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Expectation Maximisation 
Algorithm

• Iterative approach for estimating 
parameters of  (Gaussian) Mixture 
parameters

• General Idea  :
• New criterion : Add unknown variable u 

(posterior) and add constraint (KL divergence)
• Alternate maximization performed in closed 

form : equivalent to lower bound maximization 
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Alternate maximisation
• Replace Log-Likelihood with a criterion easier 

to optimize but with additional unknowns
• Log-(marginal) likelihood :

• New criterion F 𝜃, 𝑢 :
• Add 𝑢 = {𝑢!"} as unknown. u is a vector of 𝑢!" 

which is the  posterior probability  

• By maximizing F with respect to u, 
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𝐿 𝜃 = log Λ 𝜃 = ∑! log 𝑝 𝑥!|𝜃 =	 ∑! log ∑" 𝜋"𝒩 𝑥!; 𝜇" , 𝜎"  
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𝑢!" = 𝑝(𝑧!" = 1|𝑥!)



Why is it easier to optimize 
F 𝜃, 𝑢 ?

• General result :
• X = observed random variable
• Z = hidden random variable
• Joint probability
• Constraint on 𝑢#$: ∑$ 𝑢#$ = 1
• Log likelihood :
• New criterion :
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𝑝 𝑥! , 𝑧! = 𝑝 𝑥!|𝑧! 𝑝 𝑧! = 𝑝 𝑧!|𝑥! 𝑝 𝑥!

𝐿 𝜃 =$
!

log 𝑝(𝑥!) =$
!

$
"

𝑢!" log 𝑝 𝑥!

F 𝜃, 𝑢 = ∑!∑" 𝑢!" log 𝑝 𝑥! − ∑!∑" 𝑢!" log 𝑢!"/𝑝 𝑧!"|𝑥!

F 𝜃, 𝑢 = ∑!∑" 𝑢!" log 𝑝 𝑥! , 𝑧!" − ∑!∑" 𝑢!" log 𝑢!"

We have « relaxed » the optimization problem by introducing
a new unknown variable



Interpretation
• New criterion involves 2 terms :

• F 𝜃, 𝑢  is the variational lower bound
• -F 𝜃, 𝑢  is the variational free energy= average energy -

entropy
• 𝑄 𝜃, 𝑢 = ∑3∑4 𝑢34 log 𝑝 𝑥34 , 𝑧34 = 𝔼5 log 𝑝 𝑋, 𝑍  is the 

expectation of the complete likelihood
• ℍ 𝑢 = −∑3∑4 𝑢34 log 𝑢34 is the entropy of the 

approximate posterior probability
• 𝑄 𝜃, 𝑢 	is easier to optimize wrt 𝜃 because it involves 

complete likelihood = likelihood of observed and hidden 
variables 85

F 𝜃, 𝑢 = ∑!∑" 𝑢!" log 𝑝 𝑥!" , 𝑧!" − ∑!∑" 𝑢!" log 𝑢!"

𝑄 𝜃, 𝑢 ℍ 𝑢



• General result : 
• For	any	inverse	problem	where	Z	is	the
hidden	variable	and	X	observed	variable	:	

log 𝑝 𝑋 −𝐷:; 𝑢||𝑝 𝑍 𝑋
= 𝔼< log 𝑝(𝑋, 𝑍) + ℍ 𝑢

• Variational lower bound :
log	p 𝑋 ≥ 𝔼< log 𝑝(𝑋, 𝑍) + ℍ 𝑢

Evidence Lower Bound

86

Z

X Observed

Hidden



Case of Gaussian Mixtures
• Log likelihood 
𝐿 𝜃 = log Λ 𝜃 = ∑! log ∑" 𝜋"𝒩 𝑥!; 𝜇" , 𝜎"  

• Function of parameters : 

𝑄 𝜃, 𝑢 =7
=

7
>

𝑢=> log 𝜋>𝒩(𝑥=|𝜇>, Σ>)

• Note that we have sum of log instead of 
log of sums !

• Criterion F 𝜃, 𝑢 = Q 𝜃, 𝑢 + ℍ 𝑢 is 
known as Hathaway criterion
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EM Algorithm 

• The algorithm optimizes alternatively 
between 𝑢 and 𝜃 = coordinate ascent

• Constraints : 
• E-step 

•  maximize 𝐹 𝜃, 𝑢  wrt u

• Equivalent to minimizing KL divergence between u 
and posterior probability
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F 𝜃, 𝑢 = L 𝜃 − 𝐷!" 𝑢||𝑝 𝑧 𝑥 = Q 𝜃, 𝑢 +ℍ 𝑢
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• M-step : maximize 𝐹 𝜃, 𝑢  or equivalently 
Q 𝜃, 𝑢  wrt 𝜃 = 𝜃%, 𝜃&
• Optimize with respect to mean 𝜇"
#$
#%#

= 0 

• Optimize with respect to covariance	Σ"
#$
#&#

= 0 

• Optimize with respect to prior probabilities
#$
#'#

= 0 

M-Step 
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EM Algorithm for GMM

• Iterative scheme 
• Make initial guesses for the parameters
• Alternate between the following two 

stages:
1. E-step: evaluate posterior unk

2. M-step: update parameters (µk,Sk,pk) 
using ML results
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EM as Iterated Lower Bound 
Maximisation 

• Equivalent view of EM algorithm :
• E-step leads to 𝑢 = 𝑝 𝑧|𝑥  and therefore makes 
𝐿 𝜃( = 𝐹(𝜃( , 𝑢).

• 𝐹(𝜃, 𝑢) is a lower bound of Log-likelihood 𝐿 𝜃  
since Kullback Leibler divergence is positive

• M-step optimizes 𝐹(𝜃, 𝑢) with respect to 𝜃 which is 
easier to maximize than log likelihood
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F 𝜃, 𝑢 = L 𝜃 − 𝐷'( 𝑢||𝑝 𝑧 𝑥 = Q 𝜃, 𝑢 + ℍ 𝑢

L 𝜃 ≥ F 𝜃, 𝑢



Example of EM with 
2 Gaussian distributions
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EM on Iris data
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Class Priors
• Initial hypothesis : homogeneous priors 𝑝 𝑧!" = 1 =
𝜋" is estimated

• Priors may be given by atlas registered on images. In 
this case 𝜃) are the registration parameters
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T1 template gray matter white matter csf

Prior 𝑝 𝑧!&	 on 
grey matter

Prior 𝑝 𝑧!)	 on 
White matter

Prior 𝑝 𝑧!*	 on 
cerebro spinal fluid

Atlas 

Affinely Registered 
Atlas

Courtesy of D. Vandermeulen

Example : BrainWeb at MNi 

http://www.bic.mni.mcgill.ca/brainweb/



EM for Image Intensity 
Classification

• Use the EM algorithm 
[Dempster77,Wells94] :

Expectation-Maximisation
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Responsabilities

Mixture Param.µk

uj(xi)

Sk pk



Brain Tissue 
Classification

• Typical application : use MR cerebral 
image
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Cerebro-spinal fluid White matterGrey matter

Courtesy of D. Vandermeulen

3 Classes Scalar feature 
= Intensity 



EM Classification - Algorithm
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Starting estimates for 
responsibilities

Compute Gaussian 
parameters from 
Responsibilities

Compute Responsibilities 
from Gaussian 

parameters

Converged ?
No Yes STOP

1µ

2µ
3µ

1s

2s 3s



Stage 1: Expectation 
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data distribution

classification

Courtesy of D. Vandermeulen

Compute 
Responsibilities

u$% =
𝜋"𝒩 𝑥! 𝜇" , Σ") 

∑"&'( 𝜋" 	𝒩 𝑥!|𝜇" , Σ"



Stage 2: Maximization
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classification

data

distribution

Courtesy of D. Vandermeulen
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Iterations EM

Courtesy of K. Van Leemput
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Results

White matter

Grey MatterCSF
Courtesy of K. Van Leemput



GMM and K-Means

• GMM with :
• Isotropic variance Σ$ = 𝜖	𝐼𝑑

• Uniform prior : 𝜋$ =
'
!

• Expectation of complete Lik. :
• Same as Fuzzy-Cmeans with m=1
• Same as K-means when :

•   𝜖 → 0
• 𝑢#$ ∈ {0,1}

102

u#$ =
exp ⁄(−|𝑥! − 𝜇"||) 2𝜖)  

∑+%&' exp ⁄(−||𝑥! − 𝜇+||) 2𝜖)
→ 𝑟!" ∈ {0,1}

𝑄 𝜃 = −$
!

$
"

𝑢!" 𝑥! − 𝜇" )

2𝜖 	



K Means functional

• K Means algorithm consists in 
optimizing the functional :
• J 𝑟, 𝜇 = ∑#(') ∑$('! 𝑟#$ 𝑥# − 𝜇$ *

• With the constraint that 𝑟#$ ∈ 0,1 	and 
∑$('! 𝑟#$ = 1	 ∀𝑛

• J can  be seen as 
• minimizing the correlation between the assignment 

and the distance to cluster center
• Minimizing the compactness of the clusters
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K Means optimization

• Perform alternate optimization :
• Consider µk fixed and optimize on rnk 

• For each data xn choose which rnk  is 1

• Consider rnk fixed and optimize on µk
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𝑟!" = O1	if	 k = arg	𝑚𝑖𝑛+ 𝑥! − 𝜇" 	
0	otherwise

𝜕𝐽
𝜕𝜇"

= 2$
!%&

,

𝑟!" 𝜇" − 𝑥! = 0

𝜇" =
∑!%&, 𝑟!"𝑥!
∑!%&, 𝑟!"

E-Step

M-Step



Good Initial Seeds (kmeans++)
• Choose the centers as far away as 

possible from each other but in a 
random manner.

• Algorithm :
• Choose one center at random 𝜇*
• While 𝑘 ≤ 𝐾

• Compute d$ = arg	𝑚𝑖𝑛)*" 𝑥! − 𝜇)
+ the minimum 

distance of data 𝑥! to the already chosen centers
• Pick 𝜇" among data with probability proportional to 𝑑!
• k=k++
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David Arthur and Sergei Vassilvitskii. k-means++: The advantages of careful seeding. “Proceedings of the eighteenth annual ACM-SIAM 
symposium on Discrete algorithms“, 2007 , pp. 1027–1035



Issues with EM for GMM
• Presence of bias field in MR images
• EM leads to only local maxima of Log-likelihood 
• Functional admits trivial solutions (zero covariance 

centered at data points) that can lead to bad estimate
• The covariance matrix Σ" should be invertible which is 

not guaranteed (may use pseudo-inverse)
• How to choose the number of classes 
• How to make the estimation robust 

to outliers ?
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3. Medical Image Segmentation

• 3.1 Taxonomy of segmentation algorithms 
• 3.2 Validation of segmentation algorithms
• 3.3 Deterministic Filtering & Thresholding Approaches
• 3.4 Probabilistic Imaging Model
• 3.5 Expectation Maximisation for GMM
• 3.6 Image classification with bias field
• 3.7 Variational Bayes EM
• 3.8 STAPLE Algorithm
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Issue : presence of MR bias field
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white 
matter

gray 
matter

MR images are 
corrupted by a 

smooth intensity 
non-uniformity 

(bias).



MR bias field estimation methods

• homogeneous (water) phantom measurements
• non-retrospective
• bias is patient-dependent
• same MRI parameter settings for patient and phantom

• analytic correction of antenna receptor profile (idem)
• bias field estimation helps segmentation => segmentation 

helps bias field estimation?
• Dawant et al: manual selection (or 1 iter.) of WM points + LSQ 

spline fit
• Meyer et al.: region based, too many degrees of freedom
• Wells et al.: EM-based estimation of bias+classification, requires 

pre-set MRI intensity model-parameters
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Biased Gaussian Mixture model

• Bias field is modeled as a additive or multiplicative 
Noise

• Bias field parameters with smooth linear combination 
of smooth basis functions 

• Convenient choice : additive noise   (but not realistic)

 
• Use Log of image to cope with additive noise
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Ck are the parameters controlling 
the bias field

r(x) is the position of voxel of intensity x 𝑏 𝑥 =?
,&'

-

𝐶,𝜙, 𝑟 𝑥

𝑝 𝑥 =$
!

𝜋!𝒩 𝑥 −$
"#$

%

𝐶"𝜙" 𝑟 𝑥 |𝜇! , 𝜎!



Bias Description
• Bias is described as a combination of slowly varying 

polynomials :
 

 
•  fl(r(x)) is a slowly varying polynomial :

• For instance :
•  f0(x,y,z)=1
•  f1(x,y,z)= x-tx/2
•  f2(x,y,z)=(y-ty/2)
•  f3(x,y,z)=(z-tz/2)
•  f4(x,y,z)=(x-tx/2)*(y-ty/2)
• ……
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Bias field with brain mask

Cl are the parameters controlling 
the bias field

r(x) is the position of voxel x 

𝑏 𝑥 =?
,&'

-

𝐶,𝜙, 𝑟 𝑥



Bias Description
• Bias field is modeled as an additive or multiplicative 

noise

• Multiplicative Noise :

• Additive Noise using the Log of the image intensity: 
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No closed form solution

closed form solution

𝑏 𝑥 =?
,&'

-

𝐶,𝜙, 𝑟 𝑥

𝑝 𝑥|𝜃 =$
!

𝜋!𝒩 𝑥 −$
"#$

%

𝐶"𝜙" 𝑟 𝑥 |𝜇! , 𝜎!

𝑝 𝑥|𝜃 =$
!

𝜋!𝒩 𝑥 ∗ $
"#$

%

𝐶"𝜙" 𝑟 𝑥 |𝜇! , 𝜎!



Extended EM Algorithm

• Include new parameters
• Bias description C={Cl}

• Define Extended 𝑄 𝑢, 𝜃 = 𝔼S log 𝑝 𝑋, 𝑍  

• Define new posterior probabilities : 
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rn= position of voxel n𝑄 𝑢, 𝜃 =$
!

$
"

log 𝑢!"𝒩 𝑥! −$
-%&

.

𝐶-𝜙- 𝑟! |𝜇" , Σ"

𝑢!" = 𝑝 𝑧!" = 1 𝜃, 𝐶 =
𝜋"𝒩 𝑥! − ∑+,*- 𝐶+𝜙+ 𝑟! |𝜇" , Σ"
∑./ 𝜋.𝒩 𝑥! − ∑+,*- 𝐶+𝜙+ 𝑟! |𝜇. , Σ.
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classification

bias estimation

distribution estimation

Extended EM algorithm



Step 1: distribution estimation

118bias field

classification

data
distribution

Image

Bias 
Field

Belonging Probabilities



Step1: distribution estimation

• Compute mean and variance based on 
the bias corrected intensity
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𝜇" =
∑!,*0 𝑢!" 𝑥! − ∑+,*- 𝐶+𝜙+ 𝑟!

∑!,*0 𝑢!"

Σ" =
∑!,*0 𝑢!" 𝑥! − ∑+,*- 𝐶+𝜙+ 𝑟! − 𝜇"

1

∑!,*0 𝑢!"



Step 2: bias field estimation
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classification

distribution

predicted weights

Belonging Probabilities



Reminder : 
Linear Least Square Problems

• Linear Least Square :
• For any rectangular matrix X, Find X such that X𝑋 =
argmin

2
𝐴𝑋 − 𝐵 1

• If rank(A) is full then X𝑋 = 𝐴3𝐴 4*𝐴3 	𝐵
𝐴5 = 𝐴3𝐴 4*𝐴3 is the pseudo-inverse

• Weighted Least Square 
• For any diagonal matrix W Find X such that X𝑋 =
argmin

2
𝐴𝑋 − 𝐵 3𝑊 𝐴𝑋 − 𝐵

• If rank(A) is full then X𝑋 = 𝐴3𝑊𝐴 4*𝐴3𝑊	𝐵
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Bias Field Estimation

• Estimate Bias Field to minimize :

• C solution of a weighted least square 
problem
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𝑄 𝜃, 𝐶 = −∑!∑" 𝑢!"
.!/∑" 1"2" 3! /4#

+5#

+
+…

𝑄 𝜃, 𝐶 = −∑!∑" 𝑢!" log 𝜋"𝒩 𝑥! − ∑, 𝐶,𝜙, 𝑟! ; 𝜇" , Σ" +…

𝑄 𝜃, 𝐶 = 𝐴𝐶 − 𝑅 3𝑊 𝐴𝐶 − 𝑅 +…



Bias Field Estimation
• Estimate Bias Field in the least square sense
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Step 3: classification
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Results
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without 
bias correction

with
bias correction

white matter surface gray matter surface
Courtesy of D. Vandermeulen



3. Medical Image Segmentation

• 3.1 Taxonomy of segmentation algorithms 
• 3.2 Validation of segmentation algorithms
• 3.3 Deterministic Filtering & Thresholding Approaches
• 3.4 Probabilistic Imaging Model
• 3.5 Expectation Maximisation for GMM
• 3.6 Image classification with bias field
• 3.7 Variational Bayes EM
• 3.8 STAPLE Algorithm
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Addressing limitations of EM
• Limitations on the EM algorithm :

• 1) Trivial solutions of the maximum Likelihood (Dirac 
on data points)

• 2) Non invertibility of Covariance matrices Σ"
• 3 ) Must fix the number of classes prior to the 

algorithm
• To address those limitations :

 add priors on parameters -> Variational Bayes EM
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Variational Bayes Gaussian 
Mixture

• Parameters 𝜃	are now random variables
• Define (hyper)prior probabilities 𝑝(𝜃) to 

“regularize” their estimated values 
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𝑥!

𝑧!𝜋

𝜇 Σ

N

Regular Gaussian
Mixture Model

𝑥!

𝑧!𝜋

𝜇 Σ

N

Σ/𝜇/

𝛼/

Variational Gaussian
Mixture Model

𝛼/, 𝜇/, Σ/ are hyperparameters



How to choose the parameter
prior distributiom ?

• Convenient choice : “conjugate prior”
• Lead to closed form expression of posterior

• Example :

• Existence of conjugated priors for the 
“exponential family”
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𝑝 𝜃|𝑋	 =
𝑝 𝑋|𝜃 𝑝 𝜃

∫ 𝑝 𝑋|𝜃0 𝑝 𝜃0 𝑑𝜃0

Likelihood
distribution 
𝒑(𝑿|𝜽)

Parameters Conjugated Prior
𝒑(𝜽)

Posterior 𝒑(𝜽|𝑿)

Gaussian 𝜇, Σ Normal x Wishart Normal x Wishart
Multinomial 𝜋 Dirichlet Dirichlet



Variational Bayes 
Gaussian Mixture

• Extended EM algorithm :
• replace maximization of likelihood 𝑝 𝑋|𝜃

with joint probability 𝑝 𝑋, 𝜃 = 𝑝 𝑋|𝜃 𝑝 𝜃

• Keep lower bound :
log 𝑝 𝑋, 𝜃 ≥ 𝔼+ log 𝑝 𝑋, 𝑍|𝜃 + 𝐻 𝑢 + log 𝑝 𝜃

• Same E-step, but modified M-steps
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VBGM  : prior on covariance

• Add prior on K inverse Covariance 
(precision) Matrices Σ>bc:
• Objectives :

• Remove trivial solutions
• Make  Σ" invertible

• Wishart Distribution 𝑝 Σ"4* = 𝒲 Σ"4*; Σ"6 , 𝛽"  
centered on fixed precision (inverse 
covariance) matrix Σ,. 

• New M-Step : 
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Σ! =
∑&#$' 𝑢&! 𝑥& − 𝜇! 𝑥& − 𝜇! ( + Σ!)	
∑&#$' 𝑢&! + 1 + 2𝛽! − 𝑑 + 1



VBGM  : prior on mixture 
coefficients

• Add prior on K mixture coefficient 𝜋> =
𝜋:
• Objectives :

• Remove small clusters
• Dirichlet distribution 𝑝 𝜋$ = 𝒟 𝜋; 𝛼$  

where 𝛼$is a positive scalar
• If 𝛼$ <<1 then this prior is sparsity inducing 

: 𝑝 𝜋$  is either 0 or close to 1

• New M-step : 
134

𝜋" =
∑!&'6 𝑢!" + 𝛼" − 1
∑"&'( 𝛼" + 𝑁 − 𝐾



VBGM  : prior on mean intensity

• Add prior on K mean values 𝜇> : 
• Objectives :

• Constraint mean values to be within certain 
range given by (𝜇"6 , Σ"6)

• Prior is Gaussian distribution characterized 
by a mean and covariance matrix 𝑝 𝜇$ =
𝒩 𝜇$; 𝜇$,, Σ$,

-'Σ$
• New M-step : 

135

𝜇" =
∑!0 𝑢!"𝑥! + Σ"6𝜇"6

∑!,*0 𝑢!" + 𝑡𝑟 Σ"6



VBGM : estimating 
number of classes

• Initialize GMM with many classes
• Perform VB iterations

• Dirichlet prior will put move some mixture 
coefficient to 0 -> 

• Remove  classes with 𝜋> ≈ 0
• Start again VB iterations until 𝜋> > 𝑇 

such that each class has enough 
samples

136



Variational Bayes Gaussian 
Mixture : Example

138

Source : J. Mc Inerney https://www.youtube.com/watch?v=jijtOcVl0Kw



Effect of Dirichlet Prior on the 
number of components

139

Source : scikit-learn documentation http://scikit-learn.org/stable/modules/mixture.html#bgmm
Initial number of clusters is 5 



Other extensions of Gaussian 
Mixture models

• Dealing with number of classes
• Use Dirichlet process equivalent to using 

infinite number of classes
• Robustness to outliers

• Replace mixture of Gaussians with mixture 
of Student distributions

140

𝑓 𝑡 =
Γ 𝜈 + 1

2
𝜈𝜋Γ 𝜈

2
1 +

𝑡)

𝜈

123&)

𝜈 is the degrees of freedom

𝑆𝑡𝑢𝑑𝑒𝑛𝑡	tends towards normal distribution
As 𝜈 → 	∞	
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4. Connexity and Shape Constrained 
Image segmentation

• 4.1 Label Connexity Hypothesis : Markov Random Field
• Definition of prior
•  Graph cut algorithm
• Neighborhood EM
• Grab Cut

• 4.2 Introduction to shape and deformable Models
• 4.3 Snakes algorithm
• 4.4 Level Set Algorithm
• 4.5 Point Distribution Model
• 4.6 Multi-atlas Algorithm

Hervé Delingette 2



Image Segmentation Approaches

- 3
08/11/2024 3

No Typical Shape Typical Shape

Lesions in CT / MR

Contrast Agent 
in CT

Thresholding

Intensity-only
Classification

Intensity 
Only

gray matter white matter csf



Image Segmentation Approaches

- 4
No Typical Shape Typical Shape

Grey / White matter 
in MR

Vessels / tumors / bones /lesions

Mathematical
Morphology

MRF (graph cuts, 
RW, watershed)

Intensity and 
connexity

between regions

Machine Learning 
(RF, SVM, 
Boost,ML)



MoG Segmentation Hypothesis

• So far considered independent voxels
• Zn variable specifying the class 

of voxel n
• Xn variable representing the 

intensity
• Class membership only dependent on voxel intensity 

(thresholding)
• But may not be realistic in the presence of noise & 

partial volume effect

5

𝑥!

𝑧!
N



MRF Segmentation Hypothesis

• In Markov Random Fields :
• Label variables zn are no longer independent but depend on 

their neighbors
• Intensity variables xn only depends on the class label 

(variable zn)

6

𝑥!

𝑧!
N

𝑥!

Mixture of Gaussian Markov Random Field



Markov Random Field

• Intensity prior depends on neighboring values :           
𝑝 𝑍# 𝑍$# = 𝑝(𝑍#|𝑍% # )  

• Graphical Model

7

Label at voxel n

Set of Labels of 
all image voxels except

Voxel n

Labels of 
Neighboring voxels 

Of voxel  n

𝑥! are  independent only if 𝑧! are known
(conditional independence)

𝑝 𝑋 ≠)
!

𝑝 𝑥!

𝑝 𝑋|𝑍 =)
!

𝑝 𝑥!|𝑧!

𝑥!



Challenges in MRF

• Posterior probability is no longer  tractable

𝑝 𝑍 𝑋 =
𝑝 𝑋|𝑍 𝑝(𝑍)

∑-! 𝑝 𝑋|𝑍. 𝑝 𝑍.

𝑝 𝑧#|𝑋 =*
-"

*
-#

… *
-$%"

*
-$&"

*
-'

𝑝 𝑍 𝑋

8

Intractable sum over 2! terms

Intractable marginalization over N-1 term



Definition of Label Prior in MRF
• Images	seen	as	Graph

• Label	Prior	𝑝 𝑍 	depends	on	neighborhood	:
• 2D		images	:	4	or	8	neighborhood	

• 3D	images	:	6,	18	or	26	neighborhood	

9

4 neighborhood
8- neighborhood



Definition of Label Prior in MRF
• Label	prior	𝑝 𝑍 	is	defined	on	a	graph

4 neighborhood : 𝑝 𝑍! 𝑍"! = 𝑓 𝑍!"#, 𝑍!$#, 𝑍!"%, 𝑍!$%

• Hammersley-Clifford	theorem	gives	the	expression	of	𝑝 𝑍 :
• There exists functions  𝜓 and 𝜙 such that 

 log 𝑝 𝑍|𝜃 = "#
$
∑%&'%((!,+)𝜓 𝑧!, 𝑧+, 𝜃 − #

$∗
∑!𝜙(𝑧!, 𝜃)	

10

Unary termBinary term𝑥!

𝑧!

𝜓 𝑧" , 𝑧! , 𝜃 is any function of 2
Binary vectors : it enforces how 
likely are two labels are different

𝜙 𝑧" , 𝜃 = 𝜙"	
Gives how likely voxel n belongs
to class k 



Potts Model for Label Prior

• Idea : neighboring voxels should have similar labels.
• Definition Ising when K=2 :

• One hot encoding : 𝑍! = 𝑍!#, 𝑍!&…𝑍!' (		
• 𝜓 𝑧!, 𝑧), 𝜃 = −∑*+#' 𝑓!)𝑧!*	𝑧)* ,	
• In	another	words	:

• 𝜓 𝑧!, 𝑧+, 𝜃 =−𝑓!+ if 𝑍! = 𝑍+ and 𝜓 𝑧!, 𝑧+, 𝜃 =0 if 𝑍! ≠ 𝑍+ ,

• Alternative 1 :  𝜓 𝑧#, 𝑧P, 𝜃 = 𝑓#P 𝑍# − 𝑍P Q

• Coefficient definition : neighboring voxels having
similar intensity should have the same labels.

𝑓#P = exp−𝛽 𝑥# − 𝑥P Q
11



Joint Probability in MRFs

• Definition of joint probability : 
• 𝑝 𝑋, 𝑍|𝜃 = 𝑝 𝑍 𝑝 𝑋|𝑍

• Log joint probability
	 Λ 𝑍, 𝜃 = log 𝑝 𝑋, 𝑍|𝜃 = log 𝑝 𝑍|𝜃 + log 𝑝(𝑋|𝑍, 𝜃)

	Λ 𝑍, 𝜃 = log 𝑝 𝑍|𝜃 +T
!

log 𝑝(𝑥!|𝑧!, 𝜃)

Λ(𝑍, 𝜃) = log 𝑝 𝑍|𝜃 +0
"

0
#

𝑧"# log 𝑝 𝑥"|𝑧"# = 1, 𝜃

−Λ(𝑍, 𝜃) =
1
𝑇

0
$%&$'(",*)

𝜓 𝑧" , 𝑧* , 𝜃 +
1
𝑇∗
0
"

𝜙(𝑧" , 𝜃) −0
"

0
#

𝑧"# log 𝑝 𝑥"|𝑧"# = 1, 𝜃

Conditional independence

Categorical variable

Binary term
Unary terms

Energy



Algorithms for solving MRF

• Many existing algorithms :
• 1) Graph cut Algorithm : 

• Fast
• solve for hard memberships 𝑧!3
• Unique solution for K=2 if some constraints on 𝑓!+ are met
• Several extensions for K>2 

•  2) Neighborhood EM
• solve for soft memberships p 𝑧!|𝑥!
• Simple Extension of GMM
• Fixed point Iterative method

• 3) Grab Cut 
13



Graph cuts

• Binary case & Ising model :
• 2 labels case 𝑦, ∈ {0,1}
• Minimize energy : 
𝐸 𝑌 = ∑,,. 𝑐,.𝑦, 1 − 𝑦. +∑, 𝑑,𝑦,	 , with 𝑑, > 0

• Submodular constraint for unique solution

• Minimize 𝐸(𝑌)

14

𝑐,. + 𝑐., ≥ 0
Minimize a graph cut

D.M. Greig, B.T. Porteous and A.H. Seheult (1989), Exact maximum a posteriori estimation for binary images, 
Journal of the Royal Statistical Society Series B, 51, 271–279.

Combinatorial problem



Graph Cut

15

• Minimal graph cut :
– Set of edges whose removal create several connected components:
– Cost of a cut  :

Maximize the flux between the source and the sink nodes

Cost of separating
2 nodesGraph cut

Source (Label 0)

Sink (Label 1)

Cost to belong
To label 1

Cost to belong 
to label 0

Graph
cut



Interactive Segmentation Algorithm 

16

Manual glyph from user to guide 
segmentation

Source : Boykov & Gareth Funka-Lea Graph Cuts and Efficient N-D Image Segmentation

Background Glyph

Foreground Glyph



Graph cut Segmentation

• Combinatorial algorithm for graph cut :

• Multi Label Segmentation with 
a-expansion algorithm  [Veksler 99] [Boykov 99]

17

Ford & Fulkerson Algorithm (1951)
BoyKov & Kolmogorov Algorithm  (2004)

Y. Boykov and V. Kolmogorov. An experimental comparison of    min-cut/max-flow algorithms for energy minimization in vision. 
IEEE    Transactions on Pattern Analysis and Machine Intelligence,    26(9):1124–1137, September 2004.

R. Kéchichian, S. Valette, M. Desvignes, R. Prost: Efficient multi-object segmentation of 3D medical images using clustering and graph cuts. ICIP 2011



Neighborhood EM

• Hypothesis :
• Posterior probability 𝑝 𝑧!|𝑋  is intractable therefore 

estimate an approximation 
• Each tissue class is represented by a Gaussian distribution 

𝑝 𝑥!|𝑧!* = 1 = 𝒩 𝑥!|𝜃*
• The label prior is a Potts model and global prior per class

log	p Z = −
𝛽
2
0
#

0
$%&$'(*,")

𝑐"* 	𝑧"#𝑧*# +0
"

0
#

𝜋#𝑧"#

18
C. Ambroise , M. Dang , G. Govaert: Clustering of Spatial Data by the EM Algorithm. In geoENV 

I-Geostatistics for Environmental Applications (1997), pp. 493-504.



Mean Field approximation

• A.ka Variational Bayes approach 
• Look for an approximation of posterior parameters as product 𝑞(𝑍) =
{𝑞!} of factorized terms  𝑝 𝑍 = {𝑧!}|𝑋 ≈ ∏! 𝑞!(𝑧!) 

• Therefore NK unknown 𝑞!3 s.t  

q4 𝑧! =T
3

𝑞!3𝑧!3 	 &	T
3

𝑞!3 = 1 =T
5,

𝑞!(𝑧!)

• Find the set 𝑞	which minimizes the Kullback Leibler divergence 
between 𝑞 and true posterior 𝑝(𝑍|𝑋)

19



Mean Field Criterion

• Reminder EM criterion for GMM :
• Maximize  =F 𝜋, 𝜃, 𝑢

F 𝜋, 𝜃, 𝑢 = L 𝜋, 𝜃 − 𝐷67 𝑢||𝑝 𝑧 𝑥 = Q 𝜃, 𝑢 + H 𝑢

• Evidence Lower bound :
𝐷67 𝑞||𝑝 𝑍 𝑋 = −log 𝑝 𝑋 −𝔼8 log 𝑝(𝑋, 𝑍) − 𝐻(𝑞)

• Neighborhood EM criterion same as GMM but with additional 
term 𝑅 𝑞

minimize 𝐷-. 𝑞|𝑝 𝑍|𝑋 = −H 𝑞 + 𝑅 𝑞 − Q q + log 𝑝 𝑋

• Where 𝑅 𝑞 = 9
:
∑3∑%&'%((!,+) 𝑐!+	𝑞!3𝑞+3

20



Neighborhood EM

• Only E-step changed compared to regular EM for 
GMM

• New E-step :
•  Fixed point iteration 

𝑞!* =
𝜋*𝒩 𝑥!|𝜃* exp𝛽 ∑) 𝑐)!𝑞!)
∑/ 𝜋/𝒩 𝑥!|𝜃/ exp𝛽 ∑) 𝑐)!𝑞!)

• Same M-step 

21
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Neighborhood EM

22



Grab Cut

• Algorithm combines :
• Model intensity of foreground and background as mixture of 

Gaussians (vs one Gaussian for each class)
• Iterate between :

• hard segmentation using graph cuts
• Estimation of Gaussian components

23Input + bounding 
box

Segmentation

Initial GMM Final GMM



Grab Cut Examples

Available in MS Office !!
24



Difficult Examples

Camouflage & 
Low Contrast Harder CaseFine structure

Initial 
Rectangle

Initial
Result

Grabcut: Interactive foreground extraction using iterated graph cuts, Carsten Rother, V. Kolmogorov,  
Andrew Blake, Siggraph 2004 26



4. Connexity and Shape Constrained 
Image segmentation

• 4.1 Label Connexity Hypothesis : Markov Random Field 
• 4.2 Introduction to shape and deformable Models
• 4.3 Snakes algorithm
• 4.4 Level Set Algorithm
• 4.5 Point Distribution Model
• 4.6 Multi-atlas Algorithm

Hervé Delingette 28



Shape Constraints in Image 
Segmentation 

• MRFs enforce connectivity between 
neighboring voxels : region approach

• Deformable shapes / models :
• Work on boundaries between regions -> dual 

approach
• Define constraints on the boundaries : 

• Minimize length
• Minimize curvature
• Shape constraints

08/11/2024 29



Parametric Shape representation

• Parametric representation of a shape :
• Shape controlled by (intrinsic) parameters

• Examples :
• Vertex position of a mesh
• Scalar field for level sets
• Fourier coefficients,…

08/11/2024 32

Deformation in the object 
space



Shape representation

08/11/2024 33

Parametric shapes

Continuous Discrete

Explicit 
Parameterisation

Implicit
Parameterisation

Discrete
Mesh Point Set

Level-Sets

Algebraic CurvesFinite Elements

Modal
Decomposition

Simplex Mesh Spring Mass Models

Finite 
Differences



Shape representation As 
Template Transformation

• Template Transformation  :
• Define a single shape instance in ℝ!	as 

template
• Parameterise the deformation of the 

embedding space 𝜙 𝑥 :ℝ! → ℝ!

• Examples :
• Rigid Transformation

(translation + rotation)
• Affine Transformation

(translation + linear transform)
08/11/2024 34

Define 𝜙 𝑥 as an 
affine transform

Shape instance=
template



Simple Transformations

08/11/2024 35

𝑻𝒓𝒆𝒈 Description Degrees of 
Freedom

2D Rigid Translation + 
Rotation

2+1=3

2D Similarity Translation + 
Rotation + Scale

3+1=4

2D Affine Translation + 
Linear

2+4=6

3D Rigid Translation + 
Rotation

3+3=6

3D Similarity Translation + 
Rotation + Scale

6+1=7

3D Affine Translation + 
Linear

3+9=12



Complex Transformations

• Radial Basis functions :
• Basis 𝜓 𝑥 = 𝜓 𝑥  which only depend on distance : 

example : Gaussian, thin plate spline, B-spline 
• Define N control points 𝑥= 
• Define 𝜙 𝑥  as 𝜙 𝑥 = ∑=>𝜓 𝑥 − 𝑥= 𝑦= parameterized by 
{𝑦=} 

08/11/2024 36



Shape Optimization

• If {q} are parameters in the shape space (parametric 
representation) 

• If {q} are parameters in the space of geometric 
transformations

• Often includes both frameworks

08/11/2024 40

Framework of deformable templates

Framework of Image Registration 
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