Medical Imaging

MVA 2023-2024

http://www-sop.inria.fr/teams/asclepios/cours/MVA/

X. Pennec

Diffeomorphic deformations

and computational anatomy

Inría Epione epient/emedicine Epione team 2004, route des Lucioles B.P. 93 06902 Sophia Antipolis Cedex http://www-sop.inria.fr/epione

Medical Imaging MVA 2024-2025

WI VA 2024-2023

http://www-sop.inria.fr/teams/asclepios/cours/MVA/

X. Pennec Diffeomorphic deformations and computational anatomy

Epione team 2004, route des Lucioles B.P. 93 06902 Sophia Antipolis Cedex

http://www-sop.inria.fr/epione

Medical Image Analysis – MVA 2024-2025

Course notes : http://www-sop.inria.fr/teams/asclepios/cours/MVA/

Tue. Oct 1 2024, 14:00 ENS 1Z25 [XP] Introduction to Medical Image Acquisition & Image Registration

- Tue. Oct 8 2024, 14:00 ENS 1Z25 [XP] Riemannian Geometry and Statistics
- Tue. Oct 15 2024, 14:00 ENS 1Z25 [HD] Image Filtering & Segmentation
- Tue. Oct 22 2024: 14:00 ENS 1Z25 [HD] Image Segmentation based on Clustering and Markov Random Fields
- Tue. Nov 5 2024: 14:00 ENS 1Z25 [XP] Analysis in the space of Covariance Matrices
- Tue. Nov 12 2024: 14:00 ENS 1Z25 [HD] Shape constrained image segmentation
- Tue. Nov 19 2024: 14:00 ENS 1Z25 [XP] Diffeomorphic Registration and Computational Anatomy Tue. Nov 26 2024: 14:00 ENS 1Z25 [HD] Biophysical Modeling

3

Tue. Dec 3, 2024, 14:00 (Visio) [XP & HD] Exam

Statistical Computing on Manifolds for Computational Anatomy

Metric and Affine Geometric Settings for Lie Groups

4

Deformable image registration

Riemannian frameworks on Lie groups Lie groups as affine connection spaces

Extending statistics without a metric

The SVF framework for diffeomorphisms

Modeling longitudinal deformations in AD

Parallel transport of deformation trajectories

From velocity fields to AD models

MVA 2024-2025

 Goals of Registration

 A dual problem

 Find the point y of image J which is corresponding (homologous) to each points x of image I.

 Determine the best transformation T that superimposes homologous points

 Image J

 J

 Image J

The deformable registration landscape in 1995
Transformation encoded by a displacement field: $T(x) = x + u(x)$
Optical flow $F(x,u) = -(I(x) - J(x+u))\nabla J(x+u)$ Horn and Schunck, Artif. Intell. 17, 1981; Aggarwal and Nandhakumar, Proc. IEEE 76, 1988; Barron et al., 1994. $\frac{\partial u}{\partial t} \propto F(x,u)$
Linear elastic deformation Broit, PhD 1981. Bajcsy and Kovacic CVGIP 46, 1989 Gee, Reivich, Bajcsy, <i>J. Comp. Assis.Tom.</i> 17, 1993.
Fluid (images & surface) $\mu \nabla^2 v + (\mu + \lambda) \nabla (div(v)) = F$ Christensen, Rabbitt, Miller, Phys. Med. Biol. 39, 1994.Christensen, Rabbitt, Miller. IEEE TIP. 5(10), 1996.Christensen, Rabbitt, Miller. IEEE TIP. 5(10), 1996. $\frac{\partial u}{\partial t} = v - (\nabla u) v$
Differential equations were costly to solve: > 1 day on mass-parallel machine MVA 2024-2025 7

Interpretation of demons

$E(C,T) = SSD(I,J,C) + \sigma || C - T ||^{2} + \sigma \lambda \operatorname{Reg}(T)$

- SSD : measures the similarity of intensities
- *Reg* : regularization energy (quadratic)
- λ , σ : smoothing and noise parameters
- C : correspondences between points (vectors field)
- T : transformation (regularized vector field)

Introduce correspondences (matches) as an auxiliary variable to decouple into a local non-convex

10

11

P. Cachier E. Bardinet, D. Dormont, XP and N. Ayache: *Iconic Feature Based Nonrigid Registration: the PASHA Algorithm*, Comp. Vision and Image Understanding (CVIU), Special Issue on Non Rigid Registration, 89 (2-3), 272-298, 2003.

$E(C,T) = SSD(I,J,C) + \sigma \parallel C - T \parallel^{2} + \sigma \lambda \operatorname{Reg}(T)$

Alternated minimization

Minimization with respect to C: Find matches between points by optimizing E_s + in the neighborhood of TGradient descent (1st, 2^{bd} order, e.g. Gauss-Newton)

Minimization with respect to T: Find a smooth transformation that approximates C Quadratic energy \Rightarrow convolution

Interest: fast computation

Efficient RegularizationQuadratic regularizer
$$\operatorname{Reg}(T) = \int_{k=1}^{\infty} \frac{\sum_{l_1 = l_1} \left\| \partial_{l_1} \dots \partial_{l_k} (T - ld) \right\|^2}{\sigma_d^{2k} k!}$$
Euler Lagrange optimization of $E(T) = \int \|C - T\|^2 + \operatorname{Reg}(T)$ $C - T + \sum_{k=1}^{\infty} \frac{(-1)^k \Delta^k (T - ld)}{\sigma_d^{2k} k!} = 0$ Solution: Gaussian smooting $T_{opt} = G_{\sigma} * C$ with $\sigma = 1/\sigma_d$ Pennec, Cachier, Ayache. Understanding the ''Demon's Algorithm'': 3D Non-Rigidregistration by Gradient Descent. MICCAI 1999.Extension to a family of quadratic filters $G_{\sigma,\kappa}(\mathbf{u}) = \frac{1}{(\sigma\sqrt{2\pi})^3(1+\kappa)} \left(\operatorname{Id} + \frac{\kappa}{\sigma^2} \mathbf{u} \mathbf{u}^T \right) \exp\left(\frac{\mathbf{u}^T \mathbf{u}}{2\sigma^2}\right)$ P. Cachier and N. Ayache. Isotopic energies, filters and splines for vectorial regularization.J. of Math. Imaging and Vision, 20(3):251-265, May 2004.

Statistics on deformations

Statistics on displacement field/transformation parameters

Splines [Rueckert et al., TMI, 03], PCA of Statistical shape models Simple vector statistics, but inconsistency with group properties

The Riemannian approach (LDDMM)

Right-invariant metric on diffeos [Joshi, Miller, Trouvé, Younes...] Parameterize diffeomorphisms by time-varying velocity fields Good mathematical bases for statistics on non-linear spaces

No bi-invariant metric in general

Left/right Fréchet mean incompatible with group structure The inverse of the mean is not the mean of the inverse Examples with simple 2D rigid transformations

MVA 2024-2025

22

Natural Riemannian Metrics on Transformations

Transformations are Lie groups: Smooth manifold G compatible with

group structure Composition g o h and inversion g-1 are smooth Left and Right translation $L_q(f) = g \circ f \quad R_q(f) = f \circ g$ Conjugation $\text{Conj}_{g}(f) = g \circ f \circ g^{-1}$

Natural Riemannian metric choices

Chose a metric at Id: <x,y>_{Id} Propagate at each point g using left (or right) translation $<x,y>_{g} = < DL_{g^{(-1)}}.x$, $DL_{g^{(-1)}}.y>_{Id}$

Implementation

Practical computations using left (or right) translations

 $\operatorname{Exp}_{f}(x) = f \circ \operatorname{Exp}_{Id}(\operatorname{DL}_{f^{(-1)}}.x)$ $\overrightarrow{fg} = Log_f(g) = DL_f \cdot Log_{Id}(f^{(-1)} \circ g)$

23

24

MVA 2024-2025

Example on 3D rotations

Space of rotations SO(3):

Manifold: R^T.R=Id and det(R)=+1 Lie group ($R_1 \circ R_2 = R_1 R_2$ & Inversion: $R^{(-1)} = R^T$)

Metrics on SO(3): compact space, there exists a bi-invariant metric Left / right invariant / induced by ambient space $\langle X, Y \rangle = Tr(X^T Y)$

Group exponential

One parameter subgroups = bi-invariant Geodesic starting at Id Matrix exponential and Rodrigue's formula: R=exp(X) and X = log(R)

Geodesic everywhere by left (or right) translation

 $Log_{R}(U) = R log(R^{T}U)$

$Exp_{R}(X) = R exp(R^{T} X)$

Bi-invariant Riemannian distance $d(R,U) = ||log(R^T U)|| = \theta(R^T U)$

General Non-Compact and Non-Commutative case

No Bi-invariant Mean for 2D Rigid Body Transformations

Metric at Identity: $dist(Id, (\theta; t_1; t_2))^2 = \theta^2 + t_1^2 + t_2^2$

$$T_1 = \left(\frac{\pi}{4}; -\frac{\sqrt{2}}{2}; \frac{\sqrt{2}}{2}\right) \quad T_2 = \left(0; \sqrt{2}; 0\right) \quad T_3 = \left(-\frac{\pi}{4}; -\frac{\sqrt{2}}{2}; -\frac{\sqrt{2}}$$

Left-invariant Fréchet mean: (0; 0; 0)Right-invariant Fréchet mean: $(0; \frac{\sqrt{2}}{3}; 0) \simeq (0; 0.4714; 0)$

Questions for this talk:

Can we design a mean compatible with the group operations? Is there a more convenient structure for statistics on Lie groups?

25

MVA 2024-2025

Basics of Lie groups

Flow of a left invariant vector field $\vec{X} = DL.x$ starting from e $\gamma_x(t)$ exists for all time One parameter subgroup: $\gamma_x(s + t) = \gamma_x(s)$. $\gamma_x(t)$ Lie group exponential (ATTN: different from Riemannian Exp)

Definition: $x \in g \to Exp(x) = \gamma_x(1) \in G$ Diffeomorphism from a a neighborhood of 0 in g to a neighborhood of e in G (not true in general for inf. dim)

Baker-Campbell Hausdorff (BCH) formula

 $BCH(x, y) = Log(Exp(x).Exp(y)) = x + y + \frac{1}{2}[x, y] + ...$

3 curves at each point parameterized by the same tangent vector

28

Left / Right-invariant geodesics, one-parameter subgroups

Question: Can one-parameter subgroups be geodesics?

Canonical Connections on Lie Groups

A unique Cartan-Schouten connection

Symmetric (no torsion) and bi-invariant For which geodesics through Id are one-parameter subgroups (group exponential) Matrices: M(t) = A.exp(t.V) Diffeos: left/right translations of Stationary Velocity Fields (SVFs)

Levi-Civita connection of a bi-invariant metric (if it exists) Continues to exists in the absence of such a metric (e.g. for rigid or affine transformations)

Symmetric space with central symmetry $S_{\psi}(\phi) = \psi \phi^{-1} \psi$ Matrix geodesic symmetry: $S_A(M(t)) = A \exp(-tV)A^{-1}A = M(-t)$

[Lorenzi, Pennec. Geodesics, Parallel Transport & One-parameter Subgroups for Diffeomorphic Image Registration. Int. J. of Computer Vision, 105(2):111-127, 2013.] MVA 2024-2025 30

Statistical Computing on Manifolds for Computational Anatomy

Metric and Affine Geometric Settings for Lie Groups

Riemannian / affine connection frameworks on Lie groups Extending statistics without a metric The SVF framework for diffeomorphisms

34

Modeling longitudinal deformations in AD Parallel transport of deformation trajectories

From velocity fields to AD models

Fréchet / Karcher	means not usable (no distance) but:
$E[\mathbf{x}] = \underset{y \in M}{\operatorname{argmin}} \left(E[\operatorname{dist}(y)] \right)$	$(\mathbf{x}, \mathbf{x})^2$ $\Rightarrow E[\overline{\mathbf{x}}\mathbf{x}] = \int_{M} \overline{\mathbf{x}}\mathbf{x}.p_{\mathbf{x}}(z).d\mathbf{M}(z) = 0 [P(C) = 0]$
Exponential baryo	enters
[Emery & Mokob	odzki 91, Corcuera & Kendall 99]
$\int Log_x$	$(y) \mu(dy) = 0$ or $\sum_i Log_x(y_i) = 0$
Existence? Unique	eness?
OK for convex affi	ne manifolds with semi-local convex geometry
[Arnaudon & Li, A Use a separating	Ann. Prob. 33-4, 2005] unction (convex function separating points) instead of a distance
Algorithm to comp	ute the mean; fixed point iteration (stability?)

Bi-invariant Mean on Lie Groups

Exponential barycenter of the symmetric Cartan connection

Locus of points where $\sum Log(m^{-1}.g_i) = 0$ (whenever defined)

Iterative algorithm: $m_{t+1} = m_t \circ Exp\left(\frac{1}{n}\sum Log(m_t^{-1}, g_i)\right)$

First step corresponds to the Log-Euclidean mean Corresponds to the first definition of bi-invariant mean of [V. Arsigny, X. Pennec, and N. Ayache. Research Report RR-5885, INRIA, April 2006.]

Mean is stable by left / right composition and inversion

If m is a mean of $\{\boldsymbol{g}_l\}$ and h is any group element, then

 $h \circ m$ is a mean of $\{h \circ g_i\}$,

 $m \circ h$ is a mean of the points $\{g_i \circ h\}$

and $m^{(-1)}$ is a mean of $\left\{\!{g}_{i}^{(-1)}\right\}$

[Pennec & Arsigny, Ch.7 p.123-166 , Matrix Information Geometry, Springer, 2012] 36

MVA 2024-2025

Special matrix groups

Heisenberg Group (resp. Scaled Upper Unitriangular Matrix Group) No bi-invariant metric

Group geodesics defined globally, all points are reachable

Existence and uniqueness of bi-invariant mean (closed form resp. solvable)

Rigid-body transformations

Logarithm well defined iff log of rotation part is well defined, i.e. if the Givens rotation have angles $|\theta_i| < \pi$

Existence and uniqueness with same criterion as for rotation parts (same as Riemannian)

SU(n) and GL(n)

Logarithm does not always exists (need 2 exp to cover the group) If it exists, it is unique if no complex eigenvalue on the negative real line Generalization of geometric mean

37

Example mean of 2D rigid-body transformation $T_1 = \left(\frac{\pi}{4}; -\frac{\sqrt{2}}{2}; \frac{\sqrt{2}}{2}\right) \qquad T_2 = \left(0; \sqrt{2}; 0\right) \qquad T_3 = \left(-\frac{\pi}{4}; -\frac{\sqrt{2}}{2}; -\frac{\sqrt{2}}{2}\right)$ Metric at Identity: $dist(Id, (\theta; t_1; t_2))^2 = \theta^2 + t_1^2 + t_2^2$ Left-invariant Fréchet mean: (0; 0; 0) Log-Euclidean mean: $(0; \frac{\sqrt{2} - \pi/4}{3}; 0) \simeq (0; 0.2096; 0)$ Bi-invariant mean: $\left(0; \frac{\sqrt{2}-\pi/4}{1+\pi/4(\sqrt{2}+1)}; 0\right) \simeq (0; 0.2171; 0)$ Right-invariant Fréchet mean: $\left(0; \frac{\sqrt{2}}{3}; 0\right) \simeq (0; 0.4714; 0)$ MVA 2024-2025 38

Cartan Connections vs Riemannian

What is similar

Standard differentiable geometric structure [curved space without torsion] Normal coordinate system with $\mathsf{Exp}_{\mathsf{x}} \mbox{ et } \mathsf{Log}_{\mathsf{x}} \mbox{ [finite dimension]}$

Limitations of the affine framework

- No metric (but no choice of metric to justify) The exponential does always not cover the full group
- Pathological examples close to identity in finite dimension In practice, similar limitations for the discrete Riemannian framework
- Global existence and uniqueness of bi-invariant mean? Use a bi-invariant pseudo-Riemannian metric? [Miolane MaxEnt 2014]

What we gain

A globally invariant (composition & inversion) symmetric space structure Simple geodesics, efficient computations (stationarity, group exponential) The simplest linearization of transformations for statistics?

40

Statistical Computing on Manifolds for Computational Anatomy

Metric and Affine Geometric Settings for Lie Groups Riemannian / affine connection frameworks on Lie groups Extending statistics without a metric The SVF framework for diffeomorphisms

Modeling longitudinal deformations in AD Parallel transport of deformation trajectories From velocity fields to AD models

Riemannian Metrics on diffeomorphisms

41

Space of deformations

MVA 2024-2025

Transformation $y=\phi(x)$ Curves in transformation spaces: $\phi(x,t)$ $v_t(x) = \frac{d\phi(x,t)}{t}$ Tangent vector = speed vector field dt

Right invariant metric

Distance

 $\left\|\boldsymbol{v}_{t}\right\|_{\phi_{t}} = \left\|\boldsymbol{v}_{t} \circ \boldsymbol{\phi}_{t}^{-1}\right\|_{L^{d}}$ Eulerian scheme Sobolev Norm $\rm H_k$ or $\rm H_{\scriptscriptstyle \infty}$ (RKHS) in LDDMM \rightarrow diffeomorphisms [Miller, Trouve, Younes, Holm, Dupuis, Beg... 1998 – 2009]

42

43

Geodesics determined by optimization of a time-varying vector field

 $d^{2}(\phi_{0},\phi_{1}) = \arg\min(\int \|v_{t}\|_{\phi}^{2} dt)$

Geodesics characterized by initial velocity / momentum Optimization for images is quite tricky (and lenghty)

MVA 2024-2025

Log-Euclidean Framework

Log-Euclidean processing of tensors

[Arsigny et al, MRM'06, SIAM'6] Idea: one-to-one correspondence of tensors with symmetric matrices, via the matrix logarithm.

Simple processing of tensors via their logarithm (vector space)! Consistency with group structure (e.g., inversion-invariance)

Log-Euclidean processing of linear transformations

[Arsigny et al, WBIR'06, Commowick, ISBI'06, Alexa et al, SIGGRAPH'02] Idea: linearize geometrical transformations close enough to identity via matrix logarithm [restriction to data whose logarithm is well-defined] Simply process transformations via their logarithm (vector space)! E.g., fuse local linear transformations into global invertible deformations.

Use the group exp/log to map the group to its Lie Algebra

MVA 2024-2025

13

Statistical Computing on Manifolds for Computational Anatomy

Metric and Affine Geometric Settings for Lie Groups Riemannian / affine connection frameworks on Lie groups Extending statistics without a metric The SVF framework for diffeomorphisms

49

Modeling longitudinal deformations in AD

Parallel transport of deformation trajectories From velocity fields to AD models

Alzheimer's Disease

Most common form of dementia 18 Million people worldwide Prevalence in advanced countries 65-70: 2% 70-80: 4% 80 - : 20% If onset was delayed by 5 years, number of cases worldwide would be halved

50

Atrophy estimation for Alzheimer

Alzheimer's Disease Neuroimaging Initiative (ADNI) 200 NORMAL 3 years 400 MCI 3 years 200 AD 2 years Visits every 6 month 57 sites

Data collected

MVA 2024-2025

Clinical, blood, LP Cognitive Tests Anatomical images:1.5T MRI (25% 3T) Functional images: FDG-PET (50%), PiB-PET (approx 100)

65

Modeling longitudinal atrophy in AD from imagesOne year structural changes for 70 Alzheimer's patientsDecine of the patient atrophy (FdR corrected)Contraction of the pa

Statistical Computing on Manifolds for Computational Anatomy

Metric and Affine Geometric Settings for Lie Groups Riemannian / affine connection frameworks on Lie groups Extending statistics without a metric The SVF framework for diffeomorphisms

Modeling longitudinal deformations in AD Parallel transport of deformation trajectories

From velocity fields to AD models

Perspectives on statistics on deformation

85

The Stationnary Velocity Fields (SVF) framework for diffeomorphisms

SVF framework for diffeomorphisms is algorithmically simple Compatible with "inverse-consistency" Vector statistics directly generalized to diffeomorphisms.

Registration algorithms using log-demons:

Log-demons: Open-source ITK implementation (Vercauteren MICCAI 2008) http://hdl.handle.net/10380/3060 [MICCAI Young Scientist Impact award 2013] Tensor (DTI) Log-demons (Sweet WBIR 2010): https://gforge.inria.fr/projects/ttk LCC log-demons for AD (Lorenzi, Neuroimage. 2013) https://team.inria.fr/asclepios/software/IcClogdemons/ 3D myocardium strain / incompressible deformations (Mansi MICCAI'10) Hierarchichal multiscale polyaffine log-demons (Seiler, Media 2012)

86

http://www.stanford.edu/~cseiler/software.html [MICCAI 2011 Young Scientist award]

MVA 2024-2025

A powerful framework for statistics

Parametric diffeomorphisms [Arsigny et al., MICCAI 06, JMIV 09] One affine transformation per region (polyaffines transformations) Cardiac motion tracking for each subject [McLeod, Miccai 2013] Log demons projected but with 204 parameters instead of a few millions With 204 parameters instead of a few millions AHA regions Stationary velocity fields Diffeomorphism

A powerful framework for statistics

Parametric diffeomorphisms [Arsigny et al., MICCAI 06, JMIV 09] One affine transformation per region (polyaffines transformations) Cardiac motion tracking for each subject [McLeod, Miccai 2013] Log demons projected but with 204 parameters instead of a few millions Group analysis using tensor reduction : reduced model 8 temporal modes x 3 spatial modes = 24 parameters (instead of 204)

MVA 2024-2025

Right \

Original Shape (1476 delta currents) Compressed Shape (281 delta currents) 92

