Medical Imaging : Image Segmentation & Classification

> Hervé Delingette Epione Team Herve.Delingette@inria.fr

3. Medical Image Segmentation

3.1 Taxonomy of segmentation algorithms

- 3.2 Validation of segmentation algorithms
- 3.3 Deterministic Filtering & Thresholding Approaches
- 3.4 Probabilistic Imaging Model
- 3.5 Expectation Maximisation for GMM
- 3.6 Image classification with bias field
- 3.7 Variational Bayes EM
- 3.8 STAPLE Algorithm

Image Segmentation

Segmentation in clinical workflow

• Example of cardiovascular Imaging

End to end training

Segmentation Algorithms

- Various taxonomy of segmentation algorithms :
 - Discrete vs Continuous
 - Bottom-up vs Top-down approaches
 - Boundary vs Region approaches
 - Supervised or non supervised
 - Intensity or Shape based

Discrete vs Continuous Image Representation

I(x) Image Domain or Image Value can be either discrete or continuous

	Image Domain Image Value Discrete		rete	Continuous	
	Discrete	Array	of Int	Field of Integer	
	Continuous	Array o	of Float	Field of Float	
Discrete Image Representation			Continuous Image Representation		
 Image as a 2D or 3D array Representation I[row][col] Image can be seen as a graph 			 Image as a 2D or 3D field I(x) Requires definition of Interpolation and Extrapolation functions : Nearest Neighbor Interpolation Bi(Tri)Linear Interpolation 		
			• (Cubic)Spline Interpolation		

Discrete vs Continuous Image Segmentations

Define a binary variable $z_n \in \{0,1\}$

- $z_n = 1$ if pixel is in foreground
- $z_n = 0$ if pixel is in background

Can be generalized to a set of Labels $\mathcal{L} = \{0, 1, ..., M\}$

Segmentation obtained through discrete/ combinatorial optimization

Segmentation with Continuous Image Representation

Define Regions $\{\Omega_i\}$ inside which a structure is defined

Define close or open contours $\{\partial \Omega_i\}$ Separating background from structure i

Segmentation obtained through variational principles (calculus of variations...)

Bottom-up Approach

Top-down approach

Region vs Boundary Methods

Image

Region-based segmentation

Boundary-based segmentation

Supervision of Image Segmentation

- Supervised Image Segmentation Problems:
 - Several examples of image segmentations are available
 - Methods : machine learning, multi-atlas registration
 - Very costly to produce annotated data
- Unsupervised Image Segmentation Problems :
 - No examples are available
 - Models of image content and shape are used to produce image segmentation
- Weakly supervised Segmentation Problems :
 - Only partial labels are available
- Semi supervised Segmentation Problems :
 - Fully annotated images and images with no annotations
- Mixed supervised Segmentation Problem :
 - Fully annotated images and weakly annotated images

Supervision of Image Segmentation

3. Medical Image Segmentation

3.1 Taxonomy of segmentation algorithms

3.2 Validation of segmentation algorithms

- 3.3 Deterministic Filtering & Thresholding Approaches
- 3.4 Probabilistic Imaging Model
- 3.5 Expectation Maximisation for GMM
- 3.6 Image classification with bias field
- 3.7 Variational Bayes EM
- 3.8 STAPLE Algorithm

Validation of Segmentation Algorithm

- Intrinsic Validation : comparison against
 - Observation of Physical Phantoms
 - Difficult and expensive to build
 - May not be representative of real data
 - Simulated images (MNI Brain Atlas,...)
 - Difficult to simulate artefacts
 - Segmentation of experts
 - Large inter and intra variability of segmentation across experts
 - May not be representative of population variability

Phantoms for Validation of Segmentation

Whole Body Phantom (source Kyoto Kagaku Itd)

Simulation of Medical Images

SPECT Image simulation

Segmentation of experts

Peripheral zone and segmentations

Measuring the Validity of Segmentation

Measuring the Validity of segmentation

Expert Segmentation (Ground truth)

		Present	Absent
Algorithm Segmenta	Segmented = foreground	True positive	False positive
		А	(Type I error)
	tion Not segmented= background		В
		False negative (Type II error)	True negative
		С	D

Sensitivity = A / (A+C)

Sensitivity (or recall): proportion of voxels in the structure which have been segmented by the algorithm

Specificity: proportion of voxels that are not in the structure which have not been segmented by the segmentation algorithm 23

Measuring the Validity of segmentation Expert Segmentation

		Present	Absent
Algorithm Segmentat	Segmented	True positive	False positive
	= foreground	А	В
	tion	False negative	True negative
	background	С	D

Positive Predictive Value (PPV) or precision : The likelihood that a voxel segmented as foreground is actually a voxel belonging to the structure

Negative Predictive Value (NPV): The

likelihood that a voxel not segmented as foreground is actually a background voxel

Measuring the Validity of segmentation

 Often there is an imbalance between foreground and background

- When background >> foreground then specificity and NPV are very close from 1
- Choose metrics independent from background size
 - Sensitivity (recall) and PPV (precision)

Comparing Segmentation Algorithms with ROC Curve (Receiver Operating Characteristic)

ROC curves (Receiver Operating Characteristic)

- Use ROC curve to optimize the algorithm
- Pick the value that leads to a point closest from the upper left corner
- Estimate its performance by its area under the curve

Other measures of segmentation Performance

• Dice Index :

Jaccard Index :

$$s = \frac{2|X \cap Y|}{|X| + |Y|}$$
$$s = \frac{|X \cap Y|}{|X \cup Y|}$$

X = ground truth binary object

Y = segmented binary object

- These are region measures of segmentation performance
- May not be always relevant

Boundary measure of segmentation performance

• Hausdorff Distance between surfaces

$$d(X,Y) = Max_{x \in X} Min_{y \in Y} dist(x,y)$$

• Symmetric Hausdorff Distance between surfaces

$$\frac{d(X,Y) + d(Y,X)}{2}$$

• Often consider 95% quantile of (symmetric) Hausdorff distance

Validation of Segmentation Algorithm (2)

- <u>Extrinsic Validation</u> : comparison against other segmentation algorithms
 - Only possible when no ground truth exists (Inter-patient registration of images) or when it is not available
 - Estimate consistency, repeatability and size of convergence basin

3. Medical Image Segmentation

- 3.1 Taxonomy of segmentation algorithms
- 3.2 Validation of segmentation algorithms
- 3.3 **Deterministic Filtering & Thresholding Approaches**
- 3.4 Probabilistic Imaging Model
- 3.5 Expectation Maximisation for GMM
- 3.6 Image classification with bias field
- 3.7 Variational Bayes EM
- 3.8 STAPLE Algorithm

Thresholding & Mathematical Morphology

• Main Idea :

A structure is characterized by its intensity values and its connectivity

Valid for highly contrasted structures

- Basic Algorithm :
 - Thresholding between 2 grey levels (windowing)
 - Mathematical morphology operations
 - Erosion and Dilation
 - Closure & Opening
 - Extraction of connected components

Extraction of Connected Components

- Input : a binary image & a choice of neighborhood
- **Output** : for each object voxel provides the index of the connected component to which that voxel belongs

- Algorithm performed efficiently in 2 passes
- Often sort components by size

Application

Brain Segmentation of MR Image

Original slices

Application

Brain Segmentation of MR Image

Application

Brain Segmentation of MR Image

4 slices after a single 3D erosion

Application

Brain Segmentation of MR Image

4 slices after extraction of the largest connected component

Application

Brain Segmentation of MR Image

4 slices after 3D conditional dilation

Application

Brain Extraction

Limitations of Thresholding

- Difficulty to select threshold, e.g. from greylevel histogram (Otsu's method)
- Create staircase effects since assignment of one voxel to one class
 - Does not take into account the effect of <u>partial</u> <u>volume effect</u> (PVE)
- Does not assume any spatial correlation of voxel intensity (isolated voxels)

Use of classification methods

Interest of Image Classification

Noise & Partial volume effect

Liver from

CT image with 3 classes :

Lesion, vessels & parenchyma

Brain MRI

MR Bias Field

Image with bias artefact

Corrected / image

3. Medical Image Segmentation

- 3.1 Taxonomy of segmentation algorithms
- 3.2 Validation of segmentation algorithms
- 3.3 Deterministic Filtering & Thresholding Approaches
- 3.4 Probabilistic Imaging Model
- 3.5 Expectation Maximisation for GMM
- 3.6 Image classification with bias field
- 3.7 Variational Bayes EM
- 3.8 STAPLE Algorithm

Probability Reminder

continuous

$$p(A) = \int_{B} p(A|B_x) p(B_x) dB_x$$

Bayes Law

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

Conditional & Marginal probability

Distribution of a pair (x,y) of random variables

Distance between distributions

- How similar are 2 probability distribution functions ?
 - Kullback-Leibler Divergence or relative entropy: $D_{kL}(P||Q) = \sum_{i} P(i) \log \frac{P(i)}{Q(i)}$
 - Non symmetric
 - Always positive
 - Null iff the two distributions are equal
 - Hellinger distance

$$D_{H}(P||Q)^{2} = \frac{1}{2} \sum_{i} \left(\sqrt{P(i)} - \sqrt{Q(i)} \right)^{2}$$

Generic Probabilistic Imaging Model

Fundamental assumption : Image intensities depends on voxel class

Parameters θ_S and θ_I may be parameters or random variables and are unknown

Generic Probabilistic Imaging Model

Labelling Process

Imaging Process

Notations :

• z_n label of voxel n One in K coding $z_{nk} = 1$ if voxel n belongs to class k

 z_n is a vector of K binary variables

- $Z = \{z_n\}$ set of image labels
- θ_S set of label parameters (e.g. atlas related parameters, shape parameters)

Notations :

- x_n intensity vector of voxel n of dimension d
- $X = \{x_n\}$ set of image intensities
- θ_I set of imaging parameters (e.g. Gaussian mixture parameters)

Hypothesis on Labelling Process

• Prior
$$p(Z|\theta_S)$$
 $z_n = \begin{bmatrix} z_{n1} \\ \dots \\ z_{nk} \end{bmatrix}$

- By construction $\sum_{k} p(z_{nk} = 1) = \sum_{k} z_{nk} = 1$
- Common choices :
 - Random labeling : uninformative prior
 - Homogeneous prior (same probability for all voxels):

 $p(z_{nk} = 1) = p(z_{mk} = 1) = \pi_k$ $p(z_n) = \sum_k z_{nk} \pi_k = z_n \cdot \pi$

- Labels from Atlas registration
- Labels from parametric model

Segmentation Problem as Maximization of probability

- Segmentation is **an inverse problem** consisting in estimating labels Z, and parameters θ_i and θ_s from the knowledge of Intensities X θ_s .
- Posterior probability :

•
$$p(Z|X, \theta_S, \theta_I) = \frac{p(X|Z, \theta_I)p(Z|\theta_S)}{p(X|\theta_I, \theta_S)}$$
 through Bayes Law

- Likelihood :
 - Likelihood $p(X|Z, \theta_I)$ is the probability of observing the data given the label and image parameters

Ζ

X

 θ_{I}

- Marginal likelihood or Evidence :
 - $p(X|\theta_I, \theta_S) = \sum_Z p(X|Z, \theta_I)p(Z|\theta_S)$ is a) is only a function of parameters θ_i and θ_S thus suitable for i) optimization of parameters and ii) for model selection.
 - It is often untractable but can be approximated by a lower bound

Segmentation Problems

- Hard Segmentation :
 - Objective is to estimate Z, i.e provide one label per voxel
- Soft Segmentation (aka classification)
 - Objective is to estimate posterior probability of each voxel $p(z_{nk} = 1|X)$ such that they sum to 1

$$p(Z|X,\theta_S,\theta_I) = \frac{p(X|Z,\theta_I)p(Z|\theta_S)}{\sum_{Z^*} p(X|Z^*,\theta_I)p(Z^*|\theta_S)}$$

• Require estimating parameters θ_I and θ_S

Inference approaches

- Point estimates :
 - Maximum Likelihood
 - Maximum a posteriori
- Posterior estimates
 - Exact inference
 - Variational Bayes
 - Stochastic Sampling

Maximum Likelihood

- Can be used for parameters or random variable $$\theta_I$$

$$\widehat{\theta}_{I} = \arg\max_{\theta_{I}} p(X|Z, \theta_{I})$$

Maximum Likelihood For image parameters

$$\hat{Z} = \arg\max_{Z} p(X|Z, \theta_{I})$$

Maximum Likelihood For label Ζ

Χ

 $(\widehat{\theta_{I}}, \widehat{Z}) = \underset{Z, \theta_{I}}{\arg \max} p(X|Z, \theta_{I})$

Maximum a posteriori

 $\theta_{S \setminus}$

 θ_{I}

Ζ

X

- Maximize posterior probability or joint probability
- **Bayes Law** $: p(Z|X, \theta_S, \theta_I) = \frac{p(X|Z, \theta_I)p(Z|\theta_S)}{p(X)} = \frac{p(X, Z|\theta_I, \theta_S)}{p(X)}$

$$(\hat{Z}, \hat{\theta}_{I}, \widehat{\theta}_{S}) = \underset{Z, \theta_{I}, \theta_{S}}{\operatorname{arg\,max}} p(X|Z, \theta_{I}) p(Z|\theta_{S})$$

$$\gamma$$
Maximum A Posteriori Imaging Term Label Term

• If labels and intensity are independent $(p(Z) = \prod_n p(z_n)), (p(X) = \prod_n p(x_n))$ then equivalent to assigning a label to each voxel

Posterior estimates

- Exact posterior in simple cases $p(Z|X, \theta_I, \theta_S), p(\theta_I|X), p(\theta_S|Z)$
- Approximate posterior distribution :
 - Variational Bayes : seek q(Z) as approximation of $p(Z|X, \theta_I, \theta_S)$ which minimized $D_{KL}(p(Z|X, \theta_I, \theta_S)||q(Z))$
 - Stochastic sampling (e.g. Gibbs sampling, MCMC)

General Taxonomy of methods

Combination of difference inference methods for different variables

	Label Z	Parameter θ_I	Parameter θ_S
Maximum likelihood			
Maximum a posteriori			
Exact Posterior			
Variational Bayes			
Stochastic Sampling			

Notation Reminder

- K is the number of classes : $K \ge 1$
- N is the number of voxels
- *d* is the dimension of the feature vector x_n
- $p(z_{nk} = 1 | \theta_S)$ is the **prior** on the label of class k at voxel n
- $p(z_{nk} = 1 | x_n)$ is the **posterior** probability of having label k at voxel n
- $p(x_n, z_{nk})$ is the **joint probability** of having voxel intensity x_n and label k
- $p(x_{nk} = 1 | \theta_I, \theta_S)$ is the marginal likelihood
- $p(x_{nk} = 1 | \theta_I, Z_n)$ is the **likelihoo** formatice mathematice 57

Example 1 : Multivariate Gaussian Image

- Hypothesis :
 - All voxels are independent : $p(X|\theta_I) = \prod_n p(x_n|\theta_I)$ and $p(Z) = \prod_n p(z_n) = 1$
 - Only one class K=1 !! Everywhere $z_{n1} = 1$
 - Voxel intensities x_n are vectors :
 - For instance intensity, gradient, second derivatives
 - Multi sequence MR images : PD, T1, T2, Flair
 - $p(x_n | \theta_I)$ is a multivariate Gaussian

 θ_I

Gaussian Distribution

 We assume that for a given class of tissue k, the intensity follows a Gaussian Distribution

$$P(I|\mu_k, \sigma_k) = \mathcal{N}(I|\mu_k, \sigma_k) = \frac{1}{\sqrt{2\pi\sigma_k^2}} \exp\left(-\frac{(I-\mu_k)^2}{2\sigma_k^2}\right)$$

mean Standard deviation

Multivariate Gaussian

- We suppose that at each voxel there is a feature vector x of size d
- Introduce mean vector μ , covariance matrix Σ as $d \times d$ positive definite matrix

Example 1 : Maximum Likelihood

- For multivariate Gaussian $\theta_I = \{\mu, \Sigma\}$
- Objective : given image X, estimate mean μ and covariance Σ
- Equivalently maximize the log likelihood $\ln p(X|\mu, \Sigma) = -\frac{N}{2} \ln|\Sigma| - \frac{dN}{2} \ln(2\pi) - \frac{1}{2} \sum_{n=1}^{N} (x_n - \mu)^T \Sigma^{-1} (x_n - \mu)$

Vector and Matrix Derivation

- For any vector **x** • For any matrix A $\frac{\partial \left(\frac{x^{T}Ax}{2}\right)}{\partial x} = Ax$ $\frac{\partial \ln|A|}{\partial A} = (A^{-1})^{T} = A^{-T}$
- For symmetric Matrix A

$$\frac{\partial \left(xA^{-1}y \right)}{\partial A} = -A^{-T}xy^{T}A^{-T}$$

Maximum Likelihood Solution

• Maximizing w.r.t. the mean gives the sample mean

$$\mu_{ML} = \frac{1}{N} \sum_{n=1}^{N} x_n$$

Maximizing w.r.t covariance gives the sample covariance

$$\Sigma_{ML} = \frac{1}{N} \sum_{n=1}^{N} (x_n - \mu_{ML}) (x_n - \mu_{ML})^T$$

Example 2 : Gaussian Mixture

- Hypothesis :
 - All voxels are independent : $p(X|Z) = \prod_n p(x_n|z_n)$ and $p(Z) = \prod_n p(z_n)$
 - More than one class $K \ge 2$
 - Voxel intensities x_n are vectors
 - Label Priors are unknown but homogeneous : $\forall n, m \ p(z_{nk} = 1) = p(z_{mk} = 1) = \pi_k$
 - $p(x_n|z_{nk} = 1) = \mathcal{N}(x_n|\theta_k)$ is a multivariate Gaussian
- Notations : $\theta_k = \{\mu_k, \Sigma_k\} \ \theta = \{\theta_k, \pi_k\}$ $\theta_S = \{\pi_k\} \ \theta_I = \{\theta_k\}$

Ζ

Х

 θ_I

Gaussian Mixture

•
$$p(x_n|z_n) = \sum_k z_{nk} \mathcal{N}(x_n|\theta_k)$$

 Marginal likelihood obtained by law of total probability

$$p(\mathbf{x}_n) = \sum_{z_n} p(x_n | z_n) p(z_n) = \sum_k \pi_k \mathcal{N}(x_n | \theta_k)$$

• Mixing coefficients π_k are homogeneous

$$\sum_{k=1}^{K} \pi_k = 1 \quad 0 \le \pi_k \le 1$$

Joint Probability

 Graphical model which reflects the fact that Z explains X

• Define the joint probability $p(x_n, z_{nk} = 1) = p(x_n | z_{nk} = 1) p(z_{nk} = 1) = \pi_k \mathcal{N}(x_n | \theta_k)$ $p(x_n, z_n) = \sum_k z_{nk} \pi_k \mathcal{N}(x_n | \theta_k)$

Sampling a Gaussian Mixture

- To generate a data point:
 - first pick one of the components with probability $\pi_{\rm k}$
 - then draw a sample x_i from that component following Gaussian law with parameter θ_k
- Repeat these two steps for each new data point

Mixture of 3 Gaussians

Contour of probability distribution

Surface Plot

Sampled Gaussian Mixture

Gaussian Mixtures & posterior probabilities

Marginal Likelihood

$$p(\mathbf{x}) = \sum_{z} p(x|z)p(z) = \sum_{k=1} \pi_k \mathcal{N}(x|\mu_k, \Sigma_k)$$

 Use Bayes law to obtain the posterior probabilities

$$p(z_{nk} = 1 | x_n) = \frac{p(x_n | z_{nk} = 1) p(z_{nk} = 1)}{p(x_n)} = \frac{\pi_k \mathcal{N}(x_n | \mu_k, \Sigma_k)}{\sum_{j=1}^K \pi_j \mathcal{N}(x_n | \mu_j, \Sigma_j)}$$

Posterior Probabilities (colour coded)

Posterior Probability Map

Dense Posterior Probability Map

Gaussian Mixture & Images

 If x is the image intensity then p(x) can be estimated with the normalized histogram

Gaussian Mixture & Histogram

 Assume that the probability p(x) can be decomposed into a sum of Gaussian distributions

Gaussian Mixture & Histogram

• Interpretation of posterior probability distributions $p(z_k = 1|x) = \frac{OP_k}{OP}$

Problem to solve

- Given
 - Image X={x_i} i=1..N
 - Number of classes K
- What are :
 - Gaussian distribution parameters of each class $\theta_I = \{\theta_k\} = \{\mu_k, \Sigma_k\}$
 - Mixture probabilities $\{\pi_k\}$
 - Posterior probabilities

$$p(z_{nk} = 1 | x_n, \theta) \quad \theta = \{\theta_k, \pi_k\}$$

Marginal Likelihood Function

Define the marginal likelihood as the probability of having the data, knowing the parameters

$$\Lambda(\pi,\theta) = p(X \mid \theta) = \prod_{n=1}^{N} p(x_n \mid \theta)$$

Or the (marginal) Log-likelihood L

 $L(\pi,\theta) = \log \Lambda(\pi,\theta) = \sum_{n} \log(\sum_{k} \pi_{k} \mathcal{N}(x_{n};\mu_{k},\sigma_{k}))$

Maximization of Log Likelihood ?

- Classical approach :
 - Write log-Marginal Likelihood of data as a function of θ
 - Coordinate ascent : optimize with respect to each parameter θ_i successively
- Differentiating the log likelihood with μ_k

and set equal to zero gives

$$\frac{\partial \Lambda}{\partial \mu_k} = \sum_{n=1}^{N} \frac{\pi_k G(x_n; \mu_k, \Sigma_k)}{\sum_{j=1}^{K} \pi_j G(x_n; \mu_j, \Sigma_j)} \Sigma_k^{-1}(x_n - \mu_k) = 0$$

Giving a non linear function of the unknown parameters. Cannot be solved in closed form.

3. Medical Image Segmentation

- 3.1 Taxonomy of segmentation algorithms
- 3.2 Validation of segmentation algorithms
- 3.3 Deterministic Filtering & Thresholding Approaches
- 3.4 Probabilistic Imaging Model
- 3.5 Expectation Maximisation for GMM
- 3.6 Image classification with bias field
- 3.7 Variational Bayes EM
- 3.8 STAPLE Algorithm

Expectation Maximisation Algorithm

- Iterative approach for estimating parameters of (Gaussian) Mixture parameters
- General Idea :
 - New criterion : Add unknown variable u (posterior) and add constraint (KL divergence)
 - Alternate maximization performed in closed form : equivalent to lower bound maximization

Alternate maximisation

- Replace Log-Likelihood with a criterion easier to optimize but with additional unknowns
- Log-(marginal) likelihood : $L(\theta) = \log \Lambda(\theta) = \sum_{n} \log(\sum_{k} \pi_{k} \mathcal{N}(x_{n}; \mu_{k}, \sigma_{k}))$
- New criterion $F(\theta, u)$:
 - Add $u = \{u_{nk}\}$ as unknown. u is a vector of u_{nk} which is the posterior probability

 $F(\theta, u) = L(\theta) - D_{KL}(u||p(z|x))$

• By maximizing F with respect to u,

$$u_{nk} = p(z_{nk} = 1 | x_n)$$

Why is it easier to optimize $F(\theta, u)$?

- General result :
 - X = observed random variable
 - Z = hidden random variable
 - Joint probability $p(x_n, z_n) = p(x_n|z_n)p(z_n) = p(z_n|x_n)p(x_n)$
 - Constraint on u_{nk} : $\sum_k u_{nk} = 1$
 - Log likelihood : $L(\theta) = \sum_{n} \log p(x_n) = \sum_{n} \sum_{k} u_{nk} \log p(x_n)$
 - New criterion :

 $F(\theta, u) = \sum_{n} \sum_{k} u_{nk} \log p(x_n) - \sum_{n} \sum_{k} u_{nk} \log u_{nk} / p(z_{nk}|x_n)$

 $F(\theta, u) = \sum_{n} \sum_{k} u_{nk} \log p(x_n, z_{nk}) - \sum_{n} \sum_{k} u_{nk} \log u_{nk}$

Interpretation

• New criterion involves 2 terms :

- $F(\theta, u)$ is the variational lower bound
- -F(θ, u) is the variational free energy= average energy entropy
- $Q(\theta, u) = \sum_{n} \sum_{k} u_{nk} \log p(x_{nk}, z_{nk}) = \mathbb{E}_{U}(\log p(X, Z))$ is the expectation of the complete likelihood
- $\mathbb{H}(u) = -\sum_{n}\sum_{k} u_{nk} \log u_{nk}$ is the **entropy** of the approximate posterior probability
- $Q(\theta, u)$ is easier to optimize wrt θ because it involves complete likelihood = likelihood of observed and hidden variables

Evidence Lower Bound

- General result :
 - For any inverse problem where Z is the x hidden variable and X observed variable :

$$\log p(X) - D_{KL}(u||p(Z|X))$$
$$= \mathbb{E}_u(\log p(X,Z)) + \mathbb{H}(u)$$

• Variational lower bound : $\log p(X) \ge \mathbb{E}_u(\log p(X,Z)) + \mathbb{H}(u)$

Hidden

Observed

Ζ

Case of Gaussian Mixtures

Log likelihood

 $L(\theta) = \log \Lambda(\theta) = \sum_{n} \log(\sum_{k} \pi_{k} \mathcal{N}(x_{n}; \mu_{k}, \sigma_{k}))$

• Function of parameters :

$$Q(\theta, u) = \sum_{n} \sum_{k} u_{nk} \log \pi_k \mathcal{N}(x_n | \mu_k, \Sigma_k)$$

- Note that we have sum of log instead of log of sums !
- Criterion $F(\theta, u) = Q(\theta, u) + H(u)$ is known as **Hathaway criterion**

EM Algorithm

• The algorithm optimizes alternatively between u and θ = coordinate ascent

 $F(\theta, u) = L(\theta) - D_{KL}(u||p(z|x)) = Q(\theta, u) + \mathbb{H}(u)$

- Constraints : $\sum_{k} \pi_{k} = 1$ $\sum_{k} u_{nk} = 1$
- E-step

maximize
$$F(\theta, u)$$
 wrt u
Compute $u_{nk} = \frac{\pi_k \mathcal{N}(x_n | \mu_k, \Sigma_k)}{\sum_{k=1}^K \pi_k \mathcal{N}(x_n | \mu_k, \Sigma_k)}$

 Equivalent to minimizing KL divergence between u and posterior probability

M-Step

- M-step : maximize $F(\theta, u)$ or equivalently $Q(\theta, u)$ wrt $\theta = \{\theta_S, \theta_I\}$
 - Optimize with respect to mean μ_k

$$\frac{\partial Q}{\partial \mu_k} = 0 \qquad \Longrightarrow \qquad \mu_k = \frac{\sum_{n=1}^N u_{nk} x_n}{\sum_{n=1}^N u_{nk}}$$

• Optimize with respect to covariance Σ_k

$$\frac{\partial Q}{\partial \Sigma_k} = 0 \qquad \Longrightarrow \qquad \sum_{k=1}^{N} u_{nk} (x_n - \mu_k) (x_n - \mu_k)^T \frac{\sum_{k=1}^{N} u_{nk}}{\sum_{k=1}^{N} u_{nk}}$$

Optimize with respect to prior probabilities

$$\frac{\partial Q}{\partial \pi_k} = 0 \qquad \Longrightarrow \qquad \pi_k = \frac{1}{N} \sum_{n=1}^N u_{nk}$$

EM Algorithm for GMM

- Iterative scheme
 - Make initial guesses for the parameters
 - Alternate between the following two stages:
 - 1. E-step: evaluate posterior u_{nk}

$$u_{nk} = \frac{\pi_k \mathcal{N}(x_n | \mu_k, \Sigma_k)}{\sum_{k=1}^K \pi_k \mathcal{N}(x_n | \mu_k, \Sigma_k)}$$

2. M-step: update parameters (μ_k , Σ_k , π_k) using ML results

EM as Iterated Lower Bound Maximisation

- Equivalent view of EM algorithm :
 - E-step leads to u = p(z|x) and therefore makes $L(\theta_t) = F(\theta_t, u)$.
 - F(θ, u) is a lower bound of Log-likelihood L(θ) since Kullback Leibler divergence is positive
 - M-step optimizes $F(\theta, u)$ respect to θ which is easier to maximize than log likelihood

Example of EM with 2 Gaussian distributions

EM on Iris data

equal prior, spherical

equal prior, ellipsoidal

Class Priors

- Initial hypothesis : homogeneous priors $p(z_{nk} = 1) = \pi_k$ is estimated
- Priors may be given by atlas registered on images. In this case θ_s are the registration parameters

Atlas

T1 template

Affinely Registered Atlas Prior $p(z_{n1})$ on grey matter

gray matter

Prior $p(z_{n2})$ on

White matter

Prior $p(z_{n3})$ on cerebro spinal fluid

csf

Courtesy of D. Vandermeulen

Example : BrainWeb at MNi

http://www.bic.mni.mcgill.ca/brainweb/

EM for Image Intensity Classification

Use the EM algorithm
[Dempster77,Wells94] :

Expectation-Maximisation

Brain Tissue Classification

Typical application : use MR cerebral

EM Classification - Algorithm

Stage 1: Expectation

Stage 2: Maximization

Iterations EM

Courtesy of K. Van Leemput

Results

Courtesy of K. Van Leemput

GMM and K-Means

- GMM with :
 - Isotropic variance $\Sigma_k = \epsilon Id$
 - Uniform prior : $\pi_k = \frac{1}{\kappa}$
- Expectation of complete Lik. : q

$$(\theta) = -\sum_{n} \sum_{k} \frac{u_{nk} |x_n - \mu_k|^2}{2\epsilon}$$

- Same as Fuzzy-Cmeans with m=1
- Same as K-means when :

•
$$\epsilon \to 0$$

• $u_{nk} \in \{0,1\}$ $u_{nk} = \frac{\exp(-|x_n - \mu_k||^2/2\epsilon)}{\sum_{j=1}^{K} \exp(-||x_n - \mu_j||^2/2\epsilon)} \to r_{nk} \in \{0,1\}$

K Means functional

- K Means algorithm consists in optimizing the functional :
 - $J(r,\mu) = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||x_n \mu_k||^2$
 - With the constraint that $r_{nk} \in \{0,1\}$ and $\sum_{k=1}^{K} r_{nk} = 1 \ \forall n$
- J can be seen as
 - minimizing the correlation between the assignment and the distance to cluster center
 - Minimizing the compactness of the clusters

K Means optimization

- Perform alternate optimization :
 - Consider μ_k fixed and optimize on r_{nk}
 - For each data x_n choose which r_{nk} is 1

E-Step $r_{nk} = \begin{cases} 1 \text{ if } k = \arg \min_{j} ||x_n - \mu_k|| \\ 0 \text{ otherwise} \end{cases}$

- Consider r_{nk} fixed and optimize on μ_k

$$\frac{\partial J}{\partial \mu_k} = 2 \sum_{n=1}^N r_{nk} (\mu_k - x_n) = 0$$
$$\mu_k = \frac{\sum_{n=1}^N r_{nk} x_n}{\sum_{n=1}^N r_{nk}}$$

M-Step

Good Initial Seeds (kmeans++)

- Choose the centers as far away as possible from each other but in a random manner.
- Algorithm :
 - Choose one center at random μ_1
 - While $k \leq K$
 - Compute $d_n = \arg \min_{j < k} ||x_n \mu_j||^2$ the minimum distance of data x_n to the already chosen centers
 - Pick μ_k among data with probability proportional to d_n
 - k=k++

David Arthur and Sergei Vassilvitskii. k-means++: The advantages of careful seeding. "Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms", 2007, pp. 1027–1035

Issues with EM for GMM

- Presence of bias field in MR images
- EM leads to only local maxima of Log-likelihood
- Functional admits trivial solutions (zero covariance centered at data points) that can lead to bad estimate
- The covariance matrix Σ_k should be invertible which is not guaranteed (may use pseudo-inverse)
- How to choose the number of classes
- How to make the estimation robust to outliers ?

