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Medical Image Analysis – MVA 2023-2024 

• Tue Oct 3, ENSPS 2E30, Introduction to Medical Image Acquisition and 
Image Filtering, [HD]

• Tue Oct 10, ENSPS 3E34, Medical Image Registration [XP]

• Tue Oct 17, ENSPS 2E30, Riemanian Geometry & Statistics [XP] 

• Tue Oct 24, ENSPS 1B18, Basis of Image Segmentation [HD]

• Tue Nov 7, ENSPS 2E30, Image Segmentation based on Clustering and 
Markov Random Fields [HD]

• Tue Nov 14, ENSPS 3E34, Shape constrained image segmentation and 
Biophysical Modeling [HD]

• Tue Nov 21, ENSPS 1N82, Analysis in the space of Covariance Matrices [XP]

• Tue Nov 28, ENSPS 2E30, Diffeomorphic Registration end computational
anatomy [XP]

• Tu Dec 5, VISI Exam [HD, XP] 

Xavier Pennec

Course Exam

4 components :

� Scientific Article Study :
� 10 min oral presentation

� 10 min Questions & Answers

� 5-6 page report presenting the paper and putting it in 
perspective. 

� Implementation (optional)

� May be performed in pairs or triplets depending on class size 

� Multiple choice Quizz : 10-15 questions

Xavier Pennec 3
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Goals of Registration

A dual problem

� Find the point y of image J which is corresponding 
(homologous) to each points x of image  I.

� Determine the best transformation T that 
superimposes homologous points

I

T

J

kxky

Xavier Pennec
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Principal Applications

� Fusion of multimodal images

� Temporal evolution of a pathology

� Inter-subject comparisons

� Superposition of an atlas

� Augmented reality

Xavier Pennec
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Fusion of Multimodal Images

MRI PET X-scan

US

Visible Man

Histology

Xavier Pennec
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Temporal Evolution

Time 1

axialsagittal

coronal coronal

axialsagittal

Time 2

Xavier Pennec
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Inter-Subject comparison

Xavier Pennec
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Registration to an Atlas

Voxel Man

Xavier Pennec
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Augmented reality

Brigham & Women ’s Hospital 

E. Grimson

Xavier Pennec
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Classes of problems  vs. applications

Temporal evolution

Multimodal image fusion

Inter-subject comparison

Superposition on an atlas 

Intra Subject – Monomodal

Intra Subject - Multimodal

Inter Subject - Monomodal

Inter Subject - Multimodal

Intra Subject: Rigid or deformable

Inter Subject: deformable

Xavier Pennec
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Intuitive Example

How to register these two images?

Xavier Pennec
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Feature-based/Image-based approach

Feature detection (here, points of high curvature)

Measure: for instance  
k

kkTTS
2

)()( yx

Xavier Pennec
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Feature detection (here, points of high curvature)

Measure: for instance  
k

kkTTS
2

)()( yx

Feature-based/Image-based approach

Xavier Pennec
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No segmentation!

Measure: e.g.  
k

kk jiTS 2)()(

ki

kj

)( kT x kx

T

))(( kk TJj xInterpolation:

Feature-based/Image-based approach

Xavier Pennec
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No segmentation!

T1 =Id 

Measure: e.g.  
k

kk jiTS 2)()(

Feature-based/Image-based approach

Xavier Pennec

17

No segmentation!

T2

Measure: e.g.  
k

kk jiTS 2)()( Partial overlap

Feature-based/Image-based approach

Xavier Pennec
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Classes of Transformations T

� Rigid (displacement)

� Similarities

� Affine (projective for 2D / 3D)

� Polynomials

� Splines

� Free-form deformations

Xavier Pennec
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Classes of Transformations T

Rigid: 

� Rotation and translation

� 6 parameters: (R: 3; t: 3)

� invariants: distances (isometry), frame 
orientation, curvatures, angles, straight 
lines

Similarities: 

� Add a global scale factor

� 7 parameters

� invariants: ratio of distances, 
orientation, angles, straight lines

tRxxT )(

tRxsxT  .)(

Xavier Pennec
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Classes of Transformations T

Affine: 

� 3x3 matrix B

� 12 parameters: (B: 9; t: 3)

� invariants: straight lines, parallelism

Quadratic: 

� Add a symmetric 3x3 matrix A per axis

� 30 parameters (A: 18; B: 9; t: 3)

� invariants: do not preserve straight lines 
any more

tBxxT )(

𝑇 𝑥 ௞ ൌ 𝑎௜௝
௞  𝑥௜𝑥௝ ൅ 𝑏௜

௞𝑥௜ ൅ 𝑡௞

Xavier Pennec
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Classes of Transformations T

Splines: 

� Local polynomials of degree d, with a global 
continuity of degree C(d-1).

� number of parameters: depend on the 
number of control points (knots)

� locally affine: simplified version

Free form transformations: 

� a vector u(x) is attached to each point x
� parameters: at most 3 times the number of 

voxels

� regularization: constrain to homeomorphisms 
(diffeomorphisms)

)()( xuxxT 

Xavier Pennec
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Classification of registration problems

Type of transformation

� Parametric
Rigid (displacement), similarity, affine, projective

� Deformables
Polynomial, spline, free-form deformations

Type of acquisition

� Monomodal

� Multimodal

Homology of observed objects 

� Intra-subject (generally a well posed problem)

� Inter-subject (one-to-one correspondences, regularization ?)

Xavier Pennec
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),,(maxargˆ
Τ

TJIST
T



Registration: Given two datasets (images) I and J, 
find the geometric transformation T that « best »  
aligns the physically homologous points (voxels)

Registration: Given two datasets (images) I and J, 
find the geometric transformation T that « best »  
aligns the physically homologous points (voxels)

Mathematical Formulation of registration 
(Brown, 1992)

Transformation space (rigid, affine, elastic,…)

Similarity measureSimilarity measureOptimization algorithm

Xavier Pennec
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Feature-based registration

Multimodal Intensity-based Registration 

Deformable intensity-based Registration 

Course overview

Xavier Pennec
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Geometric methods

Extract geometric features

� Invariant by the chosen transformations 
� Points

� Segments

� Frames

Given two sets of features, registration consists in:

� Feature identification (similarity): Match homologous features 

� Localization: Estimate the transformation T

Algorithms

� Interpretation trees

� Alignement

� Geometric Hashing

� ICP

Xavier Pennec
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Artificial markers 

Stereotactic frame

� Invasive

� External markers

� Motion
� Short time use

Xavier Pennec
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Anatomical markers

Find geometric invariants to characterize a small number 
of singular points on anatomical surfaces 

Generalization of edges and corner points to 
differentiable surfaces

Xavier Pennec
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Anatomical markers

Find geometric invariants to characterize a small number of 
singular points on anatomical surfaces 

� Multiscale determinant of Hessian function (numerator of 
Gaussian curvature)

� 3D Harris detector [Rohr 99, Ruiz-Alzola et al 2001] based 
on the local correlation matrix Cൌ 𝐸ሺ𝛻𝐼 .𝛻𝐼௧ሻ

Detected salient points in a axial slice of a brain. In a) Beaudet/Thirion curvature 
based detector, in b) the Harris/Rohr correlation based method is shown. [From 
Lloyd, Szekely, Kikinis, Warfield 2005]

Xavier Pennec
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One global criterion, 

alternatively minimized over

� Step 1: matches

� Step 2: transformation

Positive and decreasing criterion: convergence

Robustness w.r.t. outliers: robust distances

Iterative closest point (ICP)
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1. Optimization for matches

Qj

Pi

Xavier Pennec
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2. Optimization for T

Qj

Pi

Xavier Pennec
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1-bis Optimization for matches

Qj
Pi

Xavier Pennec
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2-bis Optimization for T

Qj
Pi

Xavier Pennec
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Augmented reality guided
radio-frequency tumor ablation

Collaboration with IRCAD (Strasbourg, France) 
� Per-operative CT “guidance”

� Respiratory gating

� Marker based 3D/2D rigid registration 

S. Nicolau, X.Pennec, A. Garcia,L. Soler, N. Ayache

Xavier Pennec
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Increase 3D/2D registration accuracy:
A new Extended Projective Point Criterion 

Standard criterion: 

� image space minimization (ISPPC)

� noise only on 2D data

Complete statistical assumptions + ML estimation

� Gaussian noise on 2D and 3D data

� Hidden variables Mi (exact 3D positions) 

2
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Registration for Augmented reality

Xavier Pennec
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Whole loop accuracy evaluation

Stereoscopic HD video acquisition 

Real scene: phantom + needle

Left monitor with AR 
& needle tracking

Right monitor with AR 
& needle tracking

Xavier Pennec
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Whole loop accuracy evaluation

Real scene: phantom + needle

Left monitor with AR 
& needle tracking

Right monitor with AR 
& needle tracking

Endoscopic control

Xavier Pennec
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Whole loop accuracy evaluation

Xavier Pennec
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Whole loop accuracy evaluation

Experimental setup

� Two participants (comp. sci. + surgeon)

� 100 needle targeting

Measures

� Distribution of hits
(endoscopic view, video recording)

� Average deviation from target
2.8 mm  1.4

� Average targeting time: 
46.6 sec.  24.64

[ S. Nicolau, A. Garcia et al.,  Aug. & Virtual Reality Workshop, Geneva, 2003 ]

Xavier Pennec
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Liver puncture guidance using augmented reality
3D (CT) / 2D (Video) registration

� 2D-3D EM-ICP on fiducial markers

� Certified accuracy in real time

Validation
� Bronze standard (no gold-standard)

� Phantom in the operating room (2 mm)

� 10 Patient (passive mode): < 5mm (apnea)

[ S. Nicolau, PhD’04 MICCAI05, ECCV04,, IS4TM03, Comp. Anim. & Virtual World 2005 ]

S. Nicolau, IRCAD / INRIA

Xavier Pennec
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Feature-based registration

Multimodal Intensity-based Registration 

Deformable intensity-based Registration 

Course overview

Xavier Pennec
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Intensity-based methods

No geometric feature extraction

Advantages: 

� Noisy images and/or low resolution

� Multimodal images

Drawbacks:

� All voxels must be taken into account

Xavier Pennec
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Compare multi-modal images?

Which similarity criterion ? 

� Many available criteria: 
� SSD, Correlation, Mutual Information...?

� Variable costs and performances

� Where is the optimum ?

Maintz & Viergever, Survey of Registration Methods, Medical Image Analysis 1997

Xavier Pennec
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Classification of existing measures
Assumed relationship

Adapted measures

Intensity conservation

Intensity of image J

In
te

n
s

it
y 

o
f 

im
a

g
e

 I

Sum of Square Differences
Sum of Absolute value of Differences
Measures of intensity differences (Buzug, 97)

 
k

kk jiTS 2)()(

))(( kk TJj xInterpolation:

Xavier Pennec
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Classification of existing measures
Assumed relationship

Intensity of image J
In
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n

s
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Affine

Adapted measures

Correlation coefficient
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Classification of existing measures
Assumed relationship

Woods’ criterion (1993)
Woods’ variants (Ardekani, 95; Alpert, 96; Nikou, 97)
Correlation ratio (Roche, 98)

Intensity of image J
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a

g
e

 I

Functional

Adapted measures
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Classification of existing measures
Assumed relationship

Joint Entropy (Hill, 95; Collignon, 95)
Mutual Information (Collignon, 95; Viola, 95)
Normalized Mutual Information (Studholme, 98)

Intensity of image J

In
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n
s
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o
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a

g
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Statistical

Adapted measures


i j jPiP
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jiPJIHJHIHJIMI

)()(

),(
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A general framework

� A. Roche proposed a unifying maximum likelihood framework

� Physical and statistical modeling of the image acquisition process

� Create a hierarchy of criteria

• Based on pioneer works of (Costa et al, 1993), (Viola, 1995), (Leventon & Grimson, 1998), 

(Bansal et al, 1998)

A. Roche, G. Malandain and N.Ayache : Unifying maximum likelihood approaches in medical
image registration. International Journal of Imaging Systems and Technology : Special Issue on 
3D Imaging 11(1), 71-80, 2000.

Xavier Pennec
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Principle of the method [A. Roche]

Generative model of images

Scène S

Acquisition 
model

Image I

Image J

Spatial
transfo.

Acquisition 
model

Anatomical
prior

),,,|,(max
,,,

SJI
T

TJIP
SJI




Maximum likelihood Inference

I

J

S

T
– parametric

– probabilistic

Scene S

Acquisition 
model

Image I

Image J

Spatial
transfo.

Acquisition 
model

Anatomical 
prior

Auxiliary variables: q

Xavier Pennec
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Generic model

Scene: discrete random field (segmentation)


l

lsSP )()( 

Assumptions:
– Spatial independence
– Stationarity

Xavier Pennec
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Generic model

Images: noisy measures of the scene






 
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

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Assumptions on  and :
– white (spatial indep.)
– Stationary 
– Gaussian
– Additive
– Independent of each other

 
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Likelihood function

Likelihood = joint law of images

 dSSPSJIPJIP )()|,(),(
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Example: X-Scan / MRI rigid registration

The estimation of  allows the a posteriori estimation of the scene

Xavier Pennec
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Limitations

� In general, the maximization w.r.t.  is costly (EM 
segmentation algorithm)

� With additional assumptions on , one can 
approach the solution analytically

Xavier Pennec
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Particular case 1
Assumptions

T 
Image I

Spatial 
transfo

Gaussian 
noiseImage J

kkk ji
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Maximum Likelihood

SSD
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Particular case 2
Assumptions

partby constant ,)(
||||

injective
fjfi

g
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Maximum Likelihood

Squared fit error

T f 
Image J Image I

Intensity 
function

Gaussian 
noise

Spatial
Transfo.
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Particular case 2

Limit case: correlation ratio (CR)

)(Var

))((min
)(

2

2
| In

jfi
T k

kk
f

JI

 


Squared fit error

Different normalization 
of the likelihood criteria

Equivalence ML / CR

Xavier Pennec
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Particular case 3

Assumptions

Scene S
Discrete 

field

Gaussian 
noise

Image I

Image J

Spatial 
transfo.

Gaussian 
noise

Unknown number
of classes

Known 

Known 

Xavier Pennec
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Particular case 3

 termscorrective
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Choice of a criterion

� Choosing a criterion imposes to deeply understand 
the physical image acquisition process

� Whenever several models are known, choosing the 
one with the smallest number of degrees of freedom 
increase the robustness of the approach. 

� Current trend: learn it. 
Pitfall: no idea of #dof and local minima

Xavier Pennec
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• Rigid matching tools for MR

• MR / US registration

• US tracking of brain    
deformations

Roboscope

Robot / patient 
coordinate system

MR 0 with surgical plan

Virtual MR n

MR coordinate system

MR 1

Virtual MR 2

TMR/US

B
ra

in
d

ef
o

rm
at

io
n

o
ve

r 
ti

m
e

US coordinate system

US 1

US 2

US n

TMR0 / MR1

Xavier Pennec
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Manipulator

QuickTime™ and a
Intel Indeo® Video 5.0 decompressor

are needed to see this picture.

QuickTime™ and a
Intel Indeo® Video 5.0 decompressor

are needed to see this picture.

Steady Hand Motion Compensation
Active Motion Constraints

Courtesy B. Davies & S. Starkie

Xavier Pennec
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Manipulator

QuickTime™ and a
Intel Indeo® Video 5.0 decompressor

are needed to see this picture.

QuickTime™ and a
Intel Indeo® Video 5.0 decompressor

are needed to see this picture.

Steady Hand Motion Compensation
Active Motion Constraints

Courtesy B. Davies & S. Starkie

Xavier Pennec
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MR-US Images

Pre - Operative MR Image

Acquisition of images : L. & D. Auer, M. Rudolf

axial

coronal sagittal

Per - Operative US Image

axial

coronal sagittal

Xavier Pennec
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Elementary principles of US imagery

Z
u

x

)()(.)( xxux  ZIrf

)()(.log)( xxux  BZAI

Logarithmic

compression

US MRI Grad MRI

Ultrasound image / MRI registration

Xavier Pennec
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Ultrasound image / MRI registration

Assumption: acoustic impedance is a function of the 
MR signal (denote by J)

)())(()())(()( xxxxx JJgZJgZ 

Relation between US and MR signals

  )()(.),()( xxuxx  JJfI

In practice, the influence of 
orientation is neglected

  )()(),()( xxxx  JJfI

Xavier Pennec
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Dependency 
Hypothesis

Bivariate Correlation Ratio

A. Roche, X. Pennec, G. Malandain, and N. Ayache
Rigid Registration of 3D Ultrasound with MR Images:
a New Approach Combining Intensity and Gradient Information.
IEEE Transactions on Medical Imaging, 20(10):1038--1049, October 2001.

2)))((),(((ˆ)((minargˆ  
k

kkk
T

xTJxTJfxIT

|)|,( JJfI 

Intensity =  function of 2 variables

2 iterated stages

� Robust polynomial approx. of f

� Estimation of T:

Xavier Pennec
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Per - Operative US Image

Typical Registration Result
with Bivariate Correlation Ratio

Pre - Operative MR Image

Registered

Acquisition of images : L. & D. Auer, M. Rudolf

axial

coronal sagittal

axial

coronal sagittal

Xavier Pennec
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US Intensity 
MR Intensity and Gradient

Xavier Pennec
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Feature-based registration

Multimodal Intensity-based Registration 

Deformable intensity-based Registration 

Course overview

Xavier Pennec

The deformable Registration Landscape in 1995

Optical flow 
� Horn and Schunck, Artif. Intell. 17,  1981; 

� Aggarwal and Nandhakumar, Proc. IEEE 76: 917–935,1988; 

� Barron et al., 1994.

Linear elastic deformation
� Broit, PhD 1981.

� Bajcsy and Kovacic CVGIP 46, 1989

� Gee, Reivich, Bajcsy, J. Comp. Assis.Tom. 17, 1993.

Fluid (images & surface)
� Christensen, Rabbitt, Miller, Phys. Med. Biol. 39, 1994. 

� Christensen, Rabbitt, Miller.IEEE Trans. Im. Proc. 5(10), 1996.

� Thompson and Toga, IEEE TMI 15(4), 1996.

74Xavier Pennec
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Mechanical deformations

T is a deformation endoded by its displacement vector 
field: )()( iiii xuxxTx 

  2))(()(( xuxJxIC

)())()((),( uxJuxJxIuxF  (1)

Similarity measure is the SSD

The differential of this energy is considered as a force:

75Xavier Pennec

� Or as a viscous fluid (Navier-Stokes, Viscosity Coef.)

Mechanical deformations

The force F is applied to the image considered

� Either as a linear elastic material (Lamé Coef.)

Fvdivv  ))(()(2 

vuv
t

u
 )( 




Fudivu  ))(()(2  (2)

(3)

(4)

Equations (2) and (3) are iteratively solved with F computed by (1). 

u is computed by integrating equation (4).

76Xavier Pennec

Difficulties

� Differential equations are costly to solve 

� Regularity of T?

� Small time steps, many iterations 

� Very high computation time...

77Xavier Pennec
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Demons…

78

Demon 
• Computer Science 

A program or process that sits idly in the background until it is invoked to perform 
its task.

• A person who is part mortal and part god
Demigod, deity, divinity, god, immortal - any supernatural being worshipped as 
controlling some part of the world or some aspect of life or who is the 
personification of a force

• Maxell's demon 
An imaginary creature who is able to sort hot molecules from cold 
molecules without expending energy, thus bringing about a general decrease in 
entropy and violating the second law of thermodynamics.

Xavier Pennec

Demons’ algorithm (MRCAS 95, CVPR96, Media98)

Patient 1 Patient 2

79Xavier Pennec
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� Inspired by Christensen & Miller’s work

� Algorithm in O(N) 

� 2 alternated steps

� Image forces create a displacement field un (normalized optical flow)

� Regularization of un by Gaussian filtering

J.P. Thirion: Image Matching as a diffusion process: an analogy with Maxwell’s demons. 
Medical Image Analysis 2(3), 242-260, 1998.

Demons’ algorithm (MRCAS 95, CVPR96, Media98)

Xavier Pennec
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� T0= Identity

� Correction field

� Regularization by Gaussian filtering 
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Demons’ algorithm (MRCAS 95, CVPR96, Media98)

J.P. Thirion: Image Matching as a diffusion process: an analogy with Maxwell’s demons. 
Medical Image Analysis 2(3), 242-260, 1998.
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Demons’ algorithm (MRCAS 95, CVPR96, Media98)

R. Kikinis

Harvard Medical School

82Xavier Pennec

Intensity-based deformable registration

Demons algorithm: why does it work?

� + Fast, efficient 

� - Do not minimize an energy
� Difficult to analyze

� Convergence?

� Why does that work?

� How to change the similarity measure?

83Xavier Pennec
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Feature-based registration

Multimodal Intensity-based Registration 

Deformable intensity-based Registration 

� A historical perspective

� A Pair and Smooth approach

� Morphing

Course overview

Xavier Pennec
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Interpretation of demons

A variational framework to minimize a global energy

� Pennec-Cachier:

� Modersitzki: Min E with Neumann boundary conditions
2

*   uSSDE

J. Modersitzki : Numerical Methods for Image Registration, Oxford University Press,2004.

2

*  uSSDE
X. Pennec, P. Cachier and N. A. : Understanding the Demons Algorithm : 3D non rigid 
registration by gradient descent, MICCAI 1999, Springer-Verlag.

Why does that work? Convergence? Change the metric?

Xavier Pennec

PASHA: Pair-And-Smooth, 
Hybrid energy based Algorithm

� SSD : measures the similarity of intensities

� Reg : regularization energy (quadratic)

� x , i : smoothing and noise parameters 

� C : correspondences between points (vectors field)

� T : transformation (regularized vector field)

� Correspondences (matches) as an auxiliary variable

P. Cachier E. Bardinet, E. Dormont, X. Pennec and N. A.: Iconic Feature Based 
Nonrigid Registration: the PASHA Algorithm, Comp. Vision and Image Understanding 
(CVIU), Special Issue on Non Rigid Registration, 89 (2-3), 272-298, 2003.

)(Reg||||),,(),( 211
22 TTCCJISSDTCE
xi



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Alternated minimization

� Minimization with respect to C :
� Find matches between points by optimizing ES + in the 

neighborhood of T

� Gradient descent (1st, 2bd order, e.g. Gauss-Newton)

� Minimization with respect to T :
� Find a smooth transformation that approximates C

� Quadratic energy  convolution

� Interest: fast computation

)(Reg||||),,(),( 211
22 TTCCJISSDTCE
xi



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PASHA: Pair-And-Smooth, 
Hybrid energy based Algorithm

Xavier Pennec

Gauss-Newton optimization of the correspondences

Newton optimization 

� Second order Taylor expansion of E(C)

� Hessian matrix can be null or negative 

Gauss-Newton

� 1st order Taylor expansion of error

� Solve approximated SSD Criterion around C=T
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Gauss-Newton optimization of the correspondences

Exact solution of the quadratic approximation of the SSD

� Solve 

� By inversion lemma: 

� Local estimation of intensity variance:

� Assuming isotropic voxel size: 

dxxTxCdxxCJxICE
x

i .)()(.))(()(()(
2

2

2
2  





)).((.)).(( 2

2

TJITJuIdTJTJ
x

it  



 





222
/

)).((

xiTJ

TJITJ
u










22 )( ITJi  

12 x

I
TJII

TJI
u 






22
)( 



89Xavier Pennec



30

  0)(2)()( 222  ITJITJIITJII 

Important Practical Remark

� Norm of update is bounded by construction

� Update is diffeomorphic by tri-linear interpolation!
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Efficient Regularization

Quadratic regularizer

Euler Lagrange optimization of

Solution: Gaussian smooting

Extension to a family of quadratic filters
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P. Cachier and N. Ayache. Isotropic energies, filters and splines for vectorial regularization. 
J. of Math. Imaging and Vision, 20(3):251-265, May 2004.
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Pennec, Cachier, Ayache. Understanding the ``Demon's Algorithm'': 3D Non-Rigid 
registration by Gradient Descent. MICCAI 1999.
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Mixed Elastic / Fluid Regularization

� Result is still obtained by convolution: 

Tn =(1-). K*Cn + .(Tn + K*(Cn -Tn-1))

� Advantages: 
� Mixes fluid and elastic 

� handles large displacements

2||||),,(),( nnnSnn TCCJIETCE  

 )(Reg)1()(Reg. 1 nnn TTT   )(Reg. nT

P. Cachier N. A., Isotropic Energies, Filters and Splines for Vector Field Regulatization,
J. of Mathematical Imaging and Vision, 20: 251-265, 2004
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The Demons/PASHA Framework

Efficient energy minimization

Alternate Minimization 
� on C, Correspondance Field (image forces)

Gauss-Newton gradient descent: normalized optical flow

� on T,  Deformation Field (regularization)
Gaussian convolution

similarity Auxiliary Elastic + Fluid Regularity 

P. Cachier E. Bardinet, E. Dormont, X. Pennec and N. A.: Iconic Feature Based Nonrigid Registration: 
the PASHA Algorithm, Comp. Vision and Image Understanding (CVIU), 89 (2-3), 272-298, 2003.
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Xavier Pennec

Inter-subject registration
Affine transformation

Correct size and position but high remaining variability in cortex and deep structures

MR T1 Images 

256x256x120 voxels

Atlas to patient registration
for radiotherapy planning

94Xavier Pennec

Inter-subject registration
Fluid regularization

Very good image correspondence But anatomically meaningless deformation
Jacobian [1/50;50]

95Xavier Pennec
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Anatomically more meaningful deformation
Jacobian [1/5;5]

Registration in 5 min on 15 PCs

Inter-subject registration
Adaptive non-stationary visco-elastic regularization

96Xavier Pennec
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Feature-based registration

Multimodal Intensity-based Registration 

Deformable intensity-based Registration 

� A historical perspective

� A Pair and Smooth approach 

� Morphing

Course overview

Xavier Pennec
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Using registration 
for image interpolation and morphing

Interpolating motion and intensity changes 
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Image interpolation

Synthetic experiments

� Comparison with expected results

Translation Shrinking Shrinking + intensity 
variation

Xavier Pennec
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MORPHING

Xavier Pennec
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Interpolation and Extrapolation

t=0
neutral

t=0,5
attenuated expression

t=1
expression (smile)

t=1,5
exaggerated expression

Xavier Pennec


