg}	Description	Degrees of Freedom
2D Rigid	Translation + Rotation	2+1= 3
2D Similarity	Translation + Rotation + Scale	3+1=4
2D Affine	Translation + Linear	2+4=6
3D Rigid	Translation + Rotation	3+3=6
3D Similarity	Translation + Rotation + Scale	6+1=7
3D Affine	Translation + Linear	3+9=12

22/11/2024

Complex Transformations

- Radial Basis functions :
 - Basis ψ(x) = ψ(||x||) which only depend on distance : example : Gaussian, thin plate spline, B-spline
 - Define N control points x_i
 - Define $\phi(x)$ as $\phi(x) = \sum_{i}^{N} \psi(x x_i) y_i$ parameterized by





22/11/202

Shape Optimization

If {θ} are parameters in the shape space (parametric representation)

Framework of deformable templates

If {θ} are parameters in the space of geometric transformations

Framework of Image Registration

Often includes both frameworks

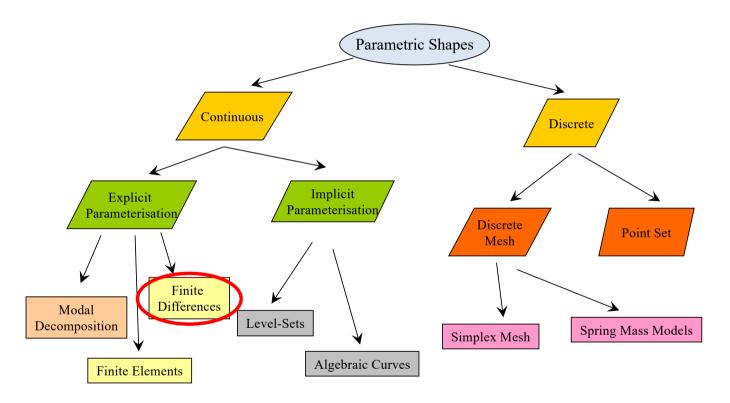
Íngia -

22/11/2024

4. Connexity and Shape Constrained Image segmentation

- 4.1 Label Connexity Hypothesis : Markov Random Field
- 4.2 Introduction to shape and deformable Models
- 4.3 Snakes algorithm
- 4.4 Level Set Algorithm
- 4.5 Point Distribution Model
- 4.6 Multi-atlas Algorithm

Shape representation



Ínría_

22/11/2024

44

Snake Algorithm

• Energy Definition :

$$E = E_{\rm int} + E_{\rm ext}$$

- E_{int} measures the contour smoothness
- E_{ext} measures the distance of the contour to the visible border of the object of interest
- Variational problem : minimize E

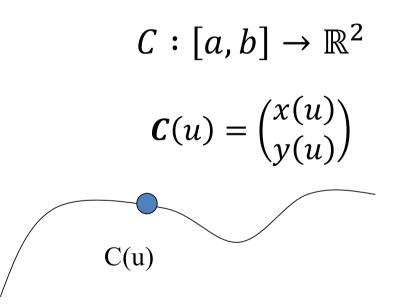
Ínnía -

45

22/11/2024

Contour Representation

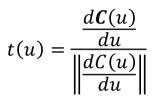
• Explicit Representation of a contour



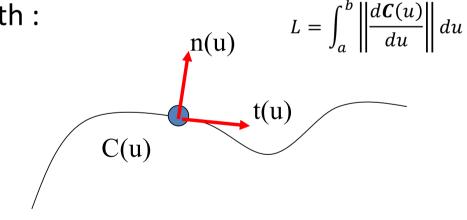
Ínnin-

Contour Representation(2)

- Geometry Reminder:
 - Tangent Vector :
 - Normal Vector :
 - Curve Length :



$$n(u) = t(u)^{\perp}$$



Ínaía -

47

Internal Energy (1)

- Internal energy is the sum of 2 terms :
 - Stretching energy $\mathsf{E}_{\mathsf{stretching}}$ which measures the change of length of a curve
 - Bending energy $\mathrm{E}_{\mathrm{bending}}$ which measures the change of curvature along the curve
 - Use of Sobolev norms to simplify numerical solution

Ínnía -

49

Stretching Energy

- Expression : Dirichlet Energy $E_{\text{stretching}} = \alpha \int_{a}^{b} \left\| \frac{dC(u)}{du} \right\|^{2} du$
- Link with curve length :

$$L = \int_{a}^{b} \left\| \frac{d\mathcal{C}(u)}{du} \right\| du \leq \int_{a}^{b} \left\| \frac{d\mathcal{C}(u)}{du} \right\|^{2} du$$

• Extension : $E_{\text{stretching}} = \alpha \int_{a}^{b} \left\| \frac{dC(u)}{du} \right\|^{2} du$

Bending Energy

- Expression : $E_{\text{bending}} = \beta \int_{a}^{b} \left\| \frac{d^{2}C(u)}{du^{2}} \right\|^{2} du$
- Link with beam bending energy :

$$E_{Beam} = \int_{a}^{b} E(u)I(u)k^{2}(u)du$$

$$E_{\text{bending}} = \beta \int_{a}^{b} w_{2}(u) \left\| \frac{d^{2}C(u)}{du^{2}} \right\|^{2} du$$

 $W_2(u)=1$ except at C^1 discontinuities

Ínnía -

22/11/2024

• Extension :

51

External Energy

- Main Idea : attract the contour towards high gradient voxels
- 2 formulations :
 - Local using gradient image
 - Global using contour points

$$E_{\rm ext} = E_{\rm local} + E_{\rm global}$$

Ínnía_

Local External Energy (1)

- Local Energy
 - Gradient Computation by convolving with the derivative of Gaussian $\mathcal{N}\left(\begin{pmatrix}x\\y\end{pmatrix};0,\sigma\right)$

$$\nabla I(x,y) = \nabla \mathcal{N}\left(\binom{x}{y}; 0, \sigma\right) \star I(x,y) = \iint \nabla \mathcal{N}\left(\binom{x}{y}; 0, \sigma\right) (u-x, v-y) I(u,v) \, du \, dv$$

– The standard deviation $\boldsymbol{\sigma}$ of Gaussian allows to control the smoothness

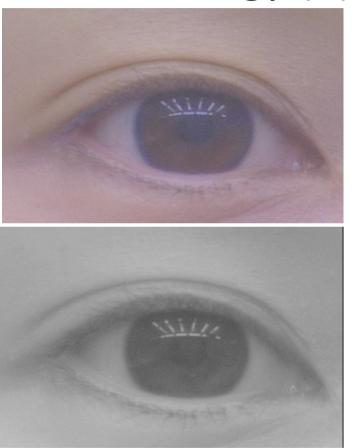
Ínnía -

22/11/2024

53

Local External Energy (2)

• Example



Original Image

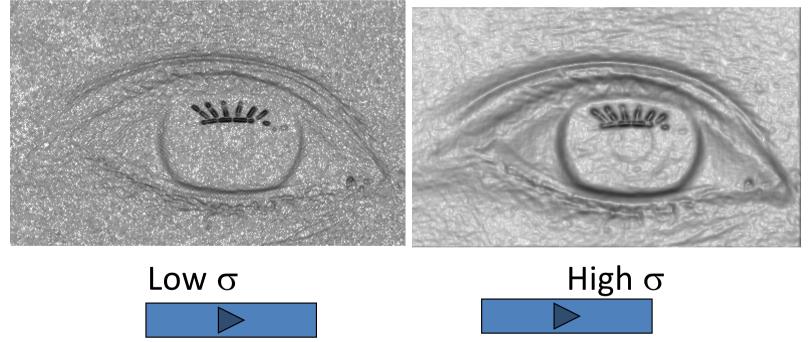
Red Band

Ínnía_

54

Local External Energy(3)

• Computation of the gradient norm $-\|\nabla I(x,y)\|$



Ínría_

Local External Energy (4)

• Definition of the local external energy

$$E_{local} = - \|\nabla I(x, y)\|^2$$

- The contour is driven towards minima of potential whose width is linked to $\boldsymbol{\sigma}$

Ínnía-

Global External Energy (1)

- Main Idea :
 - Select high gradient pixels which correspond to border between 2 regions
 - Define a potential field as a distance map from those pixels

Innin

57

Global External Energy (2)

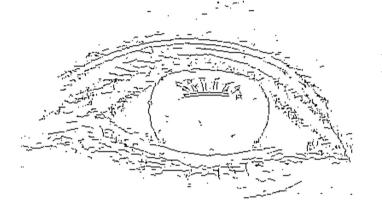
- How are contour points defined ?
- Contour point extraction algorithm :
 - Compute gradient $\nabla I(x, y)$ and its norm $\|\nabla I\|(x, y)$ at each voxel
 - Extract extrema of gradient in the direction of gradient
 - Threshold those extrema based on the gradient norm
 - Construction of a potential field E_{global}

Ínnía -

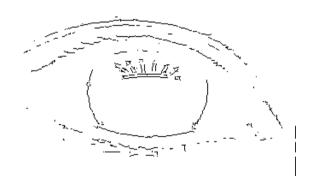
58

Global External Energy (3)

• Example



Extrema of gradient



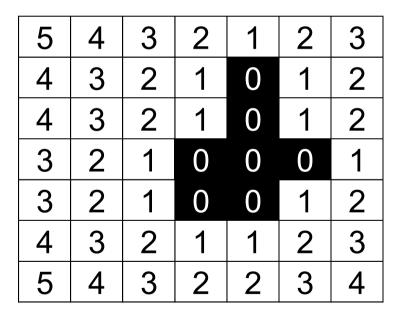
Threshold of Extrema of gradient

Ínnía-

59

Global External Energy (4)

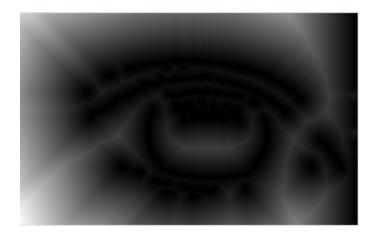
- Computation of potential field E_{global}(x,y) :
 - Use of chamfer distance which approximates the Euclidean distance



Example in 4-connexity

Ínaía -

Global External Energy(5)



Distance Map

Ínría

61

Problem Position

• Variational Problem :

Find C(u) which minimize : $E(C(u)) = E_{int}(C) + E_{ext}(C)$

• Necessary condition for C(u) :

 $\delta E(C(u)) = 0$

Ínaía -

Numerical Approach

- Use calculus of variation to compute $F_{int}(C) + F_{ext}(C) = 0$
- Use Lagrangian Evolution :

$$\frac{\partial C}{\partial t} = F_{\rm int} + F_{\rm ext}$$

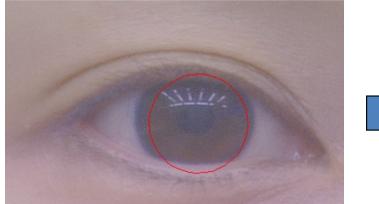
Use Finite Difference discretization

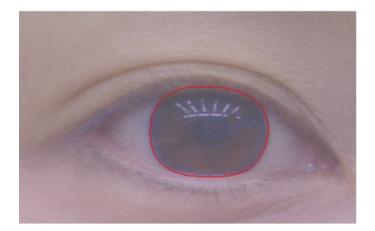
• Use semi-implicit time integration scheme

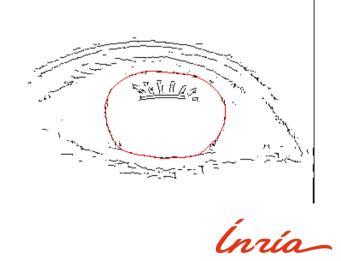
$$X^{t+1} = (I - \Delta t K)^{-1} (X^{t} + \Delta t F_{ext}^{x} (X^{t}, Y^{t}))$$
$$Y^{t+1} = (I - \Delta t K)^{-1} (Y^{t} + \Delta t F_{ext}^{y} (X^{t}, Y^{t}))$$

Ínnía_

Result







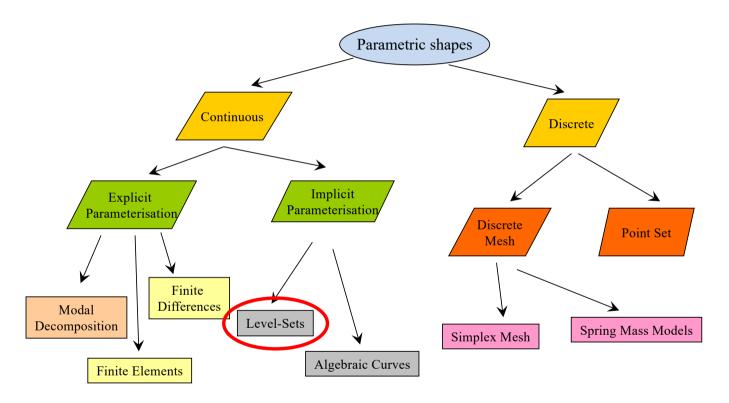
22/11/2024

64

4. Connexity and Shape Constrained Image segmentation

- 4.1 Label Connexity Hypothesis : Markov Random Field
- 4.2 Introduction to shape and deformable Models
- 4.3 Snakes algorithm
- 4.4 Level Set Algorithm
- 4.5 Point Distribution Model
- 4.6 Multi-atlas Algorithm

Shape representation



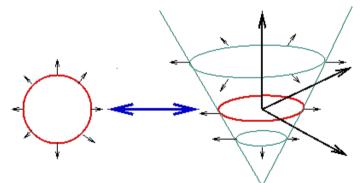
22/11/2024

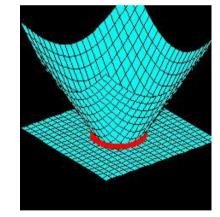
Ínnía_

66

Level Sets

- How to define boundary curves :
 - Curve / Surface represented as the zero crossing of a scalar function : $\phi(x,t)=0$
 - The scalar field evolves over time



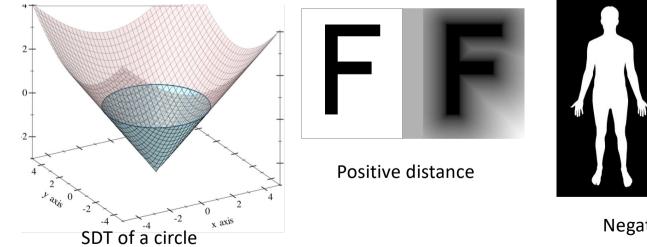


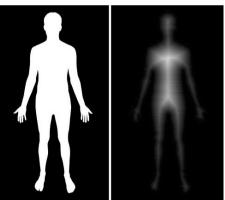
Source Fast Marching Methods and Level Set Methods, J.A. Sethian

Ínnía -

How to define scalar field ?

- Use regular grid of the input image
- Initialize $\phi(x, 0) = SDT(S_0)$ as signed distance transform of an initial shape S_0





Negative distance

Shape representation

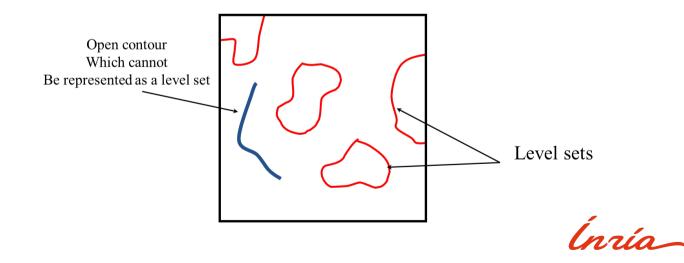
- Positive aspects :
 - Can represent all topologies (sphere, torus..)
 - Simple : No parameterization !!
 - Can define normal and curvature from derivatives of scalar field !!

$$n(x,t) = \frac{\nabla \phi(x,t)}{\|\nabla \phi(x,t)\|} \quad \text{For } x \neq \phi(x,t) = 0$$

$$k(x,t) = -\frac{\nabla \phi^T H \nabla \phi}{\|\nabla \phi\|^2} = -\frac{\phi_{xx} \phi_y^2 - 2\phi_{xy} \phi_x \phi_y + \phi_{yy} \phi_x^2}{\left(\phi_x^2 + \phi_y^2\right)^{3/2}} \quad \text{(min)}$$

Limitations of level sets

- Topology restricted to closed contours (except at the image borders)
- Uniform discretisation that depends on a regular grid
- Difficult to handle manifold of co-dimension > 1



• Contour defined as : $\phi(x,t) = \phi(C(u,t),t) = 0$

• Normal vector defined as : $\frac{d\phi(C(u,t),t)}{du} = 0 = \nabla \phi \cdot \frac{dC}{du}$

$$n(x,t) = \frac{\nabla \phi(x,t)}{\left\|\nabla \phi(x,t)\right\|} \quad \text{For } x \neq \phi(x,t) = 0$$

• Total derivation with t :

$$\frac{d\phi(x,t)}{dt} = \frac{d\phi(C(u,t),t)}{dt} = \nabla\phi \cdot \frac{\partial C}{\partial t} + \frac{\partial\phi}{\partial t} = 0$$

Íngia -

- We only consider an evolution along the normal direction :
- Fundamental Equation :

$$\frac{\partial \mathbf{C}(u,t)}{\partial t} = \beta(u,t) \mathbf{n}(u)$$

$$\frac{\partial \phi(x,t)}{\partial t} = -\beta \left\| \nabla \phi \right\|$$

<u>For all x</u>

Ínnin-

72

• No need for parameterisation :

- Deformation invariant with change of parameterisation

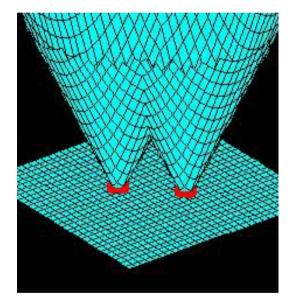
No need to handle the number of points and their spacing along the contour

Easy and stable computation of intrinsic values (curvature)

Ínnía -

Advantages of level sets (2)

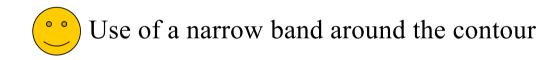
• Allow to handle topological changes



Source : Fast Marching Methods and Level Set Methods, J.A. Sethian

Ínnía

• Computationally expensive since $\phi(u,t)$ is 2D / 3D whereas contour /surface is 1D / 2D



Stability and convergence issues linked to the narrow band (reinitialisation)

Ínnía -

Spatial and temporal evolution

- Need to define $\beta(x, t)$ for LS evolution
- Temporal Discretisation :
 - Explicit Scheme :

$$\frac{\partial \phi(x,t)}{\partial t} \Rightarrow \frac{\phi^{t+1} - \phi^t}{\Delta t}$$

- Spatial discretisation :
 - Regular Grid (image)
 - Use centered finite differences except for « advection» term («upwind » scheme)

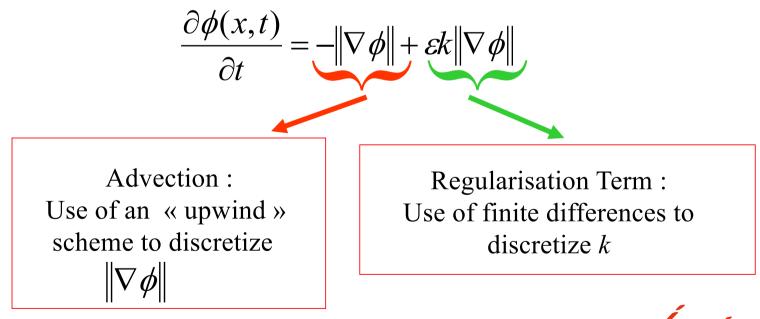
22/11/2024

naío -

76

Example

• $\beta=1-\varepsilon k$: combinaison of <u>hyperbolic</u> ($\beta=1$) with <u>parabolic</u> ($\beta=-\varepsilon k$) terms



Ínaía -

77

Curvature Discretization

• Use Hessian and first derivative discretized with finite differences :

$$k = -\frac{\nabla \phi^{T} H \nabla \phi}{\|\nabla \phi\|^{2}} = -\frac{\phi_{xx} \phi_{y}^{2} - 2\phi_{xy} \phi_{x} \phi_{y} + \phi_{yy} \phi_{x}^{2}}{\left(\phi_{x}^{2} + \phi_{y}^{2}\right)^{3/2}}$$

Ínnía -

Application to image segmentation (1)

• Several propagation terms:

-
$$\beta(C, x) = c(x)(k + \beta_0)$$

With $c(x) = \frac{1}{1 + \|\nabla(G_\sigma(x) * I(x))\|}$

<u>Interpretation</u>: Contour propagates until it reaches Voxels with large intensity gradient

Ínnía-

Application to image segmentation (2)

Geodesic Active Contours

$$\beta(C, x) = h(x)k - \nabla h \cdot \frac{\nabla \phi}{\|\nabla \phi\|}$$

With $h(x) = \frac{1}{1 + \|\nabla (G_{\sigma}(x) * I(x))\|^2}$

<u>Interpretation</u>: Minimizing the geodesic distance Of a contour in a metric Riemanian space govern by metric h(x)

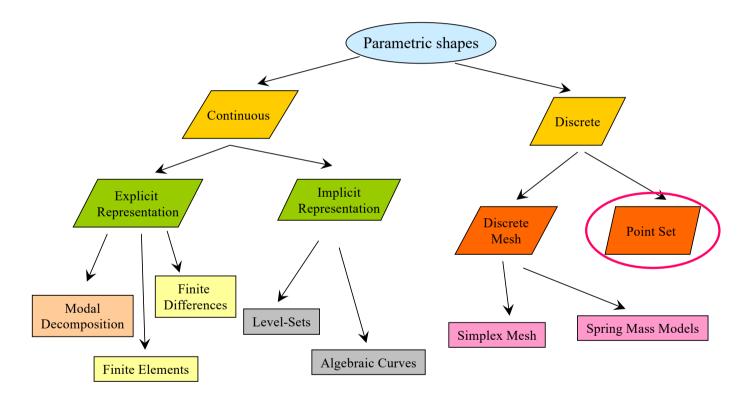
$$L^* = \int_{a}^{b} h(C(u)) \left\| \frac{d\mathbf{C}(u)}{du} \right\| du$$

Ínnía -

4. Connexity and Shape Constrained Image segmentation

- 4.1 Label Connexity Hypothesis : Markov Random Field
- 4.2 Introduction to shape and deformable Models
- 4.3 Snakes algorithm
- 4.4 Level Set Algorithm
- 4.5 Point Distribution Model
- 4.6 Multi-atlas Algorithm

Explicit vs Implicit Shape representation



(naín-

82

Point Distribution Model (PDM)

- Shape defined as a set of P points in \mathbb{R}^d d=2 or 3 $X = (x_1, \dots, x_P)^T \in \mathbb{R}^{3P}$ $x_i = \begin{bmatrix} x_i^1 \\ x_i^2 \\ x_i^3 \end{bmatrix}$
- Shape space is defined as Gaussian distributions : $p(X) = \mathcal{N}(X; \mu^*, \Sigma^*)$

- shape preserving group is rigid transform T = (t, R)

• How to define μ^* and Σ^* ?

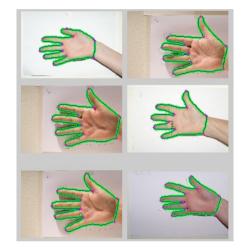
Input as collection of homologous point sets

 $\bar{X} = \frac{1}{N} \sum_{n=1}^{N} X_n$

• Use supervision :

- training set \hat{X} of N sample shapes $\hat{X} = \{X_n\} \ 1 \le n \le N$

- Constraint :
 - All input shapes have the same number of P points
 - All points are homologous
- Create an allowed shape space based on collection :
 - Create All shapes
 - Register all input shapes rigidly
 - Create Mean shape
 - Estimate variability with the sample Covariance Matrix :

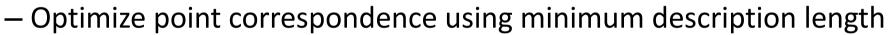


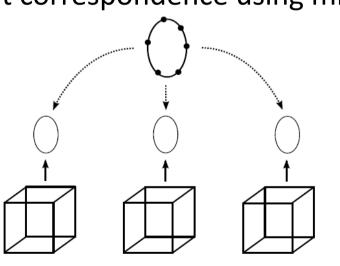
 $\Sigma = \frac{1}{N} \sum_{n=1}^{N} (X_n - \bar{X})(X_n - \bar{X})^T$

84

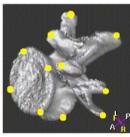
How to create input homologous point set ?

- Finding Point Correspondence between shapes in the training set is difficult :
 - Can be done manually for simple shapes
 - Can use template registration





22/11/2024



naío

85

Definition of shape space

- Use sample mean \overline{X} and sample covariance Σ for the Gaussian shape space ? $\mu^* = \overline{X} \& \Sigma^* = \Sigma$?
 - Not a good idea :
 - Size of training set is often much smaller than the dimension of X :
 - Noise may be present in \overline{X} , Σ
 - Covariance matrix may not be invertible
- Alternative : use **principal component analysis** to use low rank (rank M) representation of covariance matrix

Ínaía -

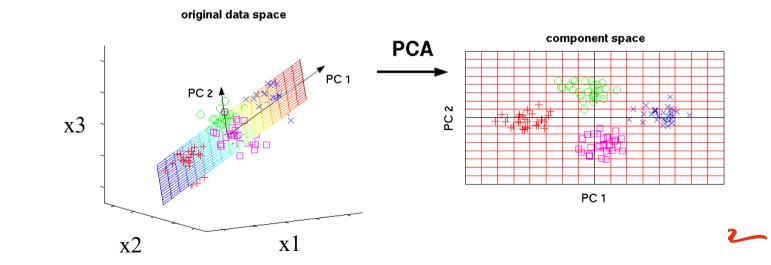
Principal Component Analysis

• PCA solves 3 equivalent problems :

22/11/2024

– Pb 1 : Find a subset of M orthogonal directions u for which the projected variance $u^T \Sigma u$ is maximum

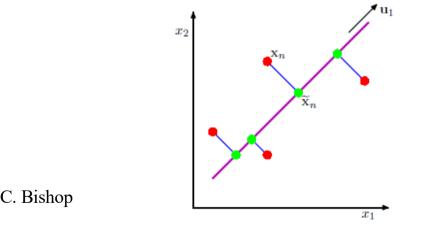
Find eigenvectors of Σ associated with maximal eigenvalues



87

Principal Component Analysis

- PCA solves 3 equivalent problems :
 - Pb 2 : Find a set of M orthogonal directions u which minimize the average projection cost



naío

88

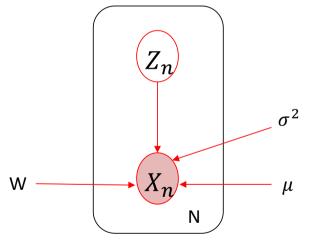
Probabilistic Principal Component Analysis

- Pb 3 : PPCA solves 3 equivalent problems :
 - X considered as an observed random variable (PPCA)
 - Existence of random latent variable Z of dimension M with $p(Z) = \mathcal{N}(0, I)$
 - X assumed to be generated by latent variable Z:

$$p(X|Z) = \mathcal{N}(X; WZ + \mu, \sigma^2 I)$$

- Likelihood Parameters :
 - *W* matrix *N*×*M*
 - Mean value μ
 - Variance noise σ^2

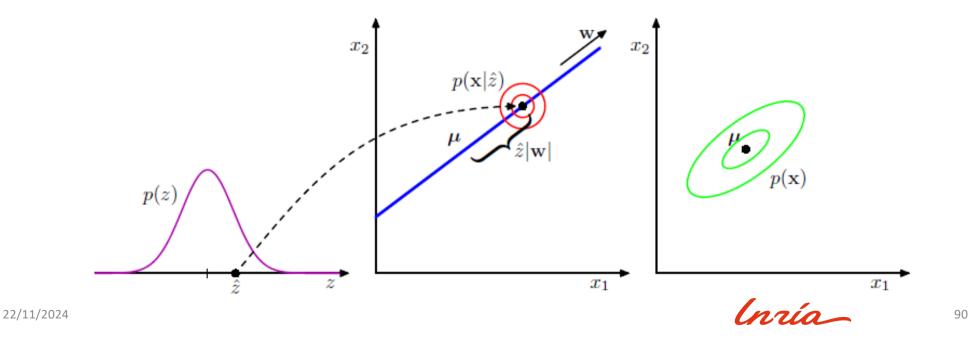
Source : C. Bishop



89

Probabilistic Principal Component Analysis

- Equivalent to write $X \approx WZ + \mu + \epsilon$ where
 - $Z = \mathcal{N}(0, I)$ is a Gaussian random variable of 0 mean and dimension M.
 - $\epsilon = \mathcal{N}(0, \sigma^2 I)$ is a Gaussian random variable of 0 mean and dimension D



Probabilistic Principal Component Analysis

- Inference :
 - Marginal likelihood is also Gaussian as the product of 2 Gaussian distributions

$$p(X_n) = \int_{\mathbb{R}^M} p(X_n | Z_n) p(Z_n) dZ_n = \mathcal{N}(X_n | \mu, WW^T + \sigma^2 I)$$

- Maximize log marginal likelihood $\log p(\hat{X}) = \sum_{n=1}^{N} \log p(X_n)$
 - Closed form solution :

$$-\mu = \overline{X}$$

– Sample Covariance matrix $\Sigma = U\Lambda U^T$

 $\Sigma = \frac{1}{N} \sum_{n=1}^{N} (X_n - \bar{X}) (X_n - \bar{X})^T$

– M largest eigenvalues: λ_m , $1 \le m \le M$

Diagonal Matrix MxM

of Eigenvalues λ_m

– Eigenvectors associated w_m with largest eigenvalues λ_m

$$-W = \omega_M (\Lambda_m - \sigma^2 I)^{\frac{1}{2}} R$$

Orthogonal Matrix

MxM

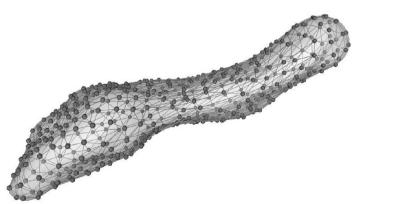
Matrix NxM of Eigenvectors w_m

91

Point Distribution Model Shape Space

- Define shape space from \overline{X} , W, σ^2 as: $p(X) = \mathcal{N}(X; \overline{X}, WW^T + \sigma^2 I)$
- Accounting for any rigid transformation:
 - Rotation R and translation t

 $p(X) = \mathcal{N}(X; R\bar{X} + t, RWW^T R^T + \sigma^2 I)$



Ínaía -

Fitting a PDM

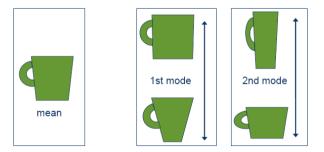
- Let Y be a set of points representing an instance of the structure
- How to project Y on the allowable shape space ?
- 3 steps :
 - Align with template
 - Project on shape space
 - Realign the projection

Ínnía -

Restricted Shape Space

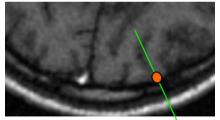
- Align Current Shape Y with mean template :
 - Find the rotation R & translation t which minimizes $\|\overline{X} RY t\|^2$ (closed form solution)
 - Center data Y' = RY + t
- Project centered data
 - $-\phi_m = w_m^T(Y' \overline{X})$ for $1 \le m \le M$
 - Bound projection : if $|\phi_m| < 3\lambda_m$ then $\psi_m = \phi_m$ else $\psi_m = 3\lambda_m sign(\phi_m)$
- Reconstruct data

$$-\hat{Y} = R^{-1}(\bar{X} + \sum_m \psi_m w_m - t)$$



Active Shape Model in Medical Imaging

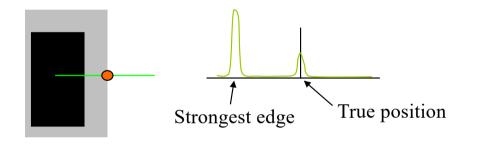
- Construct PDM shape space from training set.
- Iterate :
 - Estimate normal vector n_i at each vertex x_i
 - Find displacement s_i along normal n_i which minimizes local energy $s_i = \arg\min_{s} E_i(I, s)$
 - Update position $x_i \rightarrow x_i + s_i n_i$
 - Project current shape X on restricted shape space

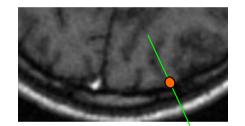


Ínaía -

Profile Models

• Sometimes true point not on strongest edge

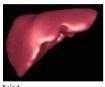


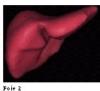


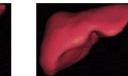
• Model local structure to help locate the point

Innin

Statistical Shape Model Of the Liver

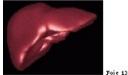






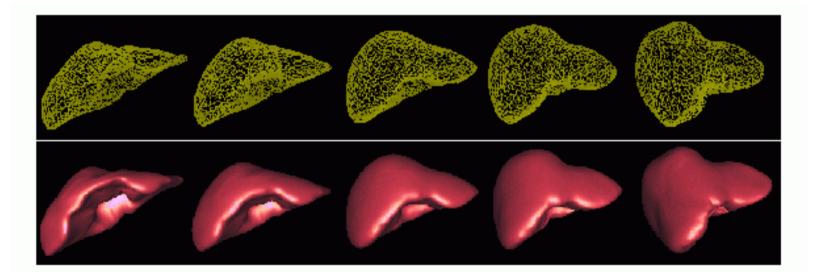
Foie 3

 Fies
 Image: Constraint of the second sec



Statistical Shape Model of the Liver

• Modes Of Variation

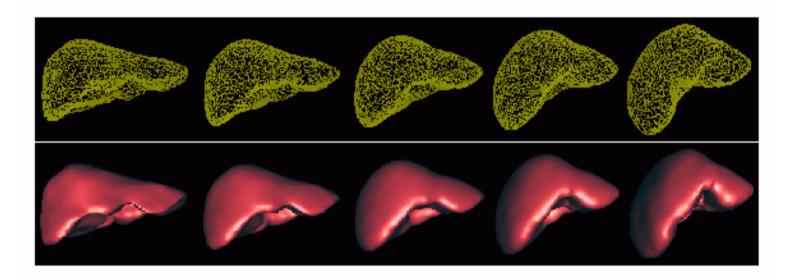


First Mode of Variation

Innia

Statistical Shape Model of the Liver

• Modes Of Variation



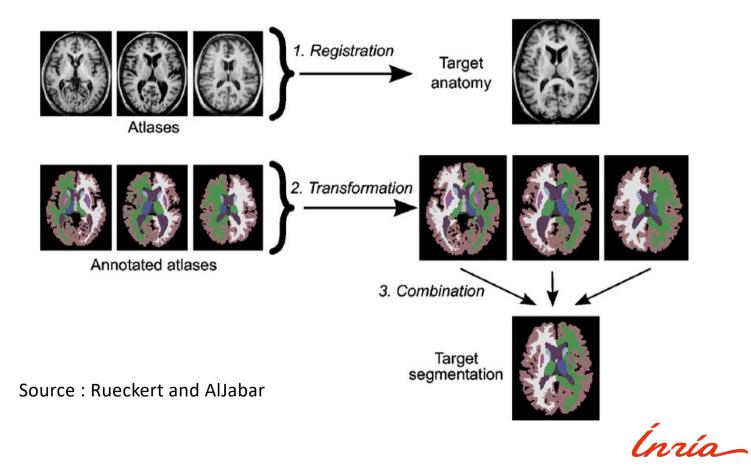
Second Mode of Variation

Innia

4. Connexity and Shape Constrained Image segmentation

- 4.1 Label Connexity Hypothesis : Markov Random Field
- 4.2 Introduction to shape and deformable Models
- 4.3 Snakes algorithm
- 4.4 Level Set Algorithm
- 4.5 Point Distribution Model
- 4.6 Multi-atlas Algorithm

Use annotated images to segment new image



103

Use annotated images to segment new image

- Input data :
 - Set of representative images with their segmentation
- For all images in input set :
 - Register non-rigidly input image on target image
 - Apply deformation on corresponding label image
- Combine deformed label image into a classification or segmentation of target anatomy

Ínnía -

Key steps

- Atlas selection :
 - Use only input images that are closest from the target images (metrics definition)
- Combination of registered labels
 - Majority voting
 - Weighted majority voting
 - STAPLE algorithm

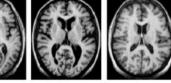
Ínnía -

105

Definitions, Notations

- Input :
 - Target image J
 - Atlas images I_n , $1 \le n \le N$
 - Segmented atlas images, L_n
- Output :
 - Segmented target image L
- Image patch : small rectangular piece of an image
- Define Image patch extraction operator S() : S(J,x) is an image ulletpath centered on x from image J

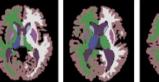
22/11/2024

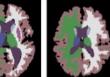


 I_n

Atlases

Target /







Annotated atlases L_n

Segmented Target L

naío -

106

Membership function

- <u>Hypothesis</u> : every patch S(J, x) originates from a patch $S(I_n, y)$ from the training database.
- Define membership function M :

$$M(x) = (n, y)$$

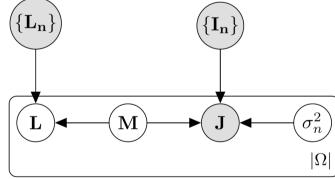
spatial position spatial position In input image atlas id In atlas image (training database)

Ínnía -

107

Probabilistic Framework for multi-atlas segmentation

- Knowing M(x), probabilities of observing intensity I(x) and label L(x) are conditionally independent.
- p(J(x)|M,I) often a Gaussian on mean $J(x) I_n(y)$
- p(L|M,L) often related to distance of x to the border of the structure
- p(M) is a Potts model to enforce that neighboring voxels have similar memberships



Innin