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4. Connexity and Shape Constrained 
Image segmentation

• 4.1 Label Connexity Hypothesis : Markov Random Field
• Definition of prior
• Graph cut algorithm
• Neighborhood EM
• Grab Cut

• 4.2 Introduction to shape and deformable Models
• 4.3 Snakes algorithm
• 4.4 Level Set Algorithm
• 4.5 Point Distribution Model
• 4.6 Multi-atlas Algorithm
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Image Segmentation Approaches

- 3
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No Typical Shape Typical Shape

Lesions in CT / MR

Contrast Agent 
in CT

Thresholding

Intensity-only
Classification

Intensity 
Only

gray matter white matter csf



Image Segmentation Approaches

- 4
No Typical Shape Typical Shape

Grey / White matter 
in MR

Vessels / tumors / bones /lesions

Mathematical
Morphology

MRF (graph cuts, 
RW, watershed)

Intensity and 
connexity

between regions

Machine Learning 
(RF, SVM, 
Boost,ML)



MoG Segmentation Hypothesis

• So far considered independent voxels
• Zn variable specifying the class 

of voxel n
• Xn variable representing the 

intensity
• Class membership only dependent on voxel intensity 

(thresholding)
• But may not be realistic in the presence of noise & 

partial volume effect
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MRF Segmentation Hypothesis

• In Markov Random Fields :
• Label variables zn are no longer independent but depend on 

their neighbors
• Intensity variables xn only depends on the class label 

(variable zn)
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Mixture of Gaussian Markov Random Field



Markov Random Field

• Intensity prior depends on neighboring values :           
𝑝 𝑍# 𝑍$# = 𝑝(𝑍#|𝑍% # )

• Graphical Model
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Label at voxel n

Set of Labels of 
all image voxels except

Voxel n

Labels of 
Neighboring voxels 

Of voxel  n

𝑥! are  independent only if 𝑧! are known
(conditional independence)

𝑝 𝑋 ≠)
!

𝑝 𝑥!

𝑝 𝑋|𝑍 =)
!

𝑝 𝑥!|𝑧!

𝑥!



Challenges in MRF

• Posterior probability is no longer  tractable

𝑝 𝑍 𝑋 =
𝑝 𝑋|𝑍 𝑝(𝑍)

∑-! 𝑝 𝑋|𝑍. 𝑝 𝑍.

𝑝 𝑧#|𝑋 =*
-"

*
-#

… *
-$%"

*
-$&"

*
-'

𝑝 𝑍 𝑋
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Intractable sum over 2! terms

Intractable marginalization over N-1 term



Definition of Label Prior in MRF
• Images	seen	as	Graph

• Label	Prior	𝑝 𝑍 depends	on	neighborhood	:
• 2D		images	:	4	or	8	neighborhood	

• 3D	images	:	6,	18	or	26	neighborhood	
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4 neighborhood
8- neighborhood



Definition of Label Prior in MRF
• Label	prior	𝑝 𝑍 is	defined	on	a	graph

4 neighborhood : 𝑝 𝑍! 𝑍"! = 𝑓 𝑍!"#, 𝑍!$#, 𝑍!"%, 𝑍!$%

• Hammersley-Clifford	theorem	gives	the	expression	of	𝑝 𝑍 :
• There exists functions  𝜓 and 𝜙 such that 

log 𝑝 𝑍|𝜃 = "#
$
∑%&'%((!,+)𝜓 𝑧!, 𝑧+, 𝜃 − #

$∗
∑!𝜙(𝑧!, 𝜃)
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Unary termBinary term𝑥!

𝑧!

𝜓 𝑧" , 𝑧! , 𝜃  is any function of 2
Binary vectors : it enforces how 
likely are two labels are different 

𝜙 𝑧" , 𝜃 = 𝜙"
Gives how likely  voxel n belongs 
to class k 



Potts Model for Label Prior

• Idea : neighboring voxels should have similar labels.
• Definition Ising when K=2 :

• One hot encoding : 𝑍! = 𝑍!#, 𝑍!&…𝑍!' (

• 𝜓 𝑧!, 𝑧), 𝜃 = −∑*+#' 𝑓!)𝑧!* 𝑧)* ,	
• In	another	words	:

• 𝜓 𝑧!, 𝑧+, 𝜃 =−𝑓!+ if 𝑍! = 𝑍+  and 𝜓 𝑧!, 𝑧+, 𝜃 =0 if 𝑍! ≠ 𝑍+ ,

• Alternative 1 :  𝜓 𝑧#, 𝑧P, 𝜃 = 𝑓#P 𝑍# − 𝑍P Q

• Coefficient definition  : neighboring voxels having 
similar intensity should have the same labels.

𝑓#P = exp−𝛽 𝑥# − 𝑥P Q
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Joint Probability in MRFs

• Definition of joint probability : 
• 𝑝 𝑋, 𝑍|𝜃 = 𝑝 𝑍 𝑝 𝑋|𝑍

• Log joint probability
Λ 𝑍, 𝜃 = log 𝑝 𝑋, 𝑍|𝜃 = log 𝑝 𝑍|𝜃 + log 𝑝(𝑋|𝑍, 𝜃)

Λ 𝑍, 𝜃 = log 𝑝 𝑍|𝜃 +T
!

log 𝑝(𝑥!|𝑧!, 𝜃)

Λ(𝑍, 𝜃) = log 𝑝 𝑍|𝜃 +/
"

/
#

𝑧"# log 𝑝 𝑥"|𝑧"# = 1, 𝜃

−Λ(𝑍, 𝜃) =
1
𝑇

/
$%&$'(",*)

𝜓 𝑧" , 𝑧* , 𝜃 +
1
𝑇∗
/
"

𝜙(𝑧" , 𝜃) −/
"

/
#

𝑧"# log 𝑝 𝑥"|𝑧"# = 1, 𝜃

Conditional independence

Categorical variable

Binary term
Unary terms

Energy



Algorithms for solving MRF

• Many existing algorithms :
• 1) Graph cut Algorithm : 

• Fast
• solve for hard memberships 𝑧!2
• Unique solution for K=2 if some constraints on 𝑓!+ are met
• Several extensions for K>2 

• 2) Neighborhood EM
• solve for soft memberships p 𝑧!|𝑥!
• Simple Extension of GMM
• Fixed point Iterative method

• 3) Grab Cut 
13



Graph cuts

• Binary case & Ising model :
• 2 labels case 𝑦, ∈ {0,1}
• Minimize energy : 
𝐸 𝑌 = ∑,,. 𝑐,.𝑦, 1 − 𝑦. +∑, 𝑑,𝑦, , with 𝑑, > 0

• Submodular constraint for unique solution

• Minimize 𝐸(𝑌)
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𝑐,. + 𝑐., ≥ 0
Minimize a graph cut

D.M. Greig, B.T. Porteous and A.H. Seheult (1989), Exact maximum a posteriori estimation for binary images, 
Journal of the Royal Statistical Society Series B, 51, 271–279.

Combinatorial problem



Graph Cut
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• Minimal graph cut :
– Set of edges whose removal create several connected components:
– Cost of a cut  :

Maximize the flux between the source and the sink nodes

Cost of separating
2 nodesGraph cut

Source (Label 0)

Sink (Label 1)

Cost to belong
To label 1

Cost to belong 
to label 0

Graph
cut



Interactive Segmentation Algorithm 
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Manual glyph from user to guide 
segmentation

Source : Boykov & Gareth Funka-Lea Graph Cuts and Efficient N-D Image Segmentation

Background Glyph

Foreground Glyph



Graph cut Segmentation

• Combinatorial algorithm for graph cut :

• Multi Label Segmentation with 
a-expansion algorithm  [Veksler 99] [Boykov 99]
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Ford & Fulkerson Algorithm (1951)
BoyKov & Kolmogorov Algorithm  (2004)

Y. Boykov and V. Kolmogorov. An experimental comparison of    min-cut/max-flow algorithms for energy minimization in vision. 
IEEE    Transactions on Pattern Analysis and Machine Intelligence,    26(9):1124–1137, September 2004.

R. Kéchichian, S. Valette, M. Desvignes, R. Prost: Efficient multi-object segmentation of 3D medical images using clustering and graph cuts. ICIP 2011



Neighborhood EM

• Hypothesis :
• Posterior probability 𝑝 𝑧!|𝑋 is intractable therefore 

estimate an approximation 
• Each tissue class is represented by a Gaussian distribution 

𝑝 𝑥!|𝑧!* = 1 = 𝒩 𝑥!|𝜃*
• The label prior is a Potts model and global prior per class

log p Z = −
𝛽
2
/
#

/
$%&$'(*,")

𝑐"* 𝑧"#𝑧*# +/
"

/
#

𝜋#𝑧"#
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C. Ambroise , M. Dang , G. Govaert: Clustering of Spatial Data by the EM Algorithm. In geoENV

I-Geostatistics for Environmental Applications (1997), pp. 493-504.



Mean Field approximation

• A.ka Variational Bayes approach 
• Look for an approximation of posterior parameters as product 𝑞(𝑍) =
{𝑞!} of factorized terms  𝑝 𝑍 = {𝑧!}|𝑋 ≈ ∏! 𝑞!(𝑧!)

• Therefore NK unknown 𝑞!2 s.t  

q3 𝑧! =T
2

𝑞!2𝑧!2 & T
2

𝑞!2 = 1 =T
4,

𝑞!(𝑧!)

• Find the set 𝑞 which minimizes the Kullback Leibler divergence 
between 𝑞 and true posterior 𝑝(𝑍|𝑋)
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Mean Field Criterion

• Reminder EM criterion for GMM :
• Maximize  =F 𝜋, 𝜃, 𝑢

F 𝜋, 𝜃, 𝑢 = L 𝜋, 𝜃 − 𝐷56 𝑢||𝑝 𝑧 𝑥 = Q 𝜃, 𝑢 + H 𝑢

• Evidence Lower bound :
𝐷56 𝑞||𝑝 𝑍 𝑋 = −log 𝑝 𝑋 −𝔼7 log 𝑝(𝑋, 𝑍) − 𝐻(𝑞)

• Neighborhood EM criterion same as GMM but with additional 
term 𝑅 𝑞

minimize 𝐷-. 𝑞|𝑝 𝑍|𝑋 = −H 𝑞 + 𝑅 𝑞 − Q q + log 𝑝 𝑋

• Where 𝑅 𝑞 = 8
9
∑2∑%&'%((!,+) 𝑐!+ 𝑞!2𝑞+2
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Neighborhood EM

• Only E-step changed compared to regular EM for 
GMM

• New E-step :
• Fixed point iteration 

𝑞!* =
𝜋*𝒩 𝑥!|𝜃* exp𝛽 ∑) 𝑐)!𝑞!)
∑/ 𝜋/𝒩 𝑥!|𝜃/ exp𝛽 ∑) 𝑐)!𝑞!)

• Same M-step 
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Neighborhood EM
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Grab Cut

• Algorithm combines :
• Model intensity of foreground and background as mixture of 

Gaussians (vs one Gaussian for each class)
• Iterate between :

• hard segmentation using graph cuts
• Estimation of Gaussian components

23Input + bounding 
box

Segmentation

Initial GMM Final GMM



Grab Cut Examples

Available in MS Office !!
24



Difficult Examples

Camouflage & 
Low Contrast Harder CaseFine structure

Initial 
Rectangle

Initial
Result

Grabcut: Interactive foreground extraction using iterated graph cuts, Carsten Rother, V. Kolmogorov,  
Andrew Blake, Siggraph 2004 26



4. Connexity and Shape Constrained 
Image segmentation

• 4.1 Label Connexity Hypothesis : Markov Random Field 
• 4.2 Introduction to shape and deformable Models
• 4.3 Snakes algorithm
• 4.4 Level Set Algorithm
• 4.5 Point Distribution Model
• 4.6 Multi-atlas Algorithm

Hervé Delingette 28



Shape Constraints in Image 
Segmentation 

• MRFs enforce connectivity between 
neighboring voxels : region approach

• Deformable shapes / models :
• Work on boundaries between regions -> dual 

approach
• Define constraints on the boundaries : 

• Minimize length
• Minimize curvature
• Shape constraints

22/11/2024 29



Parametric Shape representation

• Parametric representation of a shape :
• Shape controlled by (intrinsic) parameters

• Examples :
• Vertex position of a mesh
• Scalar field for level sets
• Fourier coefficients,…

22/11/2024 32

Deformation in the object 
space



Shape representation

22/11/2024 33

Parametric shapes

Continuous Discrete

Explicit 
Parameterisation

Implicit
Parameterisation

Discrete
Mesh Point Set

Level-Sets

Algebraic CurvesFinite Elements

Modal
Decomposition

Simplex Mesh Spring Mass Models

Finite 
Differences



Shape representation As 
Template Transformation

• Template Transformation  :
• Define a single shape instance in ℝ! as 

template
• Parameterise the deformation of the 

embedding space 𝜙 𝑥 :ℝ! → ℝ!

• Examples :
• Rigid Transformation

(translation + rotation)
• Affine Transformation

(translation + linear transform)
22/11/2024 34

Define 𝜙 𝑥  as an 
affine transform

Shape instance=
template



Simple Transformations

22/11/2024 35

𝑻𝒓𝒆𝒈 Description Degrees of 
Freedom

2D Rigid Translation + 
Rotation

2+1=3

2D Similarity Translation + 
Rotation + Scale

3+1=4

2D Affine Translation + 
Linear

2+4=6

3D Rigid Translation + 
Rotation

3+3=6

3D Similarity Translation + 
Rotation + Scale

6+1=7

3D Affine Translation + 
Linear

3+9=12



Complex Transformations

• Radial Basis functions :
• Basis 𝜓 𝑥 = 𝜓 𝑥 which only depend on distance : 

example : Gaussian, thin plate spline, B-spline 
• Define N control points 𝑥<
• Define 𝜙 𝑥 as 𝜙 𝑥 = ∑<=𝜓 𝑥 − 𝑥< 𝑦< parameterized by 
{𝑦<}

22/11/2024 36



Shape Optimization

• If {q} are parameters in the shape space (parametric 
representation) 

• If {q} are parameters in the space of geometric 
transformations

• Often includes both frameworks

22/11/2024 40

Framework of deformable templates

Framework of Image Registration 



4. Connexity and Shape Constrained 
Image segmentation

• 4.1 Label Connexity Hypothesis : Markov Random Field 
• 4.2 Introduction to shape and deformable Models
• 4.3 Snakes algorithm
• 4.4 Level Set Algorithm
• 4.5 Point Distribution Model
• 4.6 Multi-atlas Algorithm
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Shape representation

22/11/2024 44

Parametric Shapes

Continuous Discrete

Explicit 
Parameterisation

Implicit
Parameterisation

Discrete
Mesh Point Set

Level-Sets

Algebraic CurvesFinite Elements

Modal
Decomposition

Simplex Mesh Spring Mass Models

Finite 
Differences



Snake Algorithm

• Energy Definition :

• Eint measures the contour smoothness

• Eext measures the distance of the contour to the visible border 
of the object of interest 

• Variational problem : minimize E

22/11/2024 45

extint EEE +=



Contour Representation

• Explicit Representation of a contour 

22/11/2024 46

C(u)

𝑪 𝑢 = 𝑥 𝑢
𝑦 𝑢

𝐶 ∶ 𝑎, 𝑏 → ℝQ



Contour Representation(2)

• Geometry Reminder:
– Tangent Vector : 
– Normal Vector  : 
– Curve Length :

22/11/2024 47

C(u)
t(u)

n(u)

𝑡 𝑢 =
𝑑𝑪 𝑢
𝑑𝑢

𝑑𝐶 𝑢
𝑑𝑢

𝑛 𝑢 = 𝑡 𝑢 &

𝐿 = E
'

( 𝑑𝑪 𝑢
𝑑𝑢

𝑑𝑢



Internal Energy (1)

• Internal energy is the sum of 2 terms :

– Stretching energy Estretching which measures the change of length of a 
curve 

– Bending energy Ebending which measures the change of curvature 
along the curve

– Use of Sobolev norms to simplify numerical solution

22/11/2024 49



Stretching Energy

• Expression :

• Link with curve length :

• Extension :

22/11/2024 50

Dirichlet Energy
𝐸0123145678 = 𝛼g

9

: 𝑑𝐶 𝑢
𝑑𝑢

&

𝑑𝑢

𝐸0123145678 = 𝛼g
9

: 𝑑𝐶 𝑢
𝑑𝑢

&

𝑑𝑢

𝐿 = D
/

0 𝑑𝑪 𝑢
𝑑𝑢 𝑑𝑢 ≤ D

/

0 𝑑𝑪 𝑢
𝑑𝑢

1

𝑑𝑢



Bending Energy

• Expression :

• Link with beam bending energy :

• Extension : 

22/11/2024 51

W2(u)=1 except at C1 discontinuities

𝐸F%G+ = i
G

H
𝐸 𝑢 𝐼 𝑢 𝑘9 𝑢 𝑑𝑢

𝐸;37<678 = 𝛽g
9

: 𝑑&𝐶 𝑢
𝑑𝑢&

&

𝑑𝑢

𝐸;37<678 = 𝛽g
9

:
𝑤& 𝑢

𝑑&𝐶 𝑢
𝑑𝑢&

&

𝑑𝑢



External Energy

• Main Idea : attract the contour towards high gradient voxels
• 2 formulations :

– Local using gradient image
– Global using contour points

22/11/2024 52

globallocalext EEE +=



Local External Energy (1)

• Local Energy
– Gradient Computation by convolving with the derivative of Gaussian 

– The standard deviation s of Gaussian allows to control the smoothness

22/11/2024 53

𝒩
𝑥
𝑦 ; 0, 𝜎

𝛻𝐼 𝑥, 𝑦 = 𝛻𝒩
𝑥
𝑦 ; 0, 𝜎 ⋆ 𝐼 𝑥, 𝑦 = Q𝛻𝒩

𝑥
𝑦 ; 0, 𝜎 (𝑢 − 𝑥, 𝑣 − 𝑦) 𝐼 𝑢, 𝑣 𝑑𝑢 𝑑𝑣



Local External Energy (2)

• Example

22/11/2024 54

Original
Image 

Red Band



Local External Energy(3)

• Computation of the gradient norm 

22/11/2024 55

Low s High s 

− 𝛻𝐼 𝑥, 𝑦



Local External Energy (4)

• Definition of the local external energy

• The contour is driven towards minima of potential whose 
width is linked to s 

22/11/2024 56

𝐸mnopm = − 𝛻𝐼 𝑥, 𝑦 Q



Global External Energy (1)

• Main Idea :
– Select high gradient pixels which correspond to border between 2 

regions
– Define a potential field as a distance map from those pixels

22/11/2024 57



Global External Energy (2)

• How are contour points defined ?
• Contour point extraction algorithm :

– Compute gradient                and its norm
at each voxel 

– Extract extrema of gradient in the direction of  gradient
– Threshold those extrema based on the gradient norm 
– Construction of a potential field  Eglobal

22/11/2024 58

),( yxIÑ ),( yxIÑ



Global External Energy (3)

• Example

22/11/2024 59

Extrema of
gradient

Threshold of 
Extrema of

gradient



Global External Energy (4)
• Computation of potential field  Eglobal(x,y) :

– Use of chamfer distance which approximates 
the Euclidean distance

22/11/2024 60

5 4 3 2 1 2 3
4 3 2 1 0 1 2
4 3 2 1 0 1 2
3 2 1 0 0 0 1
3 2 1 0 0 1 2
4 3 2 1 1 2 3
5 4 3 2 2 3 4

Example
in 4-connexity



Global External Energy(5)

22/11/2024 61

Distance Map



Problem Position

• Variational Problem :

• Necessary condition for C(u) :

22/11/2024 62

Find C(u) which 
minimize :

)()())(( extint CECEuCE +=

0))(( =uCEd



Numerical Approach

• Use calculus of variation to compute
• Use Lagrangian Evolution :

• Use Finite Difference discretization  

• Use semi-implicit time integration scheme 
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Result
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4. Connexity and Shape Constrained 
Image segmentation

• 4.1 Label Connexity Hypothesis : Markov Random Field 
• 4.2 Introduction to shape and deformable Models
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Shape representation

22/11/2024 66

Parametric shapes

Continuous Discrete

Explicit 
Parameterisation

Implicit
Parameterisation

Discrete
Mesh Point Set

Level-Sets

Algebraic CurvesFinite Elements

Modal
Decomposition

Simplex Mesh Spring Mass Models

Finite 
Differences



Level Sets

• How to define boundary curves : 
– Curve / Surface represented as the zero crossing of a scalar function : 
f(x,t)=0

– The scalar field evolves over time

22/11/2024 67

Source Fast Marching Methods and Level Set Methods, J.A. Sethian



How to define scalar field ?

• Use regular grid of the input image 
• Initialize 𝜙 𝑥, 0 = 𝑆𝐷𝑇 𝒮q as signed distance transform of 

an initial shape 𝒮q

22/11/2024 68

SDT of a circle

Positive distance

Negative distance



Shape representation

• Positive aspects :
– Can represent all topologies (sphere, torus..)
– Simple : No parameterization !!
– Can define normal and curvature from derivatives of scalar field !!

22/11/2024 69
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Limitations of level sets

• Topology restricted to closed contours (except at the image 
borders)

• Uniform discretisation that depends on a regular grid
• Difficult to handle manifold of co-dimension > 1

22/11/2024



Evolution of level sets

• Contour defined as  :

• Normal vector defined as  : 

• Total derivation with t :
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Evolution of level sets

• We only consider an evolution along the normal direction  :

• Fundamental Equation :

22/11/2024 72

)(),(),( utu
t
tu nC b=

¶
¶

fbf
Ñ-=

¶
¶
t
tx ),(

For all x



Evolution of level sets

• No need for parameterisation :
– Deformation invariant with change of parameterisation

22/11/2024 73

No need to handle the number of points and their 
spacing along the contour

Easy and stable computation of 
intrinsic values (curvature) 



Advantages of level sets (2)

• Allow to handle topological changes

22/11/2024 74

Source : Fast Marching Methods and Level Set Methods, J.A. Sethian



Evolution of level sets

• Computationally expensive since  f(u,t) is 2D / 3D whereas 
contour /surface  is 1D / 2D

22/11/2024 75

Use of a narrow band around the contour

Stability and convergence issues linked to the 
narrow band (reinitialisation)



Spatial and temporal evolution

• Need to define 𝛽(𝑥, 𝑡) for LS evolution
• Temporal Discretisation :

– Explicit Scheme :

• Spatial discretisation :
– Regular Grid (image) 
– Use centered finite differences except for « advection» term ( 

«upwind » scheme)
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Example

•  b=1-ek : combinaison of hyperbolic (b=1) with  
parabolic (b=- ek) terms
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Curvature Discretization

• Use Hessian and first derivative discretized with finite 
differences :
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Application to image segmentation (1)

• Several propagation terms:
–  
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Application to image segmentation (2)

• Geodesic Active Contours
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4. Connexity and Shape Constrained 
Image segmentation

• 4.1 Label Connexity Hypothesis : Markov Random Field 
• 4.2 Introduction to shape and deformable Models
• 4.3 Snakes algorithm
• 4.4 Level Set Algorithm
• 4.5 Point Distribution Model
• 4.6 Multi-atlas Algorithm
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Explicit vs Implicit 
Shape representation
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Continuous Discrete
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Point Distribution Model (PDM)

• Shape defined as a set of P points in ℝr d=2 or 3

• Shape space is defined as Gaussian distributions :
𝑝 𝑋 = 𝒩 𝑋; 𝜇∗, Σ∗

– shape preserving group is rigid transform 𝑇 = 𝑡, 𝑅

• How to define 𝜇∗ and Σ∗? 
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Input as collection of homologous point sets

• Use supervision : 
– training set t𝑋 of  N sample shapes t𝑋 = 𝑋! 1 ≤ 𝑛 ≤ 𝑁

• Constraint :
– All input shapes have the same number of P points
– All points are homologous

• Create an allowed shape space based on collection :
– Create All shapes
– Register all input shapes rigidly
– Create Mean shape
– Estimate variability with the sample Covariance Matrix :
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How to create input homologous point set ?

• Finding Point Correspondence between shapes in the training 
set is difficult :
– Can be done manually for simple shapes
– Can use template registration
– Optimize point correspondence using minimum description length
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Definition of shape space

• Use sample mean K𝑋 and sample covariance Σ for the Gaussian 
shape space ? 𝜇∗ = K𝑋 & Σ∗ = Σ ?
– Not a good idea :

• Size of training set is often much smaller than the dimension of X :

• Noise may be present in x𝑋, Σ
• Covariance matrix may not be invertible

• Alternative : use principal component analysis to use low rank  
(rank M) representation of covariance matrix 
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Principal Component Analysis

• PCA solves 3 equivalent problems :
– Pb 1 : Find a subset of M orthogonal directions 𝑢 for which the 

projected variance 𝑢(Σ𝑢 is maximum
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Find eigenvectors of Σ associated with maximal eigenvalues



Principal Component Analysis

• PCA solves 3 equivalent problems :
– Pb 2 : Find a set of M orthogonal directions 𝑢 which minimize the 

average projection cost
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Probabilistic Principal Component Analysis
• Pb 3 : PPCA solves 3 equivalent problems :

– 𝑋 considered as an observed random variable (PPCA)
– Existence of random latent variable Z of dimension M with 𝑝 𝑍 = 𝒩 0, 𝐼
– X assumed to be generated by latent variable Z:

𝑝 𝑋|𝑍 = 𝒩(𝑋;𝑊𝑍 + 𝜇, 𝜎&𝐼)
– Likelihood Parameters : 

• 𝑊 matrix 𝑁×𝑀 
• Mean value 𝜇

• Variance noise 𝜎1
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Probabilistic Principal Component Analysis

– Equivalent to write 𝑋 ≈ 𝑊𝑍 + 𝜇 + 𝜖 where 
• 𝑍 = 𝒩(0, 𝐼) is a Gaussian random variable of 0 mean and dimension M. 
• 𝜖 = 𝒩(0, 𝜎1𝐼) is a Gaussian random variable of 0 mean and dimension D
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Probabilistic Principal Component Analysis

• Inference :
– Marginal likelihood is also Gaussian as the product of 2 Gaussian distributions

– Maximize log marginal likelihood log 𝑝 t𝑋 = ∑!= log 𝑝 𝑋!
• Closed form solution :

– 𝜇 = Z𝑋
– Sample Covariance matrix Σ = 𝑈Λ𝑈2

– M largest eigenvalues: 𝜆* , 1 ≤ 𝑚 ≤ 𝑀
– Eigenvectors associated 𝑤*  with largest eigenvalues 𝜆*

– 𝑊 = 𝜔3 Λ* − 𝜎1𝐼
"
# 𝑅
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Point Distribution Model Shape Space

• Define shape space  from K𝑋, 𝑊 , 𝜎Q as:
𝑝 𝑋 = 𝒩 𝑋; K𝑋,𝑊𝑊~ + 𝜎Q𝐼  

• Accounting for any rigid transformation:
– Rotation R and translation t

𝑝 𝑋 = 𝒩 𝑋; 𝑅 K𝑋 + 𝑡, 𝑅𝑊𝑊~𝑅~ + 𝜎Q𝐼
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Fitting a PDM

• Let Y be a set of points representing an  instance of the 
structure

• How to project Y on the allowable shape space ?
• 3 steps :

– Align with template
– Project on shape space
– Realign the projection
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Restricted Shape Space

• Align Current Shape Y with mean template :
– Find the rotation R & translation t which minimizes x𝑋 − 𝑅𝑌 − 𝑡 9 (closed form 

solution) 
– Center data 𝑌` = 𝑅𝑌 + 𝑡

• Project centered data
– 𝜙+ = 𝑤+$ (𝑌` − x𝑋) for 1 ≤ 𝑚 ≤ 𝑀
– Bound projection : if 𝜙+ < 3𝜆+ then 𝜓+ = 𝜙+ else 𝜓+ = 3𝜆+𝑠𝑖𝑔𝑛 𝜙+

• Reconstruct data
– t𝑌 = 𝑅"# x𝑋+ ∑+𝜓+𝑤+ − 𝑡
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Active Shape Model in Medical Imaging

• Construct PDM shape space from training set.
• Iterate :

– Estimate normal vector 𝑛, at each vertex 𝑥,
– Find displacement 𝑠, along normal 𝑛, which minimizes local energy 
𝑠, = argmin

?
𝐸, 𝐼, 𝑠

– Update position 𝑥, → 𝑥, + 𝑠,𝑛,
– Project current shape X on restricted shape space
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Profile Models

• Sometimes true point not on strongest edge

• Model local structure to help locate the point

Strongest edge True position



Statistical Shape Model Of the Liver

Mean Liver
Model

Training Set
of 13 Liver

Models



Statistical Shape Model of the Liver

• Modes Of Variation

First Mode of Variation



Statistical Shape Model of the Liver

• Modes Of Variation

Second Mode of Variation



4. Connexity and Shape Constrained 
Image segmentation

• 4.1 Label Connexity Hypothesis : Markov Random Field 
• 4.2 Introduction to shape and deformable Models
• 4.3 Snakes algorithm
• 4.4 Level Set Algorithm
• 4.5 Point Distribution Model
• 4.6 Multi-atlas Algorithm
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Use annotated images 
to segment new image

22/11/2024 103

Source : Rueckert and AlJabar



Use annotated images 
to segment new image

• Input data :
– Set of representative images with their segmentation

• For all images in input set :
– Register non-rigidly input image on target image
– Apply deformation on corresponding label image

• Combine deformed label image into a classification or 
segmentation of target anatomy
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Key steps

• Atlas selection :
– Use only input images that are closest from the target images 

(metrics definition)

• Combination of registered labels
– Majority voting
– Weighted majority voting
– STAPLE algorithm
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Definitions, Notations 

• Input : 
– Target image J
– Atlas images 𝐼!, 1 ≤ 𝑛 ≤ 𝑁
– Segmented atlas images, 𝐿!

• Output :
– Segmented target image L

• Image patch : small rectangular piece of an image
• Define Image patch extraction operator S() : S(J,x) is an image 

path centered on x from image J
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Membership function

• Hypothesis : every patch 𝑆 𝐽, 𝑥 originates from a patch 
𝑆 𝐼#, 𝑦 from the training database.

• Define membership function M : 
𝑀 𝑥 = 𝑛, 𝑦
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Probabilistic Framework for multi-atlas 
segmentation

• Knowing M(x) , probabilities of observing intensity I(x) and label L(x) are 
conditionally independent.

• 𝑝(𝐽(𝑥)|𝑀, 𝐼) often a Gaussian on mean 𝐽 𝑥 − 𝐼! 𝑦
• 𝑝 𝐿|𝑀, 𝐿 often related to distance of x to the border of the structure
• 𝑝 𝑀 is a Potts model to enforce that neighboring voxels have similar 

memberships
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