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Expectation Maximisation
Algorithm

- |terative approach for estimating
parameters of (Gaussian) Mixture
parameters

* (General Idea :

* New criterion : Add unknown variable u
(posterior) and add constraint (KL divergence)

- Alternate maximization performed in closed
form : equivalent to lower bound maximization

y 4
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Alternate maximisation

- Replace Log-Likelihood with a criterion easier
to optimize but with additional unknowns

- Log-(marginal) likelinood :
L(B) = lOgA(@) — Zn lng(ane) — Zn log(Zk ﬂkN(xn;.uk'O-k))

- New criterion F(0,u):

« Add u = {u,;} as unknown. u is a vector of u,,,
which is the posterior probability

F(6,u) = L(6) — Dy (ul|p(z]x))
- By maximizing F with respect to u,

Unk = P(Znk = 1]|x,)



Why is it easier to optimize
F(O,u)?

- General result :

- X = observed random variable
Z = hidden random variable
Joint probability p(x,, z,) = p(ralza)p(za) = p(zalxn)P (x)
Constraint on uy,;,: Y U = 1
Log likelihood : 1) = Y ogpeen) = 3> unilogpen)
New criterion : " "

F(H: u) = Zn Zk Unk log p(xn) - Zn Zk Unk log unk/p(znk |xn)

F(H: u) = Zn Zk Unk log p(xn» an) — Zn Zk Unk lOg Unk

We have « relaxed » the optimization problem by introducing informatics g mathematics
. e b4
a new unknown variable aA—



Interpretation
- New criterion involves 2 terms :

F(O,u) = Zn Zk Uny log p(xnk' an) - Zn Zk Unk log Uy

\ } \ }
| |

Q(8,u) HI ()

« F(6,u) is the variational lower bound

- -F(6,u) is the variational free energy= average energy -
entropy

* Q(0,u) = Xn Lg Uni log p(xng, Zni) = Ey(logp(X, Z)) is the
expectation of the complete likelihood

e H(u) = =Xy Xk Unk log uyy, is the entropy of the
approximate posterior probability

 Q(0,u) is easier to optimize wrt 8 because it involves
complete likelihood = likelihood of observed and hidden

y 4
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Evidence Lower Bound

@ Hidden

- General result :
Observed

e For any inverse problem where Z is the
hidden variable and X observed variable:

log p(X) — Dy (ullp(Z1X))
= E,(logp(X,Z)) + H(u)

- Variational lower bound :
log p(X) = E, (logp(X,Z)) + H(u)




Case of Gaussian Mixtures

- Log likelihood
L(0) = log A(8) = Xnlog(Xy eV (Xn; Uk, 0%))
- Function of parameters :

Q6,u) = Z Z Ung log T N (X | g, L)
n k

- Note that we have sum of log instead of
log of sums !

» Criterion F(6,u) = Q(8,u) + H(w)is
known as Hathaway criterion



EM Algorithm

- The algorithm optimizes alternatively
between u and 6 = coordinate ascent

F(6,u) = L(8) — Dy (ullp(zlx)) = Q(6,u) + H(w)
- Constraints : Y 7, =1 Yu, =1
. E-step ' k

« maximize F(6,u) wrt u

TN (x 2
Compute|Up, = = kN (xn | g, Zx)
D=1 Tk N (n | Uk, Zk)

- Equivalent to minimizing KL divergence between u
and posterior probability -

informatirs,mathematics
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M-Step

» M-step : maximize F(6,u) or equivalently
Q(8,u) wrt 8 = {65, 0,}

* Optimize with respect to mean y,

aQ

dug

 Optimize with respect to covariance Z;
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EM Algorithm for GMM

- lterative scheme

- Make initial guesses for the parameters

» Alternate between the following two
stages:

1. E-step: evaluate posterior ug

_ T[kN(xnl.uk Zk)
k 1 e NV (e [ e, Zie)
2. M-step: update parameters (u,2,my)
using ML results

Upk =

N N
Z” K Xn Z_:unk ('xn_/’lk)('xn_ll“lk)T 7T, = %

N

n=1 —
N
i=1

M-

unk




EM as lterated Lower Bound
Maximisation

- Equivalent view of EM algorithm :

LoglLikelihood

- E-step leads to u = p(z|x) and therefore makes
L(6;) = F(6;,u).

e F(0,u) is a lower bound of Log-likelihood L(6)
since Kullback Leibler divergence is positive

- M-step optimizes F(6,u) with respect to 8 which is
easier to maximize than log likelihood

/ Log Likelihood L(8)

L(6) = F(O,u)

F(6,u) = L(8) — Dg, (ullp(zlx)) = Q(6,w) + H(w)

y 4

Lower|Bound F(6;,u)

informatics,mathematics

I
|
|
Ve W 4
!9t+1 .0 b




Example of EM with
2 Gaussian distributions
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EM on Iris data
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equal prior, spherical equal prior, ellipsoidal
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Class Priors

- Initial hypothesis : homogeneous priors p(z,,, = 1) =
m, IS estimated

- Priors may be given by atlas registered on images. In
this case 6 are the registration parameters

Prior p(z,,3 ) on

Atlas Prior p(z,, ) on  Prior p(z,; ) on . .
cerebro spinal fluid

orey matter White matter

T1 template gray matter white matter csf
. Courtesy of D. Vandermeulen
Affinely Registered
Atlas Example : BrainWeb at MNi

http://www.bic.mni.mcgill.ca/brainweb/

informatirs,mathematics
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EM for Image Intensity

Classification

- Use the EM algorithm
[Dempster77,Wells94] .

Expectation-Maximisation

Responsabilities  u;(X;)

p, ?\lm‘/\?\

______



Brain Tissue

Classification
- Typical application : use MR cerebral

Courtesy of D. Vandermeulen

\4

\/
Cerebro-spinal fluid Grey matter White matter

Scalar feature

3 Classes = Intensity

—



EM Classification - Algorithm

Starting estimates for
responsibilities

Y

\b\‘\\ B / =

S, //;//;r-“ llll :
Il-t:t‘!‘ Iﬁi‘-‘ﬂl £

_ TR LU T T L LA

\4

Compute Gaussian Compute Responsibilities
parameters from : from Gaussian
Responsibilities parameters

\ 4

Converged ?
No Yes,




Stage 1: Expectation

Compute
| Responsibilities

______

. ﬂkN(xnlllk,Zk)
k 1 Tk N(xnl.uk;zk)

Courtesy of D. Vandermeulen



Stage 2: Maximization
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lterations EM

— histogram
= = white matter
- | =" grey matter
----- CSF
= total mixture model

Courtesy of K. Van Leemput
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Results

— histogram

= = white matter

- | =+ grey matter

----- CSF

— total mixture model

White matter

1 = argmlaxp(l\d,é)
Courtesy of K. Van Leemput

informatics , mathematics
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GMM and K-Means

- GMM with :
- Isotropic variance X, = € Id

: : 1
» Uniform prior : m;, = ~

- Expectation of complete Lik. : o) = zzun"'xn ul”
- Same as Fuzzy-Cmeans with m=1
- Same as K-means when :

c €-0(
exp (=[x, — e l|?/2€)

e U, € {0,1} T S exp (< [1xn — w117/26)

- 1, € {0,1}



K Means functional

- K Means algorithm consists in
optimizing the functional :

o J(r,u) = 11\{:1 Zlk(=1 Tk 1%n — .Uk”2
- With the constraint that r,,;, € {0,1} and
Zl,gzlrnk =1 Vn
- Jcan be seen as

* minimizing the correlation between the assignment
and the distance to cluster center

- Minimizing the compactness of the clusters




K Means optimization

- Perform alternate optimization :

- Consider b, fixed and optimize on r,;
» For each data x,, choose which r, is 1

E-Step ro = 1if k= arg minj!lxn — Ul
0 otherwise

- Consider r, fixed and optimize on p,

N
aJ
6_= ernk(ﬂk —x,) =0
M-Step i n=1
Zg:lrnkxn
Ui = N
n=1rnk



Good Initial Seeds (kmeans++)

- Choose the centers as far away as

possible from each other but in a
random manner.

- Algorithm :

- Choose one center at random u,
- Whilek <K

- Compute d, = arg min;||x, — ,u]-”Z the minimum
distance of data x,, to the already chosen centers

« Pick u;, among data with probability proportional to d,,

* k=k++

David Arthur and Sergei Vassilvitskii. k-means++: The advantages of careful seeding. “Proceedings of the eighteenth annual ACM-SIAM
symposium on Discrete algorithms*, 2007 , pp. 1027-1035 7

informatics,mathematics
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Issues with EM for GMM

Presence of bias field in MR images
EM leads to only local maxima of Log-likelihood

Functional admits trivial solutions (zero covariance
centered at data points) that can lead to bad estimate

The covariance matrix X, should be invertible which is
not guaranteed (may use pseudo-inverse)

How to choose the number of classes

How to make the estimation robust
to outliers ?



3. Medical Image Segmentation

- 3.1 Taxonomy of segmentation algorithms

- 3.2 Validation of segmentation algorithms

+ 3.3 Deterministic Filtering & Thresholding Approaches
- 3.4 Probabilistic Imaging Model

- 3.5 Expectation Maximisation for GMM

- 3.6 Image classification with bias field

- 3.7 Variational Bayes EM

- 3.8 STAPLE Algorithm
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Issue : presence of MR bias field

MR images are
corrupted by a
smooth intensity

non-uniformity
(bias).

_ Corrected
Imag_e with _~ image
ias
artefact =

mathematics



MR bias field estimation methods

- homogeneous (water) phantom measurements
non-retrospective
bias is patient-dependent
same MRI parameter settings for patient and phantom

- analytic correction of antenna receptor profile (idem)

- bias field estimation helps segmentation => segmentation
helps bias field estimation?
Dawant et al: manual selection (or 1 iter.) of WM points + LSQ
spline fit
Meyer et al.: region based, too many degrees of freedom

Wells et al.: EM-based estimation of bias+classification, requires
pre-set MRI intensity model-parameters



Biased Gaussian Mixture model

Bias field is modeled as a additive or multiplicative
Noise

Bias field parameters with smooth linear combination

of smooth basis functions Cy are the parameters controlling
the bias field
M
b(x) = Z CiP; (7‘ (x)) 1(x) 1s the position of voxel of intensity x
[=1

Convenient choice : additive noise (but not realistic)

M
p(x) = Z TN <x — 2 Crpi(r(x)) |u, Uk)
=1

k

Use Log of image to cope with additive ngise

informatics,mathematics
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Bias Description

- Bias is described as a combination of slowly varying
polynomials :

r(x) 1s the position of voxel x

b(x) = z C,d; (7‘ (x)) C, are the glfi?;:t;r;gontrolling

* ¢(r(x)) is a slowly varying polynomial :
* For instance:

bo(X,y,z)=1

01(X,Y,2)= x-tx/2 , 1

¢2§X Y, zi:gy-ty;Z; ] l I
d3(x,y,2)=(z-tz/2 —

‘1’3(" y,Z2)=(x-tx/2)* (y-ty/2) [ -

...... 1

Bias field with brain mask

y 4
informatics,mathematics
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Bias Description

- Bias field is modeled as an additive or multiplicative
noise

M
b(x) = ) Cipi(r()
=1

- Multiplicative Noise :

. No closed form solution p(x|0) = z T N <x * (Z Cl¢l(r(x))> | ke Uk)

k =1

- Additive Noise using the Log of the image intensity:

M
‘ closed form solution p(xl@) — z T N (x — Z Clqbl(r(x)) | s, O'k>
=1

k



Extended EM Algorithm

* Include new parameters

- Bias description C={C}
- Define Extended Q(u,8) = Ey(logp(X,Z))
0w, 0) = Z Z log (unkN (xn _ ZI: by (1) it zk>> .= position of voxel n

- Define new posterior probabillities :

T[kN(xn T Zévil Cld)l(rn) |.uk; Zk)
KV (xn — 2121 Cipi () 11, Z5)

Upg = p(an =116,C) =



Extended EM algorithm

bias estimation

classification

______

y 4
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Step 1: distribution estimation

Belonging Probabilities

1
\

______

~ distribution

Bias
Field

y 4
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Step1: distribution estimation

- Compute mean and variance based on
the bias corrected intensity

N M
_ Zin=1Unk (xn T 4l=1 Cl(pl(rn))
Ui = N
n=1 Unk
N M 2
y = n=1 Unk (xn T Ll=1 Clqbl(rn) — .uk)
k — N U
n=1 “nk



Step 2: bias field estimation

Belonging Probabilities

informatics,mathematics
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Reminder :
Linear Least Square Problems

- Linear Least Square :

- For any rectangular matrix X, Find X such that X =
arg mXinllAX — B||?

- If rank(A) is full then X = (ATA)"'AT B
At = (ATA)71AT is the pseudo-inverse

- Weighted Least Square

- For any diagonal matrix W Find X such that X =
arg mXin(AX — B)ITW(AX — B)

- If rank(A) is full then X = (ATWA)~*ATW B



Bias Field Estimation

- Estimate Bias Field to minimize :

Q(0,C) = — Xpn Xg Unk log(ﬂkN(Xn — X Cl¢z(Tn)ilik»Zk)) T...

n=%1 Qi) ~ ik
Q6,€) = = X Tyt (HLELZ

» C solution of a weighted least square
problem

0(6,C) = (AC — R)TW (AC — R)+...



Bias Field Estimation

- Estimate Bias Field in the least square sense

G-

Cpy.

= (ATWA) 1ATWR

¢M.(7”1)'

d)M .(Tn)-

where

Difference between

Intensity and expected intensity
without any bias

K
§ :ulk/’lk /2
x, — =1

K
k=1

Zuzkﬂk /2,
x, — &=L

K
Zuzk /2,
k=1

M
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Step 3: classification

[ AS— A . —

distribution

ﬂkG[x_ZCl¢l(rn)| /le’zk]
Zﬂ'jG[x—ZC[¢[(7‘n)| ﬂj’zjj

Z/lnk

atics g mathematics
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Results

with

white matter surface

Courtesy of D. Vandermeulen



3. Medical Image Segmentation

- 3.1 Taxonomy of segmentation algorithms

- 3.2 Validation of segmentation algorithms

+ 3.3 Deterministic Filtering & Thresholding Approaches
- 3.4 Probabilistic Imaging Model

- 3.5 Expectation Maximisation for GMM

- 3.6 Image classification with bias field

- 3.7 Variational Bayes EM

- 3.8 STAPLE Algorithm
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Addressing limitations of EM

- Limitations on the EM algorithm :

- 1) Trivial solutions of the maximum Likelihood (Dirac
on data points)

- 2) Non invertibility of Covariance matrices X,
« 3 ) Must fix the number of classes prior to the
algorithm

- To address those limitations :
add priors on parameters -> Variational Bayes EM




Variational Bayes Gaussian
Mixture
- Parameters 8 are now random variables

- Define (hyper)prior probabilities p(8) to
“regularize” their estimated values

)

)
; ? oo —
A (e
U :@: ¥ MOH@i X/ @‘ X
N
N —
Regular Gaussian Variational Gaussian
Mixture Model Mixture Model
Ay, Up, 2o are hyperparameters



How to choose the parameter
prior distributiom ?

- Convenient choice : “conjugate prior”

- Lead to closed form expression of posterior
p(X|0)p(6)

p(0|X) =
J p(X|6")p(6")d6’
- Example :
Likelihood Parameters | Conjugated Prior | Posterior p(0|X)
distribution p(0)
p(X|0)
Gaussian Normal x Wishart Normal x Wishart
Multinomial T Dirichlet Dirichlet

- Existence of conjugated priors for the
“exponential family”

y 4
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Variational Bayes
Gaussian Mixture

- Extended EM algorithm :

- replace maximization of likelihood p(X|6)
with joint probability p(X,8) = p(X|0)p(6)

- Keep lower bound :
logp(X,0) = E,(logp(X,Z]0)) + H(u) +logp(6)

- Same E-step, but modified M-steps



VBGM : prior on covariance

- Add prior on K inverse Covariance
(precision) Matrices X;*:
- Objectives :
- Remove trivial solutions
- Make Z.invertible
- Wishart Distribution p(2;*) = W(2¢1; 20, Bk )
centered on fixed precision (inverse
covariance) matrix X,.

* New M-Step : 5, - Ym=1 Unie Ocn — i) (e — )" + Z¢
o Zgzlunk+1+2ﬁk—(d+1)




VBGM : prior on mixture
coefficients

- Add prior on K mixture coefficient {m; } =
TT.
- Objectives :
- Remove small clusters

* Dirichlet distribution p(m,) = D(m; ay,)
where a;Is a positive scalar

* If a;, <<1 then this prior is sparsity inducing
. p(m,) is either O or close to 1

N —
o NeW M-Step : T, = Zn;l Unp + ap — 1 ;
k=1 ak + N _ K informatics g”mathematics
& n’@"




VBGM : prior on mean intensity

- Add prior on K mean values u;, :

- Objectives :
- Constraint mean values to be within certain
range given by (uy, Zp)

* Prior is Gaussian distribution characterized
by a mean and covariance matrix p(uy) =

N (i 1, (29) 7 %)

* New M-step : SN Uy exn + ZRup
Hrk =
N Ung + tr(ZD)

informatirs,mathematics
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VBGM : estimating
number of classes
Initialize GMM with many classes

Perform VB iterations

» Dirichlet prior will put move some mixture
coefficient to O ->

Remove classes with r;, = 0

Start again VB iterations until 7;, > T
such that each class has enough
samples



Variational Bayes Gaussian
Mixture : Example

Source : J. Mc Inerney https://www.youtube.com/watch?v=j1jtOcVIOKw
y 4
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Weight of each component

Effect of Dirichlet Prior on the
number of components

Source : scikit-learn documentation http://scikit-learn.org/stable/modules/mixture.html#bgmm
Initial number of clusters is 5

Finite mixture with a Dirichlet distribution Finite mixture with a Dirichlet distribution Finite mixture with a Dirichlet distribution
prior and yp = 1.0e — 03 prior and yp = 1.0e + 00 prior and yp = 1.0e + 03

Estimated Mixtures

16.7% 16.7% 16.7% 16.7% 16.7% 16.7%




Other extensions of Gaussian
Mixture models

» Dealing with number of classes

- Use Dirichlet process equivalent to using
infinite number of classes

- Robustness to outliers

- Replace mixture of Gaussians with mixture
of Student distributions ___,

F(”?l)( t)—

e\

14

v 1s the degrees of freedom

Student tends towards normal distribution 4 2 ° : ﬁ informatics g mathematics
Asv > o




Medical Imaging :
Connexity and Shape Constrained Image
segmentation

Hervé Delingette
Epione Team
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4. Connexity and Shape Constrained
Image segmentation

- 4.1 Label Connexity Hypothesis : Markov Random Field
- Definition of prior
Graph cut algorithm
* Neighborhood EM
« Grab Cut

* 4.2 Introduction to shape and deformable Models
+ 4.3 Snakes algorithm

* 4.4 Level Set Algorithm

« 4.5 Point Distribution Model

« 4.6 Multi-atlas Algorithm

Hervé Delingette



Image Segmentation Approaches

Intensity i

Contrast Agent
in CT

Only
i

Lesions in CT / MR

No Typical Shape Typical Shape
zla—



Image Segmentation Approaches

Intensity and
connexity
between regions

Vessels / tumors / bones /lesions

Grey / White matter
in MR

No Typical Shape Typical Shape
zla—



MoG Segmentation Hypothesis

- So far considered independent voxels : @ A
- Z, variable specifying the class
of voxel n
- X, variable representing the é
Intensity S N

- Class membership only dependent on voxel intensity
(thresholding)

- But may not be realistic in the presence of noise &
partial volume effect

4
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MRF Segmentation Hypothesis

- In Markov Random Fields :

- Label variables z,, are no longer independent but depend on
their neighbors

- Intensity variables x,, only depends on the class label
(variable z,)

4 N

ol o)
I

N N Mn >\/ 4

Mixture of Gaussian Markov Random Field




Markov Random Field

» Intensity prior depends on neighboring values :
p(anz—n) — p(anzN(n))

/ Set of Labels of Labels of

all image voxels except Neighboring voxels

Label at voxel n
Voxel n Of voxel n

- Graphical Model

Xy are independent only if z,, are known
(conditional independence)

pe0) = | |G

ol ol
%

}/Zn bt p(XIZ)=1_[P(xn|Zn) &’«zxz/a/-




Challenges in MRF

- Posterior probability is no longer tractable
p(X|Z)p(Z)
Z|X) =
P Z P

Intractable sum over 2V terms

p(znlX) = Zz Z > ) p@In

Zn 1Zn+1 ZN

Intractable margmahzatlon over N-1 term

(e

ca—



Definition of Label Prior in MR

* Images seen as Graph

4 neighborhood
O

)
N\

)
N\

)
N\

)

O

N\

-

:><:><:> 8- neighborhood
D)

UK_J\)

 Label Prior p(Z) depends on neighborhood :

e 2D images: 4 or 8 neighborhood

e 3D images: 6,18 or 26 neighborhood

lrrzia—
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Definition of Label Prior in MR

» Label prior p(Z) is defined on a graph
4 neighborhood : p(anz—n) — f(Zn—ern+1»Zn—R»Zn+R)

« Hammersley-Clifford theorem gives the expression of p(Z):
- There exists functions ¥ and ¢ such that

-1 1
logp(Z]0) = T Zedges(n,m) W (zn, Zm, 0) — T 2n®(2n, 0)

H/_/\/

Binary term Unary term
X
. . ¢ (2n,0) = Pp
Y(2n, 2y, 0) is any function of 2 510 p likely voxel n belongs

Binary vectors : it enforces how to class k p

}Jzn }sz likely are two labels are different : L

ca—




Potts Model for Label Prior

ldea : neighboring voxels should have similar labels.
Definition Ising when K=2 :

- One hotencoding : Z,, = (Z,,1, Zpp . Zyie)"

° lp(ZTU Zm' 0) — _Zlg:l fnmznk ka )

e In another words:
e Y(zy, Zm, O)=—fum it Z,, = Z,,, and Y(z,, z;, 0)=0if Z,, + Z,, ,

Alternative 1 : Y (z,, 2, 0) = fumllZy — ZmlI?

Coefficient definition : neighboring voxels having
similar intensity should have the same labels.

fam = exp—p(x, — x‘m)z &,1/26,61/-



Joint Probability in MRFs

- Definition of joint probability :
* p(X,Z2|6) = p(Z)p(X|Z)
- Log joint probability

A(Z,0) =logp(X,Z|0) =logp(Z|6) +logp(X|Z,6)

Conditional independence
) A(Z,0) = logp(Z]6) +zlogp(xnlzn,9)

Categorical variable

m=)  A(Z,0) =logp(Z|6) +22 Zni logp(xp|zn, = 1,0)

Energy —A(Zﬁ)—— > W 9)+T zd)(z 0) — ZZ 11108 PG| Zpnye = 1,6)

edges(n m)

\_ -/
YT Unary terms .

Binary term P
lrreia —
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Algorithms for solving MR

- Many existing algorithms :
- 1) Graph cut Algorithm :
- Fast

- solve for hard memberships z,,
 Unique solution for K=2 if some constraints on f,,,,, are met

« Several extensions for K>2

* 2) Neighborhood EM
- solve for soft memberships p(z,|x,)
- Simple Extension of GMM
- Fixed point lterative method

- 3) Grab Cut .
lreeia —



Graph cuts

- Binary case & Ising model :
- 2 labels case y; € {0,1}
* Minimize energy :
E(Y)=Y;cvi(1—y;) +X;diy;i , withd; >0
- Submodular constraint for unique solution
cij+¢i=0
* Minimize E(Y) <:> Minimize a graph cut

Combinatorial problem

D.M. Greig, B.T. Porteous and A.H. Seheult (1989), Exact maximum a posteriori estimation for binary images,

Journal of the Royal Statistical Society Series B, 51, 271-279. -

lrrzia—



Graph Cut

Source (Label 0)

Cost to belong
= tolabel O

Cost of separating
2 nodes

Graph cut

Cost to belong
To label 1

Sink (Label 1)

* Minimal graph cut :
— Set of edges whose removal create several connected components:
— Costofacut :

cut(A,B) =Y  c¢pg

pEA,qEB
\

Maximize the flux between the source and the sink nodes

\
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Interactive Segmentation Algorithm

Background Glyph
r

, ’”‘

L

x

1
Foreground Glyph

Source : Boykov & Gareth Funka-Lea Graph Cuts and Efficient N-D Image Segmentation

Manual glyph from user to guide
segmentation

rizca—



Graph cut Segmentation

- Combinatorial algorithm for graph cut :

Ford & Fulkerson Algorithm (1951)
BoyKov & Kolmogorov Algorithm (2004)

Y. Boykov and V. Kolmogorov. An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(9):1124-1137, September 2004.

- Multi Label Segmentation with
o-expansion algorithm (veksier 99 [Boykov 99]

R. Kéchichian, S. Valette, M. Desvignes, R. Prost: Efficient multi-object segmentation of 3D medical images using clustering and graph cuts. ICIP 2011’

lrrzia—



Neighborhood EM

Hypothesis :
- Posterior probability p(z,|X ) is intractable therefore
estimate an approximation
- Each tissue class is represented by a Gaussian distribution
p(xp|Znk = 1) = N (xp|0k)
- The label prior is a Potts model and global prior per class

logp(Z) = ——Z Z Cnm ZnkZmk +z z Tk Znk

edges(mn)

C. Ambroise , M. Dang , G. Govaert: Clustering of Spatial Data by the EM Algorithm. In ggoENV
[-Geostatistics for Environmental Applications (1997), pp. 493-504. 7
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Mean Field approximation

- A.ka Variational Bayes approach

- Look for an approximation of posterior parameters as product q(Z) =
{q,} of factorized terms p(Z = {z,}|X) = [1n qn(21)

* Therefore NK unknown q,,;; s.t

an(zn) = z AnkZnk & 2 nk = 1 = Z qn(Zn)
k k Zn

- Find the set g which minimizes the Kullback Leibler divergence
between g and true posterior p(Z|X)

4
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Mean Field Criterion

- Reminder EM criterion for GMM :
« Maximize =F(m, 0,u)
F(m,0,u) = L(1,0) — D (ullp(zlx)) = Q(6,u) + H(u)
- Evidence Lower bound :
Di.(qllp(ZI1X)) = —logp(X) —E, (logp(X,Z)) — H(q)
- Neighborhood EM criterion same as GMM but with additional
term R(q)

mMinimize by, (qp(Z1X)) = —H(q) + R(q) — Q(q) + log p(X)

B
¢ Where R(CI) — E Zk Zedges(n,m) Cnm Qnk9mk

4
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Neighborhood EM

- Only E-step changed compared to regular EM for
GMM

- New E-step :
 Fixed point iteration
_ TN (X |0k) €xp B 2m CmnGnm
Ak = Zl TN (x5 |6;) exp B Xom Crnlnm
- Same M-step
i > x, Zk:gqnxxn—uk)(xn—uky z, :%nﬁ;an

N N
Z an Z 9k
n=1 =

Ay

4

lrrzia—



Neighborhood E

fa) Original imase {d] Meighborhood EM with & = (L5

|
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Grab Cut

- Algorithm combines :

- Model intensity of foreground and background as mixture of
Gaussians (vs one Gaussian for each class)
- lterate between :

- hard segmentation using graph cuts
- Estimation of Gaussian components

%.. ............. .2 ! = =
: . —ReD RED
DTN, ... omitions »”- Inig’gl GMM Fintal GMM
V 4
Input + bounding Segmentation &tu’a/_

box



Grab Cut Examples

Available in MS Office !!



Difficult Examples

Initial
Rectangle

N E
-

Initial
Result

Grabcut: Interactive foreground extraction using iterated graph cuts, Carsten Rothgef, V. Kolmogorov,
Andrew Blake, Siggraph 2004 LA



Hervé Delingette

4. Connexity and Shape Constrained
Image segmentation

« 4.1 Label Connexity Hypothesis : Markov Random Field
* 4.2 Introduction to shape and deformable Models

+ 4.3 Snakes algorithm

* 4.4 Level Set Algorithm

« 4.5 Point Distribution Model

« 4.6 Multi-atlas Algorithm

28



Shape Constraints in Image
Segmentation

- MRFs enforce connectivity between
neighboring voxels : region approach

- Deformable shapes / models :
- Work on boundaries between regions -> dual
approach
 Define constraints on the boundaries :
* Minimize length
- Minimize curvature
- Shape constraints

08/11/2024 &i 'z/a/- 29



Parametric Shape representation

- Parametric representation of a shape :
« Shape controlled by (intrinsic) parameters
- Examples :
- Vertex position of a mesh
- Scalar field for level sets
 Fourier coefficients,...

Deformation in the object
space

4

08/11/2024 &i > S,Z 32
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Shape representation

Parametric shapes

—
— T

Finite

Modal

Decomposition

Differences

r
/

08/11/2024

v

Finite Elements

Level-Sets

\

N
S e
i

Spring Mass Models

Simplex Mesh

Algebraic Curves

(e

ca—
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Shape representation As
Template Transformation

- Template Transformation : Shape Istance-
 Define a single shape instance in R™ as /
template
- Parameterise the deformation of the
embedding space ¢(x): R" - R" @
- Examples :

- Rigid Transformation
(translation + rotation)

- Affine Transformation Define ¢(x) as an

affine transform

(translation + linear transform) &’z

s 34
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08/11/2024

Simple Transformations

They Description Degrees of
Freedom

2D Rigid

2D Similarity

2D Affine

3D Rigid

3D Similarity

3D Affine

Translation +
Rotation

Translation +
Rotation + Scale

Translation +
Linear

Translation +
Rotation

Translation +
Rotation + Scale

Translation +
Linear

2+1=3

3+1=4

2+4=6

3+3=6

6+1=7

3+9=12



Complex Transformations

- Radial Basis functions :

- Basis Y (x) = ¥(]|x||) which only depend on distance :
example : Gaussian, thin plate spline, B-spline

- Define N control points x;
- Define ¢(x) as ¢(x) = ¥V ¢ (x — x;)y; parameterized by




Shape Optimization

- |f {6} are parameters in the shape space (parametric

representation)
‘ Framework of deformable templates

- |f {06} are parameters in the space of geometric
transformations

‘ Framework of Image Registration
» Often includes both frameworks

08/11/2024 lrreia —~

40



	MVA-Segmentation-Classification-MRF-www.pdf
	MVA-Connexity-Shape-Constrained-Segmentation-www.pdf

