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Medical Image Analysis – MVA 2024-2025

Course notes : http://www-sop.inria.fr/teams/asclepios/cours/MVA/

� Tue. Oct 1 2024, 14:00 ENS 1Z25 [XP] Introduction to Medical Image Acquisition & Image Registration

� Tue. Oct 8 2024, 14:00 ENS 1Z25 [XP] Riemannian Geometry and Statistics

� Tue. Oct 15 2024, 14:00 ENS 1Z25 [HD] Image Filtering & Segmentation 

� Tue. Oct 22 2024: 14:00 ENS 1Z25 [HD] Image Segmentation based on Clustering and Markov 

Random Fields 

� Tue. Nov 5 2024: 14:00 ENS 1Z25 [XP] Analysis in the space of Covariance Matrices

� Tue. Nov 12 2024: 14:00 ENS 1Z25 [HD] Shape constrained image segmentation

� Tue. Nov 19 2024: 14:00 ENS 1Z25 [XP] Diffeomorphic Registration and Computational Anatomy

� Tue. Nov 26 2024: 14:00 ENS 1Z25 [HD] Biophysical Modeling

� Tue. Dec 3, 2024, 14:00 (Visio) [XP & HD] Exam 

MVA 2024-2025
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Statistical Computing on Manifolds 
for Computational Anatomy

Metric and Affine Geometric Settings for Lie Groups
� Deformable image registration

� Riemannian frameworks on Lie groups

� Lie groups as affine connection spaces

� Extending statistics without a metric

� The SVF framework for diffeomorphisms

Modeling longitudinal deformations in AD
� Parallel transport of deformation trajectories

� From velocity fields to AD models

MVA 2024-2025
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Goals of Registration

A dual problem

� Find the point y of image J which is corresponding 
(homologous) to each points x of image  I.

� Determine the best transformation T that 
superimposes homologous points

I

T

J

kxky
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Registration: Given two datasets (images) I and J, 
find the geometric transformation T that « best »  
aligns the physically homologous points (voxels)

Registration: Given two datasets (images) I and J, 
find the geometric transformation T that « best »  
aligns the physically homologous points (voxels)

Mathematical Formulation of registration 
(Brown, 1992)

Transformation space (rigid, affine, elastic,…)

Similarity measureSimilarity measureOptimization algorithm

MVA 2024-2025
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The deformable registration landscape in 1995

Transformation encoded by a displacement field: 𝑻 𝒙 ൌ 𝒙 ൅ 𝒖ሺ𝒙ሻ

Optical flow 
� Horn and Schunck, Artif. Intell. 17,  1981; 

� Aggarwal and Nandhakumar, Proc. IEEE 76, 1988; 

� Barron et al., 1994.

Linear elastic deformation
� Broit, PhD 1981.

� Bajcsy and Kovacic CVGIP 46, 1989

� Gee, Reivich, Bajcsy, J. Comp. Assis.Tom. 17, 1993.

Fluid (images & surface)
� Christensen, Rabbitt, Miller, Phys. Med. Biol. 39, 1994. 

� Christensen, Rabbitt, Miller. IEEE TIP. 5(10), 1996.

� Thompson and Toga, IEEE TMI 15(4), 1996.

7

Fudivu  ))(()(2 

Fvdivv  ))(()(2 

vuv
t

u
 )( 




)())()((),( uxJuxJxIuxF 

),( uxF
dt

u




Differential equations were costly to solve: > 1 day on mass-parallel machine
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Demons’ algorithm (MRCAS 95, CVPR96, Media98)
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Patient 1 Patient 2

MVA 2024-2025

9

� T0= Identity

� Update field

� Regularization by Gaussian filtering 

𝑈௡ାଵ ൌ
𝐼 െ 𝐽 ∘ 𝑇௡

∇𝐼 ଶ ൅ ሺ𝐼 െ 𝐽 ∘ 𝑇௡ሻଶ
∇𝐼

𝑇௡ାଵ ൌ 𝐺ఙ ∗ 𝑇෠௡ାଵ

𝑇෠௡ାଵ ൌ 𝑇௡ ∘ 𝑈௡ାଵ

E
la

st
ic 𝑈෩௡ାଵ ൌ 𝐺ఙ ∗ 𝑈௡ାଵ

𝑇௡ାଵ ൌ 𝑇௡ ∘ 𝑈෩௡ାଵ

F
lu

id

Demons’ algorithm (MRCAS 95, CVPR96, Media98)

Why does that work? Convergence? Change the similarity metric?

MVA 2024-2025
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Interpretation of demons

� SSD : measures the similarity of intensities

� Reg : regularization energy (quadratic)

�  ,  : smoothing and noise parameters 

� C : correspondences between points (vectors field)

� T : transformation (regularized vector field)

� Introduce correspondences (matches) as an auxiliary variable to 
decouple into a local non-convex 

P. Cachier E. Bardinet, D. Dormont, XP and N. Ayache: Iconic Feature Based
Nonrigid Registration: the PASHA Algorithm, Comp. Vision and Image Understanding 

(CVIU), Special Issue on Non Rigid Registration, 89 (2-3), 272-298, 2003.

)(Reg.||||),,(),( 2 TTCCJISSDTCE  

MVA 2024-2025
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PASHA Algorithm (2/2)

Alternated minimization

� Minimization with respect to C :
� Find matches between points by optimizing ES + in the 

neighborhood of T

� Gradient descent (1st, 2bd order, e.g. Gauss-Newton)

� Minimization with respect to T :
� Find a smooth transformation that approximates C

� Quadratic energy  convolution

� Interest: fast computation

)(Reg.||||),,(),( 2 TTCCJISSDTCE  
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Newton optimization of the correspondence energy

Exact solution of the quadratic approximation of the SSD

� Solve 

� By inversion lemma: 

� Local estimation of intensity variance:

� Assuming isotropic voxel size: 

12
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Efficient Regularization

Quadratic regularizer

Euler Lagrange optimization of

Solution: Gaussian smooting

Extension to a family of quadratic filters
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P. Cachier and N. Ayache. Isotropic energies, filters and splines for vectorial regularization. 
J. of Math. Imaging and Vision, 20(3):251-265, May 2004.
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Pennec, Cachier, Ayache. Understanding the ``Demon's Algorithm'': 3D Non-Rigid 
registration by Gradient Descent. MICCAI 1999.
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Inter-subject registration
Affine transformation

Correct size and position but high remaining variability in cortex and deep structures

MR T1 Images 

256x256x120 voxels

Atlas to patient registration
for radiotherapy planning

MVA 2024-2025
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Inter-subject registration
Fluid regularization

Very good image correspondence But anatomically meaningless deformation
Jacobian [1/50;50]

MVA 2024-2025
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Anatomically more meaningful deformation
Jacobian [1/5;5]

Registration in 5 min on 15 PCs

Inter-subject registration
Adaptive non-stationary visco-elastic regularization

MVA 2024-2025
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Statistical Computing on Manifolds 
for Computational Anatomy

Metric and Affine Geometric Settings for Lie Groups
� Reminder on deformable image registration

� Riemannian frameworks on Lie groups

� Lie groups as affine connection spaces

� Extending statistics without a metric

� The SVF framework for diffeomorphisms

Modeling longitudinal deformations in AD
� Parallel transport of deformation trajectories

� From velocity fields to AD models

MVA 2024-2025
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Statistical Analysis of the Scoliotic Spine

Data
� 307 Scoliotic patients from the Montreal’s St-Justine Hosp

� 3D Geometry from multi-planar X-rays

� Articulated model:17 relative pose of successive vertebras

Statistics 
� Main translation variability is axial (growth?)

� Main rot. var. around anterior-posterior axis 

� 4 first variation modes related to King’s classes

[ J. Boisvert et al.  ISBI’06, AMDO’06 and IEEE TMI 27(4), 2008 ]MVA 2024-2025
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Morphometry through Deformations

19

Measure of deformation [D’Arcy Thompson 1917, Grenander & Miller]

� Observation = “random” deformation of a reference template 

� Deterministic template = anatomical invariants [Atlas ~ mean]

� Random deformations = geometrical variability [Covariance matrix]

Patient 3

Atlas

Patient 1

Patient 2

Patient 4

Patient 5

1

2
3

4

5

MVA 2024-2025

Longitudinal structural damage 
in Alzheimer’s Disease

baseline 2 years follow-up

Ventricle’s expansionHippocampal atrophyWidespread cortical thinning

20MVA 2024-2025

Longitudinal deformation analysis

21

time

Deformation trajectories in different reference spaces 

Mean longitudinal deformation across subjects?

Convenient mathematical settings for transformations?  

Patient A

Patient B

? ?Template

MVA 2024-2025
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Statistics on deformations

Statistics on displacement field/transformation parameters
� Splines [Rueckert et al., TMI, 03], 
� PCA of Statistical shape models
� Simple vector statistics, but inconsistency with group properties

The Riemannian approach (LDDMM)
� Right-invariant metric on diffeos [Joshi, Miller, Trouvé, Younes…]
� Parameterize diffeomorphisms by time-varying velocity fields
� Good mathematical bases for statistics on non-linear spaces

No bi-invariant metric in general 
� Left/right Fréchet mean incompatible with group structure
� The inverse of the mean is not the mean of the inverse 
� Examples with simple 2D rigid transformations

MVA 2024-2025

Natural Riemannian Metrics on Transformations

Transformations are Lie groups: Smooth manifold G compatible with 
group structure

� Composition g o h and inversion g-1 are smooth

� Left and Right translation Lg(f) = g ○ f    Rg (f) = f ○ g

� Conjugation   Conjg(f) = g ○ f ○ g-1

Natural Riemannian metric choices

� Chose a metric at Id: <x,y>Id

� Propagate at each point g using left (or right) translation
<x,y>g = < DLg

(-1) .x , DLg
(-1) .y >Id

Implementation 

� Practical computations using left (or right) translations

23

  g)(f.LogDL  (g)Log  fg          x).DL(Expf  xExp 1)(
Idffff 1)(   Id

MVA 2024-2025
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Example on 3D rotations

Space of rotations SO(3):

� Manifold: RT.R=Id  and det(R)=+1

� Lie group ( R1 o R2 = R1.R2   & Inversion: R(-1) = RT )

Metrics on SO(3): compact space, there exists a bi-invariant metric

� Left / right invariant / induced by ambient space  <X, Y> = Tr(XT Y)

Group exponential

� One parameter subgroups = bi-invariant Geodesic starting at Id
� Matrix exponential and Rodrigue’s formula: R=exp(X)  and X = log(R)

� Geodesic everywhere by left (or right) translation

LogR(U) = R log(RT U)            ExpR(X) = R exp(RT X) 

Bi-invariant Riemannian distance

� d(R,U) = ||log(RT U)|| = ( RT U )

MVA 2024-2025
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General Non-Compact and Non-Commutative case

No Bi-invariant  Mean for 2D Rigid Body Transformations

� Metric at Identity: 𝑑𝑖𝑠𝑡ሺ𝐼𝑑, 𝜃; 𝑡ଵ; 𝑡ଶ ሻଶ ൌ 𝜃ଶ ൅  𝑡ଵ
ଶ+ 𝑡ଶ

ଶ

� 𝑇ଵ ൌ
గ

ସ
;  െ ଶ

ଶ
; ଶ

ଶ
      𝑇ଶ ൌ 0; 2; 0       𝑇ଷൌ െగ

ସ
;  െ ଶ

ଶ
;െ ଶ

ଶ

� Left-invariant Fréchet mean: 0; 0; 0 

� Right-invariant Fréchet mean: 0; ଶ

ଷ
; 0 ≃ ሺ0; 0.4714; 0ሻ

Questions for this talk:

� Can we design a mean compatible with the group operations?

� Is there a more convenient structure for statistics on Lie groups?

MVA 2024-2025
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Statistical Computing on Manifolds 
for Computational Anatomy

Metric and Affine Geometric Settings for Lie Groups
� A short introduction to deformable image registration

� Riemannian frameworks on Lie groups

� Lie groups as affine connection spaces

� Extending statistics without a metric

� The SVF framework for diffeomorphisms

Modeling longitudinal deformations in AD
� Parallel transport of deformation trajectories

� From velocity fields to AD models

MVA 2024-2025

Basics of Lie groups

Flow of a left invariant vector field 𝑋෨ ൌ 𝐷𝐿. 𝑥 starting from e

� 𝛾௫ 𝑡 exists for all time

� One parameter subgroup: 𝛾௫ 𝑠 ൅ 𝑡 ൌ 𝛾௫ 𝑠 . 𝛾௫ 𝑡  

Lie group exponential (ATTN: different from Riemannian Exp)

� Definition: 𝑥 ∈ 𝔤 →  𝐸𝑥𝑝 𝑥 ൌ 𝛾௫ 1 𝜖 𝐺 

� Diffeomorphism from a a neighborhood of 0 in g to a 
neighborhood of e in G (not true in general for inf. dim)

� Baker-Campbell Hausdorff (BCH) formula

𝐵𝐶𝐻 𝑥,𝑦 ൌ 𝐿𝑜𝑔 𝐸𝑥𝑝 𝑥 .𝐸𝑥𝑝 𝑦 ൌ 𝑥 ൅ 𝑦 ൅
1
2
𝑥,𝑦 ൅  …

3 curves at each point parameterized by the same tangent vector

� Left / Right-invariant geodesics, one-parameter subgroups

Question: Can one-parameter subgroups be geodesics?

28MVA 2024-2025
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Affine connection spaces

Affine Connection (infinitesimal parallel transport)
� Acceleration = derivative of the tangent vector along a curve

� Projection of a tangent space on 
a neighboring tangent space 

Geodesics = straight lines
� Null acceleration: 𝛻ఊሶ 𝛾ሶ ൌ 0

� 2nd order differential equation:
Normal coordinate system

� Local exp and log maps (Strong form of Whitehead theorem:
In an affine connection space, each point has a normal convex neighborhood 
(unique geodesic between any two points included in the NCN)

29MVA 2024-2025

Canonical Connections on Lie Groups

A unique Cartan-Schouten connection

� Symmetric (no torsion) and bi-invariant

� For which geodesics through Id are one-parameter 
subgroups (group exponential)

� Matrices: M(t) = A.exp(t.V)

� Diffeos: left/right translations of Stationary Velocity Fields (SVFs)  

Levi-Civita connection of a bi-invariant metric (if it exists)
� Continues to exists in the absence of such a metric

(e.g. for rigid or affine transformations)

Symmetric space with central symmetry 𝑺𝝍 𝝓 ൌ 𝝍𝝓ି𝟏𝝍
� Matrix geodesic symmetry: 𝑆஺ 𝑀 𝑡 ൌ 𝐴 exp െ𝑡𝑉 𝐴ିଵ𝐴 ൌ 𝑀ሺെ𝑡ሻ

30

[Lorenzi, Pennec. Geodesics, Parallel Transport & One-parameter Subgroups for 
Diffeomorphic Image Registration. Int. J. of Computer Vision, 105(2):111-127, 2013. ]

MVA 2024-2025
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Statistical Computing on Manifolds 
for Computational Anatomy

Metric and Affine Geometric Settings for Lie Groups
� Riemannian / affine connection frameworks on Lie groups

� Extending statistics without a metric

� The SVF framework for diffeomorphisms

Modeling longitudinal deformations in AD
� Parallel transport of deformation trajectories

� From velocity fields to AD models

MVA 2024-2025
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Mean value on an affine connection space

Fréchet / Karcher means not usable (no distance) but:

Exponential barycenters
� [Emery & Mokobodzki 91, Corcuera & Kendall 99]

׬ 𝐿𝑜𝑔௫ 𝑦  𝜇ሺ𝑑𝑦ሻ ൌ 0 or    ∑ 𝐿𝑜𝑔௫ 𝑦௜௜ ൌ 0
� Existence? Uniqueness? 

� OK for convex affine manifolds with semi-local convex geometry 
[Arnaudon & Li, Ann. Prob. 33-4, 2005]

� Use a separating function (convex function separating points)  instead of a distance

� Algorithm to compute the mean: fixed point iteration (stability?)

35
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Bi-invariant Mean on Lie Groups

Exponential barycenter of the symmetric Cartan connection
� Locus of points where ∑𝐿𝑜𝑔 𝑚ିଵ.𝑔௜ ൌ 0 (whenever defined)

� Iterative algorithm: 𝑚௧ାଵ ൌ  𝑚௧ ∘ 𝐸𝑥𝑝
ଵ

௡
∑𝐿𝑜𝑔 𝑚௧

ିଵ.𝑔௜  

� First step corresponds to the Log-Euclidean mean

� Corresponds to the first definition of bi-invariant mean of [V. Arsigny, X. Pennec, 
and N. Ayache. Research Report RR-5885, INRIA, April 2006.]

Mean is stable by left / right composition and inversion 
� If 𝑚 is a mean of 𝑔௜ and ℎ is any group element, then 

� ℎ ∘ 𝑚 is a mean of ℎ ∘ 𝑔௜ , 

� 𝑚 ∘ ℎ is a mean of the points 𝑔௜ ∘ ℎ

� and 𝑚ሺିଵሻ is a mean of 𝑔௜
ሺିଵሻ

36

[Pennec & Arsigny, Ch.7  p.123-166 , Matrix Information Geometry, Springer, 2012] 

MVA 2024-2025

Special matrix groups

Heisenberg Group (resp. Scaled Upper Unitriangular Matrix Group)

� No bi-invariant metric 

� Group geodesics defined globally, all points are reachable

� Existence and uniqueness of bi-invariant mean (closed form resp. 
solvable) 

Rigid-body transformations 

� Logarithm well defined iff log of rotation part is well defined, 
i.e. if the Givens rotation have angles 𝜃௜ ൏  𝜋

� Existence and uniqueness with same criterion as for rotation 
parts (same as Riemannian)

SU(n) and GL(n)

� Logarithm does not always exists (need 2 exp to cover the group)
� If it exists, it is unique if no complex eigenvalue on the negative real line 

� Generalization of geometric mean
37MVA 2024-2025
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Example mean of 2D rigid-body transformation

𝑇ଵ ൌ
𝜋
4

; െ
2

2
;

2
2

      𝑇ଶ ൌ 0; 2; 0       𝑇ଷൌ െ
𝜋
4

; െ
2

2
;െ

2
2

� Metric at Identity: 𝑑𝑖𝑠𝑡ሺ𝐼𝑑, 𝜃; 𝑡ଵ; 𝑡ଶ ሻଶ ൌ 𝜃ଶ ൅  𝑡ଵ
ଶ+ 𝑡ଶ

ଶ

� Left-invariant Fréchet mean: 0; 0; 0 

� Log-Euclidean mean: 0; ଶିగ/ସ

ଷ
; 0 ≃ ሺ0; 0.2096; 0ሻ

� Bi-invariant mean: 0; ଶିగ/ସ

ଵାగ/ସሺ ଶାଵሻ
; 0 ≃ ሺ0; 0.2171; 0ሻ

� Right-invariant Fréchet mean: 0; ଶ

ଷ
; 0 ≃ ሺ0; 0.4714; 0ሻ

MVA 2024-2025

Generalization of the Statistical Framework

Covariance matrix & higher order moments
� Defined as tensors in tangent space

Σ ൌ 𝐿𝑜𝑔௫׬ 𝑦 ⊗ 𝐿𝑜𝑔௫ 𝑦  𝜇ሺ𝑑𝑦ሻ

� Matrix expression changes

according to the basis

Other statistical tools
� Mahalanobis distance well defined and bi-invariant

𝜇 ௠,ஊ ሺ𝑔ሻ ൌ න 𝐿𝑜𝑔௠ 𝑔 ௜Σ௜௝
ሺିଵሻ 𝐿𝑜𝑔௠ 𝑔 ௝𝜇ሺ𝑑𝑦ሻ

� Tangent Principal Component Analysis (t-PCA)

� Principal Geodesic Analysis (PGA), provided a data likelihood

� Independent Component Analysis (ICA)

39MVA 2024-2025
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Cartan Connections vs Riemannian

What is similar
� Standard differentiable geometric structure [curved space without torsion] 

� Normal coordinate system with Expx et Logx [finite dimension]

Limitations of the affine framework
� No metric (but no choice of metric to justify)

� The exponential does always not cover the full group
� Pathological examples close to identity in finite dimension

� In practice, similar limitations for the discrete Riemannian framework 

� Global existence and uniqueness of bi-invariant mean? 
Use a bi-invariant pseudo-Riemannian metric? [Miolane MaxEnt 2014]

What we gain
� A globally invariant (composition & inversion) symmetric space structure

� Simple geodesics, efficient computations (stationarity, group exponential)

� The simplest linearization of transformations for statistics? 

MVA 2024-2025
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Statistical Computing on Manifolds 
for Computational Anatomy

Metric and Affine Geometric Settings for Lie Groups
� Riemannian / affine connection frameworks on Lie groups

� Extending statistics without a metric

� The SVF framework for diffeomorphisms

Modeling longitudinal deformations in AD
� Parallel transport of deformation trajectories

� From velocity fields to AD models

MVA 2024-2025

Riemannian Metrics on diffeomorphisms

Space of deformations

� Transformation y=(x)

� Curves in transformation spaces: (x,t)

� Tangent vector = speed vector field 

Right invariant metric 

� Eulerian scheme 

� Sobolev Norm Hk or H∞ (RKHS) in LDDMM  diffeomorphisms [Miller, 
Trouve, Younes, Holm, Dupuis, Beg… 1998 – 2009]

Geodesics determined by optimization of a time-varying vector field

� Distance

� Geodesics characterized by initial velocity / momentum

� Optimization for images is quite tricky (and lenghty)

dt

txd
xvt
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)(




Id
ttt vv

t
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)(minarg),(
1
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2

10
2 dtvd

tt
t

v 

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Log-Euclidean Framework

Log-Euclidean processing of tensors
[Arsigny et al, MRM’06, SIAM’6 ]

� Idea: one-to-one correspondence of tensors 

with symmetric matrices, via the matrix logarithm.

� Simple processing of tensors via their logarithm (vector space)!

� Consistency with group structure (e.g., inversion-invariance) 

Log-Euclidean processing of linear transformations
[Arsigny et al, WBIR’06, Commowick, ISBI’06, Alexa et al, SIGGRAPH’02 ]

� Idea: linearize geometrical transformations close enough to identity via 

matrix logarithm [restriction to data whose logarithm is well-defined ]

� Simply process transformations via their logarithm (vector space)!

� E.g., fuse local linear transformations into  global invertible deformations.

Use the group exp/log to map the group to its Lie Algebra

MVA 2024-2025
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Examples: Polyaffine Transformations

Fusing two translations Fusing two rotations

[Arsigny, Pennec, Ayache, Medical Image Analysis, 9(6):507-523, Dec. 2005 ]

[ Arsigny et al WBIR’06 ]

44MVA 2024-2025
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Idea: [Arsigny MICCAI 2006, Bossa MICCAI 2007, Ashburner Neuroimage 2007]

� Exponential of a smooth vector field is a diffeomorphism
� Parameterize deformation by time-varying Stationary Velocity Fields

Direct generalization of numerical matrix algorithms
� Computing the deformation: Scaling and squaring [Arsigny MICCAI 2006]

recursive use of exp(v)=exp(v/2) o exp(v/2)

� Updating the deformation parameters:  BCH formula [Bossa MICCAI 2007]

exp(v) ○ exp(εu) = exp( v + εu + [v,εu]/2 + [v,[v,εu]]/12 + … )
� Lie bracket       [v,u](p) = Jac(v)(p).u(p) - Jac(u)(p).v(p)

The SVF framework for  Diffeomorphisms

•exp

Stationary velocity field Diffeomorphism

MVA 2024-2025
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exp( v/8 ) ≈ Id + v/8

exp( v/4 ) = exp(v/8)²

exp( v/2 ) = exp(v/4)²

exp( v )

[ V. Arsigny, O. Commowick, X. Pennec, N. Ayache. A Log-Euclidean Framework for Statistics on 
Diffeomorphisms. In Proc. of MICCAI'06, LNCS 4190, pages 924-931, 2-4 October 2006. ]

Computing the exponential

exp( u ) = exp( u/N ) N

MVA 2024-2025
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Symmetric log-demons [Vercauteren MICCAI 08]

Idea: [Arsigny MICCAI 2006, Bossa MICCAI 2007, Ashburner Neuroimage 2007]

� Parameterize the deformation by SVFs 
� Time varying (LDDMM) replaced by stationary vector fields
� Efficient scaling and squaring methods to integrate autonomous ODEs

Log-demons with SVFs

� Efficient optimization with BCH formula
� Inverse consistent with symmetric forces
� Open-source ITK implementation

� Very fast 
� http://hdl.handle.net/10380/3060 

Similarity

Measures how much the 
two images differ

Coupling

Couples the correspondences 
with the smooth deformation

Regularisation

Ensures 
deformation 
smoothness

[ T Vercauteren, et al.. Symmetric 
Log-Domain Diffeomorphic
Registration: A Demons-based 
Approach, MICCAI 2008 ]

MVA 2024-2025
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Symmetric Log-Domain Demons

Use easy inverse: T-1 = exp(-v)

Iteration
� Given images I0, I1 and current transformation T=exp(v)

� Forward demons forces uforw

� Backward demons forces uback

� Update  vc ← ½ ( BCH(v,uforw) - BCH(-v,uback))

� Regularize (Gaussian):  v ← Kdiff * vc

Open-source ITK implementation

� Very fast 

� http://hdl.handle.net/10380/3060

[ T Vercauteren, et al.. Symmetric 
Log-Domain Diffeomorphic
Registration: A Demons-based 
Approach, MICCAI 2008 ]

MVA 2024-2025

49

Statistical Computing on Manifolds 
for Computational Anatomy

Metric and Affine Geometric Settings for Lie Groups
� Riemannian / affine connection frameworks on Lie groups

� Extending statistics without a metric

� The SVF framework for diffeomorphisms

Modeling longitudinal deformations in AD
� Parallel transport of deformation trajectories

� From velocity fields to AD models

MVA 2024-2025
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Alzheimer’s Disease

� Most common form of dementia

� 18 Million people worldwide

� Prevalence in advanced countries
� 65-70: 2%

� 70-80: 4%

� 80 - : 20%

� If onset was delayed by 5 years, 
number of cases worldwide would 
be halved

50MVA 2024-2025

Natural progression of Alzheimer’s disease

51

[ Jack CR et al., Lancet Neurol 2010;9:119-28 ]

Normal MCI
Dementia

Early diagnosis Clinical Trials

MR: feasible, non invasive 

Surrogate marker 

MVA 2024-2025

Longitudinal structural damage in AD

52

baseline 2 years follow-up

Ventricle’s expansionHippocampal atrophyWidespread cortical thinning

PhD Marco Lorenzi - Collaboration With G. Frisoni (IRCCS FateBenefratelli, Brescia)

MVA 2024-2025
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Individual Measure of Temporal Evolution

Geometry changes (Deformation-based morphometry)
� Measure the physical or apparent deformation through registration

Time i                Time i+1

Quantification of apparent deformations 

53MVA 2024-2025

Fast registration with deformation parameterized by SVF

- 54

Measuring Temporal Evolution with deformations:
Deformation-based morphometry

https://team.inria.fr/asclepios/software/lcclogdemons/

[ Lorenzi, Ayache, Frisoni, Pennec, Neuroimage 81, 1 (2013) 470-483 ]

MVA 2024-2025

Longitudinal deformation analysis in AD

� From patient specific evolution to population trend
(parallel transport of deformation trajectories) 

� Inter-subject and longitudinal deformations are of different nature
and might require different deformation spaces/metrics

55

PhD Marco Lorenzi - Collaboration With G. Frisoni (IRCCS FateBenefratelli, Brescia)

Patient A

Patient B

? ?Template

MVA 2024-2025
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56



M
id

v


SVF setting

• v stationary velocity field
• Lie group Exp(v) non-metric 

geodesic wrt Cartan connections

LDDMM setting
• v time-varying velocity field
• Riemannian expid(v) metric 

geodesic wrt Levi-Civita connection
• Defined by intial momentum

Transporting trajectories:

Parallel transport of initial 
tangent vectors

•[Lorenzi et al, IJCV 2012]

Parallel transport of deformation trajectories

LDDMM: parallel transport along geodesics 
using Jacobi fields [Younes et al. 2008]

MVA 2024-2025

From gravitation to computational anatomy: 
Parallel transport along arbitrary curves

Infinitesimal parallel transport = connection XTMTM

A numerical scheme to integrate symmetric connections: 
Schild’s Ladder [Elhers et al, 1972]

� Build geodesic parallelogrammoid

� Iterate along the curve 

57

P0
P’0

P1
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P2

P’1A’








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P0

P’0
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A

P’NA)
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Schild’s Ladder
Intuitive application to images

58

P0

P’0

T0
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T’0SLA)

time
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[Lorenzi et al, IPMI 2011]

[Lorenzi, Ayache, Pennec: Schild's Ladder for the parallel transport of
deformations in time series of images, IPMI 2011 ]

MVA 2024-2025
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Parallel transport along geodesics

Simpler scheme along geodesics: Pole Ladder

59

[ Lorenzi, Pennec: Efficient Parallel Transport of Deformations in Time Series
of Images: from Schild's to pole Ladder, JMIV 50(1-2):5-17, 2013 ]

P0
P’0

P1

u

P’1
u)









C
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P’0

T0

u

T’0u)

-u’ A’
C geodesic

P0

P’0

P1

u

u)








P’1

v
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Parallel transport along geodesics

Simpler scheme along geodesics: Pole Ladder

60

P0

P’0

P1

u

u)

P’1

Numerical accuracy of pole ladder 

• Order 4 in general affine manifolds

• Error vanishes in symmetric spaces:

Pole ladder is exact in 1 step!

m

𝛾 𝑡 ൌ exp௉బ 𝑡 𝑢

𝛾′ 𝑡

[ XP. Parallel Transport with Pole Ladder: a Third Order Scheme in Affine 
Connection Spaces which is Exact in Affine Symmetric Spaces. Arxiv 1805.11436 ]

pole(u) ൌ Πሺ𝑢ሻ ൅
ଵ

ଵଶ
𝛻௩𝑅 𝑢, 𝑣 5𝑢 െ 2𝑣

൅
1

12
𝛻௨𝑅 𝑢, 𝑣 𝑣 െ 2𝑢 ൅ 𝑂ሺ5ሻ

v

MVA 2024-2025

Fanning scheme
Euler forward
Schild’s =1

Schild’s =2

Discrete ladders with approximate geodesics: 
2nd order schemes

61

Sphere Sଶ Poincaré half-plane Hଶ Kendall shape space Σଷ
ଷ

[ N. Guigui, XP, Numerical Accuracy of Ladder Schemes for Parallel Transport on Manifolds. 
Arxiv 2007.07585. To appear in Foundations of Computational Mathematics, 2021 ]

Sphere

Kendall shape space

Euler

Schild’s =1

Pole ladder

MVA 2024-2025
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Synthetic experiments (Consistency)

62

Vector 
transport

Scalar 
transport

Scalar summary 

Scalar summary

(Jacobian det, logJacobian det, …)

Vector measure Scalar measure

MVA 2024-2025

Parallel Transport along SVFs

63MVA 2024-2025

Analysis of longitudinal datasets
Multilevel framework

64

Single-subject, two time points

Single-subject, multiple time points

Multiple subjects, multiple time points

Log-Demons (LCC criteria)

4D registration of time series within the 
Log-Demons registration.

Schild’s Ladder

[Lorenzi et al, in Proc. of MICCAI 2011]

MVA 2024-2025
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Atrophy estimation for Alzheimer

Alzheimer's Disease Neuroimaging Initiative (ADNI)

� 200 NORMAL 3 years

� 400 MCI 3 years

� 200 AD 2 years

� Visits every 6 month

� 57 sites

Data collected

� Clinical, blood, LP

� Cognitive Tests

� Anatomical images:1.5T MRI (25% 3T)

� Functional images: FDG-PET (50%), PiB-PET (approx 100)

65MVA 2024-2025

Modeling longitudinal atrophy in AD from images

One year structural changes for 70 Alzheimer's patients 
� Median evolution model and significant atrophy (FdR corrected)

66

Contraction Expansion 

[Lorenzi et al, in Proc. 
of IPMI 2011]

MVA 2024-2025

Modeling longitudinal atrophy in AD from images

One year structural changes for 70 Alzheimer's patients 
� Median evolution model and significant atrophy (FdR corrected)

67

[Lorenzi et al, in Proc. 
of IPMI 2011]

Contraction Expansion 

MVA 2024-2025
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Modeling longitudinal atrophy in AD from images

One year structural changes for 70 Alzheimer's patients 
� Median evolution model and significant atrophy (FdR corrected)

68

Contraction Expansion 

[Lorenzi et al, in Proc. 
of IPMI 2011]

MVA 2024-2025

Modeling longitudinal atrophy in AD from images

One year structural changes for 70 Alzheimer's patients 
� Median evolution model and significant atrophy (FdR corrected)

69

Contraction Expansion 

[Lorenzi et al, in Proc. 
of IPMI 2011]

MVA 2024-2025

Longitudinal model for AD

70

Estimated from 1 year changes – Extrapolation to 15 years

70 AD subjects (ADNI data)

ObservedExtrapolated Extrapolated
year

MVA 2024-2025
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Modeling longitudinal atrophy in AD from images

71MVA 2024-2025

Modeling Normal and AD progression

MVA 2024-2025 72

Vieillissement normal

Composante additionelle
specifique pour Alzheimer

mm/an

Triangulus
(Alzheimer) 

Quadratus 
(contrôle) 

Trajectoire géodésique
moyenne de la maladie d’Alzheimer

Trajectoire géodésique moyenne
de vieillissement normal

Rutundus

(Réference)

SVF paramétrant la 
trajectoire de deformation  

Study of prodromal Alzheimer’s disease 

� 98 healthy subjects, 5 time points (0 to 36 months).

� 41  subjects A42 positive (“at risk” for Alzheimer’s)

� Q: Different morphological evolution for A+ vs A-?

73

Average SVF
for normal
evolution (A-)

[Lorenzi, Ayache, Frisoni, Pennec, in Proc. of MICCAI 2011]
MVA 2024-2025



24

Detail: comparison between average evolutions (SVF)  

A42‐

A42‐ A42‐

A42+

A42+ A42+
74MVA 2024-2025

A42‐ A42+
A42‐ A42+

Time: years

75

MVA 2024-2025

Study of prodromal Alzheimer’s disease 
Linear regression of the SVF over time: interpolation + prediction

76

0*))(~()( TtvExptT 

Multivariate group-wise comparison 
of the transported SVFs shows 
statistically significant differences 
(nothing significant on log(det) )

[Lorenzi, Ayache, Frisoni, Pennec, in Proc. of MICCAI 2011]
MVA 2024-2025
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77

Statistical Computing on Manifolds 
for Computational Anatomy

Metric and Affine Geometric Settings for Lie Groups
� Riemannian / affine connection frameworks on Lie groups

� Extending statistics without a metric

� The SVF framework for diffeomorphisms

Modeling longitudinal deformations in AD
� Parallel transport of deformation trajectories

� From velocity fields to AD models

MVA 2024-2025
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Morphological analysis of SVF

Vorticity

Structural 
readjustments 

Volume changes

Atrophy!!

Helmholtz decomposition

[Lorenzi et al, MICCAI 2012] 78MVA 2024-2025
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Pressure

Defines sources and sinks 

of the atrophy process

Divergence 

Defines flux across 

expanding/contracting regions

Divergence Theorem

Morphological analysis of SVF

Discovery Quantification

[Lorenzi et al, MICCAI 2012] 79MVA 2024-2025
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80

Probabilistic definition of the atrophy topography

Nice

E

EC

C

Step1. Finding local maxima and minima for the pressure field (sources,sinks)

Step2. Finding surrounding areas of maximal outwards/inwards flux (Expansion and Contraction)

[Lorenzi et al, MICCAI 2012] 80MVA 2024-2025

Statistics on the topology of pressure maps

Critical areas optimizing the expected flux population-wise
� Detect minima and maxima of  mean symmetrized pressure maps

� Extend probabilistic regions to zero crossings (pressure=probability)  

81

Critical regions for the 1-year atrophy on 20 AD patients
Expansion

Contraction

Biologically 
meaningful areas

• Statistics on a multiscale Morse-Smale complex?

MVA 2024-2025
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From group-wise… …to subject specific

Group-wise flux analysis in Alzheimer’s
Quantification

[Lorenzi et al, MICCAI 2012]

From ~106 voxels to 15 regions

82MVA 2024-2025
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From discovery to quantification

AD vs controls 

MCI vs controls

Controls A42+ vs controls A42-

Sample size analysis

[Fox 2000]

p<0.05

Regional flux
(all regions)

Hippocampal
atrophy 

[Leung 2010]
(Different ADNI subset)

AD vs
controls

164 [106,209] 121 [77, 206]

MCI vs
controls

277 [166,555] 545 [296, 1331]

83

80% power

[Lorenzi et al, MICCAI 2012] 83MVA 2024-2025

84

Top-ranked on Hippocampal atrophy measures

Hippocampal atrophy measures

46 patients, 23 controls, blinded diagnosis
0,2,6,12,26,38 and 52 weeks scans, only baseline information
Test on intra-subject pairwise atrophy rates

Effect size on left hippocampus

Among competitors:
Freesurfer (Harvard, USA)
Montreal Neurological Institute, Canada
Mayo Clinic, USA
University College of London, UK
University of Pennsylvania, USA 84MVA 2024-2025

85

Statistical Computing on Manifolds 
for Computational Anatomy

Metric and Affine Geometric Settings for Lie Groups
� Riemannian / affine connection frameworks on Lie groups

� Extending statistics without a metric

� The SVF framework for diffeomorphisms

Modeling longitudinal deformations in AD
� Parallel transport of deformation trajectories

� From velocity fields to AD models

Perspectives on statistics on deformation

MVA 2024-2025
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The Stationnary Velocity Fields (SVF)
framework for diffeomorphisms

� SVF framework for diffeomorphisms is algorithmically simple

� Compatible with “inverse-consistency”

� Vector statistics directly generalized to diffeomorphisms.

Registration algorithms using log-demons:
� Log-demons: Open-source ITK implementation (Vercauteren MICCAI 2008)

http://hdl.handle.net/10380/3060 
[MICCAI Young Scientist Impact award 2013]

� Tensor (DTI) Log-demons (Sweet WBIR 2010): 
https://gforge.inria.fr/projects/ttk 

� LCC log-demons for AD (Lorenzi, Neuroimage. 2013)
https://team.inria.fr/asclepios/software/lcclogdemons/

� 3D myocardium strain / incompressible deformations (Mansi MICCAI’10)

� Hierarchichal multiscale polyaffine log-demons (Seiler, Media 2012)
http://www.stanford.edu/~cseiler/software.html
[MICCAI 2011 Young Scientist award]

86MVA 2024-2025

A powerful framework for statistics 

Parametric diffeomorphisms [Arsigny et al., MICCAI 06, JMIV 09]

� One affine transformation per region (polyaffines transformations)

� Cardiac motion tracking for each subject [McLeod, Miccai 2013]

Log demons projected but with 204 parameters instead of a few millions

87

expp

Stationary velocity fields DiffeomorphismAHA regions

MVA 2024-2025

A powerful framework for statistics 

Parametric diffeomorphisms [Arsigny et al., MICCAI 06, JMIV 09]

� One affine transformation per region (polyaffines transformations)

� Cardiac motion tracking for each subject [McLeod, Miccai 2013]

Log demons projected but with 204 parameters instead of a few millions

� Group analysis using tensor reduction : reduced model 
8 temporal modes x 3 spatial modes = 24 parameters (instead of 204)

88MVA 2024-2025
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Hierarchical Deformation model

Varying deformation atoms for each subject

M3 M4 M5 M6

M1 M2

M0

K

M3 M4 M5 M6

M1 M2

M0

1

…

Subject level:

89

Spatial structure of the anatomy common 
to all subjects

w0

w1 w2

w3 w4 w5 w6

Population level:

Aff(3) valued trees

MVA 2024-2025

Level 0

Level 1

Level 2
Angle and 
ram us

Thickness

Global 
scaling

Oriented bounding boxes Weights First  m ode of variat ionStructure

47 subjects

Global 

scaling

Thickness 

Angle and 

ramus 

90

[Seiler, Pennec, Reyes, Medical Image Analysis 16(7):1371-1384, 2012]

Hierarchical Estimation of the Variability

MVA 2024-2025

Level 3

Level 4

Level 5

Two sides

Teeth

Two sides 

Teeth 

[Seiler, Pennec, Reyes, Medical Image Analysis 16(7):1371-1384, 2012]

91

Hierarchical Estimation of the Variability

47 subjects

MVA 2024-2025
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Statistics on surfaces seen as currents / varifolds 
� Characterize curves or surfaces by the flux (along or through them) of 

all smooth vector fields (in a RKHS)

� Extrinsinc statistical analysis in space of currents (mean, PCA) 
[Durrleman et al, MFCA 2008] (mean current is not a surface)

� Need for sub-Riemannian geometry

92

Towards more complex geometries?

� Original Shape (1476 delta currents)

� Compressed Shape (281 delta currents)

MVA 2024-2025

Non quadratic metric: Statistics on Finsler spaces?

Finsler manifold-valued image processing?

93

Towards more complex geometries?

[ Image from Sepasian, Thije Boonkkamp, Florack, Ter Haar Romeny, Vilanova
Riemann-Finsler Multi-valued Geodesic Tractography for HARDI ]

[ Image shamelessly stolen 
from Luc Florac’s talk]

MVA 2024-2025

Laminar sheets in the myocardium:

 Torsion: Non-integrable geometry!

94

Towards more complex geometries?

MVA 2024-2025
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Geometric Statistics for anatomical shapes

Study geometric structures

� Riemannian, Finsler, affine, bundles, Lie groups

Generalize statistics

� Real data have noise

� Approximate invariance, factor analysis…

Design algorithm 

� Dimension reduction, Image processing…

With important medical applications

� Heart, brain diseases

95MVA 2024-2025

http://geomstats.ai : a python library to implement 
generic algorithms on many Riemannian manifolds 

� Mean, PCA, clustering, parallel transport…

� 15 manifolds / Lie groups already 
implemented (SPD, H(n), SE(n), etc)

� Generic manifolds with geodesics by 
integration / optimization

� scikit-learn API (hide geometry, compatible 
with GPU & learning tools).

� 10 introductory tutorials

� ~ 35000 lines of code 

� ~30 academic developers

� 7 hackathons organized in 2020-2022

� Last one: 17-21 October 2022 IHP, Paris

96

Rotations-Translations SPD

Schild’s/pole Ladders

[ Miolane et al, JMLR 2020, Scipy 2020
Guigui et al, FnT in Mach. Learning 2023 ]
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