Medical Imaging MVA 2023-2024

http://www-sop.inria.fr/teams/asclepios/cours/MVA

X. Pennec

Medical Image registration

Epione team 2004, route des Lucioles B.P. 93 06902 Sophia Antipolis Cedex

http://www-sop.inria.fr/epione Xavier Pennec

Medical Image Analysis – MVA 2023-2024

Tue Oct 3, ENSPS 2E30, Introduction to Medical Image Acquisition and Image Filtering, [HD] Tue Oct 10, ENSPS 3E34, Medical Image Registration [XP]

Tue Oct 17, ENSPS 2E30, Riemanian Geometry & Statistics [XP]

Tue Oct 24, ENSPS 1B18, Basis of Image Segmentation [HD]

Tue Nov 7, ENSPS 2E30, Image Segmentation based on Clustering and Markov Random Fields [HD]

Tue Nov 14, ENSPS 3E34, Shape constrained image segmentation and Biophysical Modeling [HD]

Tue Nov 21, ENSPS 1N82, Analysis in the space of Covariance Matrices [XP] Tue Nov 28, ENSPS 2E30, Diffeomorphic Registration end computational anatomy [XP]

Tu Dec 5, VISI Exam [HD, XP]

Xavier Pennec

2

3

Course Exam

4 components :

Scientific Article Study : 10 min oral presentation 10 min Questions & Answers 5-6 page report presenting the paper and putting it in perspective. Implementation (optional)

May be performed in pairs or triplets depending on class size

Multiple choice Quizz : 10-15 questions

Principal Applications	
Fusion of multimodal images	
Temporal evolution of a pathology	
Inter-subject comparisons	
Superposition of an atlas	
Augmented reality	
Xavier Pennec	5

Classes of problems vs. applications Temporal evolution Intra Subject - Monomodal Multimodal image fusion Intra Subject - Multimodal Inter-subject comparison Inter Subject - Monomodal Superposition on an atlas Inter Subject - Multimodal Intra Subject: Rigid or deformable Inter Subject: deformable Inter Subject: deformable

Classes of Transformations T

Xavier Pennec

Rigid (displacement)

Similarities

Affine (projective for 2D / 3D)

Polynomials

Splines

Free-form deformations

a vector u(x) is attached to each point xparameters: at most 3 times the number of 4 voxels regularization: constrain to homeomorphisms

(diffeomorphisms)

Xavier Pennec

Classification of registration problems

Type of transformation

Parametric Rigid (displacement), similarity, affine, projective Deformables Polynomial, spline, free-form deformations

Type of acquisition

Monomodal

Multimodal

Homology of observed objects

Intra-subject (generally a well posed problem)

Inter-subject (one-to-one correspondences, regularization ?)

22

24

Xavier Pennec

Course overview Feature-based registration Multimodal Intensity-based Registration Deformable intensity-based Registration

Geometric methods

Extract geometric features

Invariant by the chosen transformations Points Segments Frames

Given two sets of features, registration consists in:

Feature identification (similarity): Match homologous features Localization: Estimate the transformation T

25

Algorithms

Interpretation trees Alignement

Geometric Hashing

ICP

Anatomical markers

Find geometric invariants to characterize a small number of singular points on anatomical surfaces Multiscale determinant of Hessian function (numerator of

Gaussian curvature)

3D Harris detector [Rohr 99, Ruiz-Alzola et al 2001] based on the local correlation matrix $C = E(\nabla I \cdot \nabla I^t)$

Detected salient points in a axial slice of a brain. In a) Beaudet/Thirion curvature based detector, in b) the Harris/Rohr correlation based method is shown. [From Lloyd, Szekely, Kikinis, Warfield 2005]

Xavier Pennec

Increase 3D/2D registration accuracy: A new Extended Projective Point Criterion

Standard criterion:

$$\sum_{i=1}^{N} \left\| P^{l}(T^{*}M_{i}) - m_{i}^{l} \right\|^{2}$$

37

 $\sum_{l=1}^{M}$

image space minimization (ISPPC) noise only on 2D data

.....

Complete statistical assumptions + ML estimation

Gaussian noise on 2D <u>and</u> 3D data Hidden variables M_i (exact 3D positions)

 $\sum_{l=1}^{M} \sum_{i=1}^{N} \frac{\left\| P^{l}(T^{*}M_{i}) - \widetilde{m}_{i}^{l} \right\|^{2}}{2\sigma_{2D}^{2}} + \sum_{i=1}^{N} \frac{\left\| M_{i} - \widetilde{M}_{i} \right\|^{2}}{2\sigma_{3D}^{2}}$

Course overview

Xavier Pennec

44

Feature-based registration

Multimodal Intensity-based Registration

Deformable intensity-based Registration

Intensity-based methods

No geometric feature extraction

Advantages:

Noisy images and/or low resolution Multimodal images

Drawbacks:

All voxels must be taken into account

Xavier Pennec

45

46

Compare multi-modal images? Which similarity criterion ? Many available criteria: SSD, Correlation, Mutual Information...? Variable costs and performances Where is the optimum ? Maintz & Viergever, Survey of Registration Methods, Medical Image Analysis 1997

A general framework

A. Roche proposed a unifying maximum likelihood framework

Physical and statistical modeling of the image acquisition process Create a hierarchy of criteria

A. Roche, G. Malandain and N.Ayache : Unifying maximum likelihood approaches in medical image registration. International Journal of Imaging Systems and Technology : Special Issue on 3D Imaging 11(1), 71-80, 2000.

• Based on pioneer works of (Costa et al, 1993), (Viola, 1995), (Leventon & Grimson, 1998), (Bansal et al, 1998)

51

Generic modelImages: noisy measures of the scene
$$\begin{cases} i_k &= f(s_k^{\downarrow}) + \varepsilon_k & s_k^{\downarrow} \equiv s(T(x_k)) \\ j_l &= g(s_l) + \eta_l \end{cases}$$
Assumptions on ε and η :- white (spatial indep.)- Stationary- Stationary- Gaussian- Additive- Additive- Independent of each otherXavier Pennec54

The deformable Registration Landscape in 1995

Optical flow

Horn and Schunck, Artif. Intell. 17, 1981; Aggarwal and Nandhakumar, Proc. IEEE 76: 917–935,1988; Barron *et al., 1994*.

Linear elastic deformation

Broit, PhD 1981. Bajcsy and Kovacic CVGIP 46, 1989 Gee, Reivich, Bajcsy, *J. Comp. Assis.Tom.* 17, 1993.

Fluid (images & surface)

Christensen, Rabbitt, Miller, *Phys. Med. Biol.* 39, 1994. Christensen, Rabbitt, Miller.IEEE Trans. Im. Proc. 5(10), 1996. Thompson and Toga, IEEE TMI 15(4), 1996.

Xavier Pennec

Difficulties

Xavier Pennec

77

Differential equations are costly to solve Regularity of T? Small time steps, many iterations Very high computation time...

Demons' algorithm (MRCAS 95, CVPR96, Media98) T₀= Identity $C_{n+1} = \frac{I - J \circ T_n}{\left\| \nabla I \right\|^2 + \left(I - J \circ T_n\right)^2} \nabla I$ Correction field Regularization by Gaussian filtering Elastic J.P. Thirion: Image Matching as a diffusion process: an analogy with Maxwell's demons. Medical Image Analysis 2(3), 242-260, 1998. Xavier Pennec 81

Intensity-based deformable registration

Xavier Pennec

83

Demons algorithm: why does it work?

- + Fast, efficient
- Do not minimize an energy Difficult to analyze Convergence? Why does that work? How to change the similarity measure?

Course overview

Feature-based registration

Multimodal Intensity-based Registration

Deformable intensity-based Registration A historical perspective A Pair and Smooth approach Morphing

Xavier Pennec

84

Xavier Pennec

MORPHING

Xavier Pennec

