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Medical Image Processing — MVA 2023-2024

Tuesday afternoon

Course notes :

o Tue Oct 3, ENSPS 2E30, Introduction to Medical Image Acquisition and Image Filtering, [HD]

o Tue Oct 10, ENSPS 3E34, Medical Image Registration [XP]

o Tue Oct 17, ENSPS 2E30, Riemanian Geometry & Statistics [XP]

o Tue Oct 24, ENSPS 1B18, Basis of Image Segmentation [HD]

o Tue Nov 7, ENSPS 2E30, Image Segmentation based on Clustering and Markov Random Fields [HD]
o Tue Nov 14, ENSPS 3E34, Shape constrained image segmentation and Biophysical Modeling [HD]

o Tue Nov 21, ENSPS 2E30, Analysis in the space of Covariance Matrices [XP]

o Tue Nov 28, ENSPS 1B18, Di phic Registration end ional anatomy [XP]

o TuDec 5, VISI Exam [HD, XP]

—
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Statistical Computing on Manifolds
for Computational Anatomy

Metric and Affine Geometric Settings for Lie Groups
o Deformable image registration
o Riemannian frameworks on Lie groups
o Lie groups as affine connection spaces
o Extending statistics without a metric
o The SVF framework for diffeomorphisms

Modeling longitudinal deformations in AD

o Parallel transport of deformation trajectories
o From velocity fields to AD models

—
MVA 2023-2024 3




Goals of Registration

A dual problem

o Find the point y of image J which is corresponding
(homologous) to each points x of image |.

o Determine the best transformation T that
superimposes homologous points

TN

Yk Yk

—
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Mathematical Formulation of registration
(Brown, 1992)

Optimization algorithm Similarity measure

Transformation space (rigid, affine, elastic,...)

— i —
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The deformable registration landscape in 1995

Transformation encoded by a displacement field: T(x) = x + u(x)

Optical flow F(x,u)=—(I(x)=J(x+u))VJ(x+u)
o Horn and Schunck, Artif. Intell. 17, 1981; u

o Aggarwal and Nandhakumar, Proc. IEEE 76, 1988; 7 Fxu)
o Barron et al., 1994.
Linear elastic deformation UV u+(p+ A)V(div(u)) = F
o Broit, PhD 1981.
o Bajcsy and Kovacic CVGIP 46, 1989
o Gee, Reivich, Bajcsy, J. Comp. Assis.Tom. 17, 1993.
2 .
Fluid (images & surface) MV Y+ (u+ )V (div(v)) = F
o Christensen, Rabbitt, Miller, Phys. Med. Biol. 39, 1994. ou
o Christensen, Rabbitt, Miller. IEEE TIP. 5(10), 1996. (T =v—(Vu)v
ot

o Thompson and Toga, IEEE TMI 15(4), 1996.

Differential equations were costly to solve: > 1 day on mass-parallel machine
[ ——

—
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Demons’ algorithm (MRCAS 95, CVPR96, Media98)

Image matching as a diffusion process: an analogy with Maxwell's
demons

0. hi

Patient 1 Patient 2

—  —
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Demons’ algorithm (MRCAS 95, CVPR96, Media98)
o Ty= Identity

I—]oT,

o Update field Upiq = W

Wi

o Regularization by Gaussian filtering

Tn+1 = Tn °Un+1 Un+1 = Ga * Un+1

Elastic
Fluid

Tn+1 = Gn‘ * Tn+1 Tn+1 = Tn °Un+1

Why does that work? Convergence? Change the similarity metric?

—  —
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Interpretation of demons

E(C,T)=8SD(I,J,C)+c || C—T|* +cA.Reg(T)

o SSD : measures the similarity of intensities

o Reg : regularization energy (quadratic)

o A, o :smoothing and noise parameters

o C: correspondences between points (vectors field)
o T : transformation (regularized vector field)

o Introduce correspondences (matches) as an auxiliary variable to
decouple into a local non-convex

P. Cachier E. Bardinet, D. Dormont, X. Pennec and N. A.: Iconic Feature Based
Nonrigid Registration: the PASHA Algorithm, Comp. Vision and Image Understanding
(CVIU), Special Issue on Non Rigid Registration, 89 (2-3), 272-298, 2003.

—
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PASHA Algorithm (2/2)
E(C,T)=S8SD(I,J,C)+c||C-T|* +cAReg(T)

Alternated minimization

o Minimization with respect to C :
o Find matches between points by optimizing Es + in the
neighborhood of T
o Gradient descent (1%, 2bd order, e.g. Gauss-Newton)

o Minimization with respect to T :
o Find a smooth transformation that approximates C
o Quadratic energy = convolution

o Interest: fast computation

—
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Newton optimization of the correspondence energy
E(C)= [ (I(x) = J(Cx)) e+ %5 [[C00) =T e
Exact solution of the quadratic approximation of the SSD

o Solve [(wor).(wor)‘ +L’§[d}u:(‘10T71).(VJOT)
(JoT—I).(VJoT)

o By inversion lemma: ‘= VT o1 +o2 /o
o Local estimation of intensity variance: o’ =(J7-1)
o Assuming isotropic voxel size: ¢! ~1
I-JoT
u= I
VI + (=T T)
MVA 2023-2024 "

Efficient Regularization
Quadrati regular 3, 00,00
uadratic regularizer Reg(T):I; oy

Euler Lagrange optimization of E(T) :J'HC—TH: +Reg(T)

N ))

. - (=1
C-T+ < =0
g; ot k!

Solution: Gaussian smooting T, =G, *C wih o=1/0,

Pennec, Cachier, Ayache. Understanding the *'Demon's Algorithm": 3D Non-Rigid
registration by Gradient Descent. MICCAT 1999.

Extension to a family of quadratic filters
1 K u"u
Goxl(u) = 7{0‘/2__”)3(] ) (Id + ;uu') exp (F)

P. Cachier and N. Ayache. Isotropic energies, filters and splines for vectorial regularization.

J. of Math. Imaging and Vision, 20(3):251-265, May 2004.
12
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Inter-subject registration
Affine transformation

MR T1 Images
256x256x120 voxels

Atlas to patient registration
for radiotherapy planning

X z
115 107

Correct size and position but high remaining variability in cortex and deep structures

— —
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Inter-subject registration
Fluid regularization

Very good image correspondence But anatomically meaningless deformation
Jacobian [1/50;50]
— —
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Inter-subject registration
Adaptive non-stationary visco-elastic regularization

7

Registration in 5 min on 15 PCs Anatomically more meaningful deformation
Jacobian [1/5;5]

—
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Statistical Computing on Manifolds
for Computational Anatomy

Metric and Affine Geometric Settings for Lie Groups
o Reminder on deformable image registration
o Riemannian frameworks on Lie groups
o Lie groups as affine connection spaces
o Extending statistics without a metric
o The SVF framework for diffeomorphisms

Modeling longitudinal deformations in AD

o Parallel transport of deformation trajectories
o From velocity fields to AD models

—
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Statistical Analysis of the Scoliotic Spine

Data

o 307 Scoliotic patients from the Montreal’s St-Justine Hosp

o 3D Geometry from multi-planar X-rays

o Articulated model:17 relative pose of successive vertebras
Statistics

o Main translation variability is axial (growth?)

o Main rot. var. around anterior-posterior axis

o 4 first variation modes related to King’s classes

MVA 2023-2024 J, Boisvert et al. ISBI'06, AMD&06 and IEEE TMI 27(4), 2008 |

Morphometry through Deformations
Atlas

g

Patient 1 Patient 5
e N o 4
N ; 4, 4
Skullsof a human, a chimpanzee and a baboon ‘ Patient 4
a0t arformators batveen tham Patient 3

a
Patient 2

Measure of deformation [D’Arcy Thompson 1917, Grenander & Miller]
o Observation = “random” deformation of a reference template
o Deterministic template = anatomical invariants [Atlas ~ mean]
o Random deformations = geometrical variability [Covariance matrix]

MVA 2023-2024 18




Longitudinal structural damage
in Alzheimer’s Disease

U

baseline 2 years follow-up

[Widespread cortical thinning}

—
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Longitudinal deformation analysis

Deformation trajectories in different reference spaces

= time

R

Template

ZASA\
Patient B

Mean longitudinal deformation across subjects?
Convenient mathematical settings for transformations?

—
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Statistics on deformations

Statistics on displacement field/transformation parameters

o Splines [Rueckert et al., TMI, 03],
o PCA of Statistical shape models
o Simple vector statistics, but inconsistency with group properties

The Riemannian approach (LDDMM)

o Right-invariant metric on diffeos [Joshi, Miller, Trouvé, Younes...]
o Parameterize diffeomorphisms by time-varying velocity fields
o Good mathematical bases for statistics on non-linear spaces

No bi-invariant metric in general

o Left/right Fréchet mean incompatible with group structure
o The inverse of the mean is not the mean of the inverse
o Examples with simple 2D rigid transformations

—
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Natural Riemannian Metrics on Transformations

Transformations are Lie groups: Smooth manifold G compatible with
group structure

o Composition g o h and inversion g-' are smooth
o Leftand Right translation Ly(f)=gof Ry(f)=fog
o Conjugation Conjg(f) =g o fo g’

Natural Riemannian metric choices
o Chose a metric at Id: <x,y>4

o Propagate at each point g using left (or right) translation
<x,y>g =< DLgm X, DLgm Y >y

Implementation
o Practical computations using left (or right) translations

Exp,(x)=foExp, (DL, x)  fg=Log,(g)=DL,.Log,(f™" og)

—  —
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Example on 3D rotations
Space of rotations SO(3):
o Manifold: RT.R=Id and det(R)=+1
o Lie group (R, 0 R, =R;.R, &Inversion: RtV =RT)
Metrics on SO(3): compact space, there exists a bi-invariant metric
o Left/right invariant / induced by ambient space <X, Y>=Tr(XTY)
Group exponential

o One parameter subgroups = bi-invariant Geodesic starting at Id
o Matrix exponential and Rodrigue’s formula: R=exp(X) and X = log(R)

o Geodesic everywhere by left (or right) translation
Logg(U) = Rlog(RTU) Expr(X) = Rexp(RT X)

Bi-invariant Riemannian distance
o d(RU) = [llog(RTU)|| = 6(RTU )

—
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General Non-Compact and Non-Commutative case
No Bi-invariant Mean for 2D Rigid Body Transformations

o Metric at Identity: dist(Id, (6;ty;t,))? = 6% + t#+t2

o n=(5-28) 1,=(0vz0) T=(-I-%-2)

4’ 2’2 4 2 2

o Left-invariant Fréchet mean: (0;0;0 )

o Right-invariant Fréchet mean: (o;g ;0) = (0;0.4714;0)

Questions for this talk:
o Can we design a mean compatible with the group operations?
o Is there a more convenient structure for statistics on Lie groups?

—
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Statistical Computing on Manifolds
for Computational Anatomy

Metric and Affine Geometric Settings for Lie Groups
o A short introduction to deformable image registration
o Riemannian frameworks on Lie groups
o Lie groups as affine connection spaces
o Extending statistics without a metric
o The SVF framework for diffeomorphisms

Modeling longitudinal deformations in AD
o Parallel transport of deformation trajectories
o From velocity fields to AD models

— —
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Basics of Lie groups

Flow of a left invariant vector field X = DL. x starting from e
o ¥, (t) exists for all time
o One parameter subgroup: y, (s + t) = y,(s). vx(t)

Lie group exponential (ATTN: different from Riemannian Exp)

o

Definition: x € g = Exp(x) = y,(1)e G

o

Diffeomorphism from a a neighborhood of O ing to a
neighborhood of e in G (not true in general for inf. dim)
Baker-Campbell Hausdorff (BCH) formula

BCH(x,y) = Log(Exp(x).Exp(y)) =x+y +%[x,y] + .

3 curves at each point parameterized by the same tangent vector

o

o Left / Right-invariant geodesics, one-parameter subgroups
Question: Can one-parameter subgroups be geodesics?

— —
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Affine connection spaces

Affine Connection (infinitesimal parallel transport)
o Acceleration = derivative of the tangent vector along a curve

o Projection of a tangent space on
a neighboring tangent space

Geodesics = straight lines
o Null acceleration: 7,y = 0

o 2n order differential equation:
Normal coordinate system
o Local exp and log maps (Strong form of Whitehead theorem:

In an affine connection space, each point has a normal convex neighborhood
(unique geodesic between any two points included in the NCN)

MVA 2023-2024 28




Canonical Connections on Lie Groups

A unique Cartan-Schouten connection
o Symmetric (no torsion) and bi-invariant
o For which geodesics through Id are one-parameter
subgroups (group exponential)

o Matrices: M(t) = A.exp(t.V)
o Diffeos: left/right translations of Stationary Velocity Fields (SVFs)

Levi-Civita connection of a bi-invariant metric (if it exists)
o Continues to exists in the absence of such a metric
(e.g. for rigid or affine transformations)

Symmetric space with central symmetry S, (¢) = Yoy
o Matrix geodesic symmetry: S,(M(t)) = Aexp(—tV)A™1A = M(—t)

[Lorenzi, Pennec. Geodesics, Parallel Transport & One-parameter Subgroups for
Diffeomorphic Image Registration. Int. J. of Computer Vision, 105(2):111-127, 2013. ]
 —

—
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Statistical Computing on Manifolds
for Computational Anatomy

Metric and Affine Geometric Settings for Lie Groups
o Riemannian / affine connection frameworks on Lie groups
o Extending statistics without a metric
o The SVF framework for diffeomorphisms

Modeling longitudinal deformations in AD

o Parallel transport of deformation trajectories
o From velocity fields to AD models

—
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Mean value on an affine connection space

Fréchet / Karcher means not usable (no distance) but:

E[x]: argmin (E[dist(y, x)z]) = EIﬁJ: Jﬁ.p‘(z).dM(z) =0 [P(C) = 0]

Exponential barycenters
o [Emery & Mokobodzki 91, Corcuera & Kendall 99]

JLog () u(dy) =0 or ¥;Log.(y) =0
o Existence? Uniqueness?
o OK for convex affine manifolds with semi-local convex geometry
[Arnaudon & Li, Ann. Prob. 33-4, 2005]
o Use a separating function (convex function separating points) instead of a distance
o Algorithm to compute the mean: fixed point iteration (stability?)

—
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Bi-invariant Mean on Lie Groups

Exponential barycenter of the symmetric Cartan connection

o Locus of points where ¥ Log(m™. g;) = 0 (whenever defined)

o

lterative algorithm: m,,; = m; o Exp (iz Log(m¢t.g) )

First step corresponds to the Log-Euclidean mean

o

Corresponds to the first definition of bi-invariant mean of [V. Arsigny, X. Pennec,
and N. Ayache. Research Report RR-5885, INRIA, April 2006.]

o

Mean is stable by left / right composition and inversion
o If mis amean of {g;} and h is any group element, then
o homisameanof{heg},
o mo his a mean of the points {g; o h}

o and mCY is a mean of {glf‘l)]

[Pennec & Arsigny, Ch.7 p.123-166 , Matrix Information Geometry, Springer, 2012]

— —
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Special matrix groups

Heisenberg Group (resp. Scaled Upper Unitriangular Matrix Group)
No bi-invariant metric

Group geodesics defined globally, all points are reachable
Existence and uniqueness of bi-invariant mean (closed form resp.
solvable)

o

o

o

Rigid-body transformations
Logarithm well defined iff log of rotation part is well defined,
i.e. if the Givens rotation have angles |6;| < ©

o Existence and uniqueness with same criterion as for rotation
parts (same as Riemannian)

SU(n) and GL(n)
o Logarithm does not always exists (need 2 exp to cover the group)
o If it exists, it is unique if no complex eigenvalue on the negative real line
o Generalization of geometric mean
MVA 2023-2024 36

o

Example mean of 2D rigid-body transformation

V2 V2 VZoV2
T1:<%;—7:7) T, = (0; VZ;0) ng(—%:—7:—7)

o Metric at Identity: dist(Id, (6; t1;t,))? = 02 + t2+ t2

o Left-invariant Fréchet mean: (0;0;0 )

o
o Bi-invariant mean: (0;%; 0) =~ (0;0.2171;0)

o Right-invariant Fréchet mean: (O;g; 0) =~ (0;0.4714;0)

—
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Generalization of the Statistical Framework

Covariance matrix & higher order moments

o Defined as tensors in tangent space

TxM
I = [Logy(y) ® Log,(y) u(dy)
o Matrix expression changes
according to the basis
Other statistical tools
o Mahalanobis distance well defined and bi-invariant
Hon (@) = [ 1ogn (@125 Logn(@)Vua)
T. + Princinal O, + Anaolucic (+ DOAY
<) P P ysis=( 7
o Principal Geodesic Analysis (PGA), provided a data likelihood
o Independent Component Analysis (ICA)
MVA 2023-2024 38

Cartan Connections vs Riemannian

What is similar
o Standard differentiable geometric structure [curved space without torsion]
o Normal coordinate system with Exp, et Log, [finite dimension]

Limitations of the affine framework

o No metric (but no choice of metric to justify)
o The exponential does always not cover the full group
o Pathological examples close to identity in finite dimension
o In practice, similar limitations for the discrete Riemannian framework
o Global existence and uniqueness of bi-invariant mean?
Use a bi-invariant pseudo-Riemannian metric? [Miolane MaxEnt 2014]

What we gain

o A globally invariant (composition & inversion) symmetric space structure
o Simple geodesics, efficient computations (stationarity, group exponential)
o The simplest linearization of transformations for statistics?

— —
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Statistical Computing on Manifolds
for Computational Anatomy

Metric and Affine Geometric Settings for Lie Groups
o Riemannian / affine connection frameworks on Lie groups
o Extending statistics without a metric
o The SVF framework for diffeomorphisms

Modeling longitudinal deformations in AD

o Parallel transport of deformation trajectories
o From velocity fields to AD models

—
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Riemannian Metrics on diffeomorphisms

Space of deformations
o Transformation y=¢ (x)
o Curves in transformation spaces: ¢ (x,t)

) dé(x,1)
o Tangent vector = speed vector field v (x)=—"">

dt

Right invariant metric -1
) v, od
o Eulerian scheme

o Sobolev Norm H, or H., (RKHS) in LDDMM -> diffeomorphisms [Miller,
Trouve, Younes, Holm, Dupuis, Beg... 1998 — 2009]

I |
! i

s

Geodesics determined by optimization of1 a time-varying vector field
o Distance d* (¢ ) = argmin([ |y, dr)
foo

o Geodesics characterized by initial velocity / momentum
o Optimization for images is quite tricky (and lenghty)

— —
MVA 2023-2024 41
— =

Log-Euclidean Framework

Log-Euclidean processing of tensors
[Arsigny et al, MRM'06, SIAM'6 ]
o ldea: one-to-one correspondence of tensors
with symmetric matrices, via the matrix logarithm.
o Simple processing of tensors via their logarithm (vector space)!
o Consistency with group structure (e.g., inversion-invariance)

Log-Euclidean processing of linear transformations
[Arsigny et al, WBIR'06, Commowick, ISBI'06, Alexa et al, SIGGRAPH'02 ]
o Idea: linearize geometrical transformations close enough to identity via
matrix logarithm [restriction to data whose logarithm is well-defined ]
o Simply process transformations via their logarithm (vector space)!
o E.g., fuse local linear transformations into global invertible deformations.

Use the group exp/log to map the group to its Lie Algebra

—
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Examples: Polyaffine Transformations

Fusing two translations Fusing two rotations

[Arsigny, Pennec, Ayache, Medical Image Analysis, 9(6):507-523, Dec. 2005 |
[ Arsigny et al WBIR’06 |

—
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The SVF framework for Diffeomorphisms

Idea: [Arsigny MICCAI 2006, Bossa MICCAI 2007, Ashburner Neuroimage 2007]
o Exponential of a smooth vector field is a diffeomorphism
o Parameterize deformation by time-varying Stationary Velocity Fields

-

Stationary velocity field Diffeomorphism

Direct generalization of numerical matrix algorithms
o Computing the deformation: Scaling and squaring [Arsigny MICCAI 2006]
recursive use of exp(v)=exp(v/2) o exp(v/2)
o Updating the deformation parameters: BCH formula [Bossa MICCAI 2007]

exp(v) o exp(eu) = exp( v+ eu + [v,eu)/2 + [v,[v,eu])/12 + ...)
o Lie bracket [v.u](p) = Jac(v)(p).u(p) - Jac(u)(p).v(p)
MVA 2023-2024 44

Computing the exponential

exp(u)=exp(u/N)N

-
i w(z)
z(0) = zg
1
2(1) = ./o wla(t))dt
£ exp(v)

exp(v/8)~1Id +v/8

LV
\/ \/ exp(v/2) = exp(v/4)?
N

exp(v)
[ V. Arsigny, O. Commowick, X. Pennec, N. Ayache. A Log a k for Statistics on
Diffeomorphisms. In Proc. of MICCAI'06, LNCS 4190, pages 924-931, 2-4 October 2006. ]
—
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Symmetric log-demons [Vercauteren MICCAI 08]

Idea: [Arsigny MICCAI 2006, Bossa MICCAI 2007, Ashburner Neuroimage 2007]
o Parameterize the deformation by SVFs
o Time varying (LDDMM) replaced by stationary vector fields
o Efficient scaling and squaring methods to integrate autonomous ODEs

Log-demons with SVFs

1 1
E(v.v.) = s [ — M oexp(v,‘)HiI + = || log(exp(—v) o oxp(v,.))Hi) +R(v)

L ;

—r— T o
Slmllamy Coupling Regularisation
Measures how much the Couples the correspondences Ensures
two images differ with the smooth deformation deformation

thi
o Efficient optimization with BCH formula smoothness

o Inverse consistent with symmetric forces
o Open-source ITK implementation [ T Vercauteren, et al.. Symmetric

o Very fast Log-Domain Diffeomorphic
o http://hdl.handle.net/10380/3060 i ion: A D b:

g :
Approach, MICCAI 2008 ]

MVA 2023-2024 46
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Symmetric Log-Domain Demons
Use easy inverse: T"! = exp(-v)

Iteration
o Given images [, I, and current transformation 7=exp(v)

o Forward demons forces ufrv a
o Backward demons forces uback 0
s Update v, « % ( BCH(v.u™) - BCH(—v,u"aCk))O

o Regularize (Gaussian): v« Ky * v, 0

Open-source ITK implementation

[ T Vercauteren, et al.. Symmetric
o Very fast Log-Domain Diffeomorphic

o http://hdl.handle.net/10380/3060 fegistration:a bemone-based

— —
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Statistical Computing on Manifolds
for Computational Anatomy

Metric and Affine Geometric Settings for Lie Groups
o Riemannian / affine connection frameworks on Lie groups
o Extending statistics without a metric
o The SVF framework for diffeomorphisms

Modeling longitudinal deformations in AD
o Parallel transport of deformation trajectories
o From velocity fields to AD models

— —
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Alzheimer’s Disease

o Most common form of dementia
o 18 Million people worldwide
o Prevalence in advanced countries
o 65-70: 2%
o 70-80: 4%
0 80- :20%
o If onset was delayed by 5 years,
number of cases worldwide would -
be ha|ved baseline

MVA 2023-2024 49
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Natural progression of Alzheimer’s disease

Nomai

‘ MR: feasible, non invasive } m
Normal

Dementia,

Amyloid NS4
markers
~— Entorhinal

£

=z cortex atrophy
£ Surrogate marker

g g - Hippocampal
£ troph

8 Functional/— oy

] metabolic

=

2 Temporal

-20 -15 -10 -5 0 5 10 Years from AD diagnosis
50 55 60 65 70 75 80
— [Jack CR et al., Lancet Neurol 2010;9:119-28 ]
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Longitudinal structural damage in AD

baseline 2 years follow-up

[Widespread cortical thinning}

PhD Marco Lorenzi - Collaboration With G. Frisoni (IRCCS FateBenefratelli, Brescia
—
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Individual Measure of Temporal Evolution

Geometry changes (Deformation-based morphometry)
o Measure the physical or apparent deformation through registration

Quantification of apparent deformations

—
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Measuring Temporal Evolution with deformations:

Deformation-based morphometry

Fast registration with deformation parameterized by SVF

@ (x) = exp(t.v(x))

https://team.inria.fr/asclepios/software/lcclogdemons/
[ Lorenzi, Ayache, Frisoni, Pennec, Neuroimage 81, 1 (2013) 470-483 ]

—
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Longitudinal deformation analysis in AD

o From patient specific evolution to population trend
(parallel transport of deformation trajectories)

o Inter-subject and longitudinal deformations are of different nature
and might require different deformation spaces/metrics

-
7380\

Template K
@ // . \
Patient B ﬁ'

PhD Marco Lorenzi - Collaboration With G. Frisoni (IRCCS FateBenefratelli, Brescia)

—
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Parallel transport of deformation trajectories

_

v stationary velocity field
Lie group Exp(v) non-metric
geodesic wrt Cartan connections

v time-varying velocity field
Riemannian exp;,(v) metric
geodesic wrt Levi-Civita connection

« Defined by intial momentum LDDMM: parallel transport along geodesics
using Jacobi fields [Younes et al. 2008]

MVA 2023-2024
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From gravitation to computational anatomy:
Parallel transport along arbitrary curves

Infinitesimal parallel transport = connection VX): TM->TM

A numerical scheme to integrate symmetric connections:
Schild’s Ladder [Elhers et al, 1972]

o Build geodesic parallelogrammoid

o lterate along the curve

Py TI(A), PN
P
Po 0
MVA 2023-2024 56

Schild’s Ladder
Intuitive application to images

Inter-subject registration

[Lorenzi, Ayache, Pennec: Schild's Ladder for the parallel transport of
deformations in time series of images, IPMI 2011 ]

—
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Parallel transport along geodesics

Simpler scheme along geodesics: Pole Ladder

Exp(H{u)) =Exp(v/2) o Exp(u) o Exp(—v/2)

Ipcu(u)= u+[v,u] + %[v[u,u]]

[ Lorenzi, Pennec: Efficient Parallel Transport of Deformations in Time Series
of Images: from Schild's to pole Ladder, JMIV 50(1-2):5-17, 2013 ]

—
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Parallel transport along geodesics

Simpler scheme along geodesics: Pole Ladder

Numerical accuracy of pole ladder

« Order 4 in general affine manifolds

pole(u) = M(u) + 7 %, R(w, v)(5u — 2v)

1
+EVHR(u, v)(v — 2u) + 0(5)

« Error vanishes in symmetric spaces:
Po Pole ladder is exact in 1 step!
Y(t) = expp,(t u)

[ XP. Parallel Transport with Pole Ladder: a Third Order Scheme in Affine
Connection Spaces which is Exact in Affine Symmetric Spaces. Arxiv 1805.11436 ]
"W 20232024 59 -

Discrete ladders with approximate geodesics:
2nd order schemes sorers

| A Fanning scheme
Euler forward
v om] Schid's a=1 -
" Wi an] o

i Xipy Wi Xz Wiz
x my i Wiy
o]

Kendall shape space
Absoite ermor rt number of s, ked, me3

. Schild's a=1

Euler ™

: — % Pole ladder -,
Sphere S, Poincaré half-plane H, Kendall shape space £3

[ N. Guigui, XP, Numerical Accuracy of Ladder Schemes for Parallel Transport 6n Manifolds.
Arxiv 2007.07585. To appear in Foundati of Computati | Matt ics, 2021]
— e —
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Synthetic experiments (Consistency)

Vector measure Scalar measure

Scalar summary
(Jacobian det, logJacobian det, ...)

Scalar
transport

Ve

'

Scalar summary

'

—
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Parallel Transport along SVFs
Source space Target space
!
i

20 %‘ y

© a

=}

:

E\ =

=) S

=8 e F

synthetic = Pole Ladder Schild's Ladder Scalar interpolation
deformation L f
transport‘ed deformation

— | —
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Analysis of longitudinal datasets
Multilevel framework

;p““f;g b0 ‘ Single-subject, two time points ‘
g & Log-Demons (LCC criteria)

G 3 N\
@- @ @ ‘ Single-subject, multiple time points \
e 4D registration of time series within the
Log-Demons registration.

,vA ;:»m(x.u

9G(xt)

‘ Multiple subjects, multiple time points

g ) o Schild’s Ladder
— ‘ [Lorenzi et al, in Proc. of MICCAI 2011]
—
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Atrophy estimation for Alzheimer

Alzheimer's Disease Neuroimaging Initiative (ADNI)
200 NORMAL 3 years
400 MCI 3 years

200 AD 2 years

Visits every 6 month
57 sites

o

o

o

o

o

Data collected
o Clinical, blood, LP
o Cognitive Tests
o Anatomical images:1.5T MRI (25% 3T)
o Functional images: FDG-PET (50%), PiB-PET (approx 100)

MVA 2023-2024 64
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Modeling longitudinal atrophy in AD from images

One year structural changes for 70 Alzheimer's patients
o Median evolution model and significant atrophy (FdR corrected)

[Lorenzi et al, in Proc.
of IPMI 2011]

—
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Modeling longitudinal atrophy in AD from images

One year structural changes for 70 Alzheimer's patients
o Median evolution model and significant atrophy (FdR corrected)

[Lorenzi et al, in Proc.
of IPMI 2011]

—
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Modeling longitudinal atrophy in AD from images

One year structural changes for 70 Alzheimer's patients
o Median evolution model and significant atrophy (FdR corrected)

[Lorenzi et al, in Proc.
of IPMI 2011]

—
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Modeling longitudinal atrophy in AD from images

One year structural changes for 70 Alzheimer's patients
o Median evolution model and significant atrophy (FdR corrected)

[Lorenzi et al, in Proc.
of IPMI 2011]

—
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Longitudinal model for AD

Estimated from 1 year changes — Extrapolation to 15 years
70 AD subjects (ADNI data)

-7 6 5 4 -3 -2 -1 012 3 4 5 6 7

year
Extrapolated Observed Extrapolated

—
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Modeling longitudinal atrophy in AD from images

Pole Ladder

Scalar
interpolation

MVA 2023-2024 70
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Modeling Normal and AD progression

SVF paramétrantla
trajectoire de deformation

\j Quadratus. ‘\‘ ‘ U'r

(controle)

Trajectoire géodésique moyenne
de vieillissement normal

Rutundus
(Réference) Trajectoire géodésique
moyenne de la maladie d'Alzheimer

Mo W ) Composante additionelle
Triangulus. specifique pour Alzheimer
(Alzheimer)
— | —
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Study of prodromal Alzheimer’s disease
o 98 healthy subjects, 5 time points (0 to 36 months).
o 41 subjects AB42 positive (“at risk” for Alzheimer’s)
o Q: Different morphological evolution for AR+ vs AB-?

B
Year 1 Year 2 Year 3

Average SVF
for normal
evolution (A-)

|Lorenzi, Ayache, Frisoni, Pennec, in Proc. of MICCAI 2011|

MVA 2023-2024 72

Detail: comparison between average evolutions (SVF)

Ap42- Ap4a2+ Ap42- Ap42+

MVA 2023-2024 73
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Time: years
AB42- AR42+

B ThU .. %

xe e SX

Study of prodromal Alzheimer’s disease

Linear regression of the SVF over time: interpolation + prediction

Multivariate group-wise comparison
of the transported SVFs shows
statistically significant differences
(nothing significant on log(det) )

T(1) = Exp(v () *T,
Lorenzi, Ayache, Frisoni, Pennec, in Proc. of MICCAI 2011
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Statistical Computing on Manifolds
for Computational Anatomy

Metric and Affine Geometric Settings for Lie Groups
o Riemannian / affine connection frameworks on Lie groups
o Extending statistics without a metric
o The SVF framework for diffeomorphisms

Modeling longitudinal deformations in AD

o Parallel transport of deformation trajectories
o From velocity fields to AD models

—
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Morphological analysis of SVF

Irrotational Divergence-free

v — Vquan anges -+ Vx A

Helmholtz decomposition

Atrophy!! Structural
readjustments
MVA 2023-2024 7

Morphological analysis of SVF

Discovery Irrotational Quantification

Pressure ]
Defines sources and sinks

Divergence V- Vp
Defines flux across

of the atrophy process expanding/contracting regions

Divergence Theorem
$op v mdS= [, V-vdV

—_— e
MVA 2023-2024 [Lorenzi et al, MICCAI 2012] 78
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Probabilistic definition of the atrophy topography

Pressure

P(Critical area) = Proximity to critical point + Surrounding flux

Step1. Finding local maxima and minima for the pressure field (sources,sinks)
Step2. Finding surrounding areas of maximal outwards/inwards flux (Expansion and Contraction)

MVA 2023-2024 [Lorenzi et al, MICCAI 2012] 79
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Statistics on the topology of pressure maps

Critical areas optimizing the expected flux population-wise
o Detect minima and maxima of mean symmetrized pressure maps
o Extend probabilistic regions to zero crossings (pressure=probability)

Critical regions for the 1-year atrophy on 20 AD patients

Contraction
Biologically
“ ﬂ @ ﬁ @ # meaningful areas

« Statistics on a multiscale Morse-Smale complex?

MVA 2023-2024 80
Group-wise flux analysis in Alzheimer’s
Quantification
From group-wise... ...to subject specific

om ~106 voxels to 15 regions

—
MVA 2023-2024 [Lorenzi et al, MICCAI 2012] 81
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From discovery to quantification

AD vs controls Sample size analysis

XE =
LY YT

MCI vs controls

80% power

sample size « sd/(mean;-mean,)

Hippocampal
Regional fl trophy
Controls AB42+ vs controls Ap42- -  aungaoto
(Different ADNI subset)
AD vs

164 [106,209] 121 [77, 206]

EELT
MClvs 277[166,555] 545 [296, 1331]
“ controls
£ & & N

—
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Hippocampal atrophy measures
NIBAD'12 =

MICCAI 2012 WORKSHOP ON NOVEL

IMAGING BIOMARKERS FOR ALZHEIMER'S M CCA
e EAsE NICE 2012
AND RELATED DISORDERS

46 patients, 23 controls, blinded diagnosis
0,2,6,12,26,38 and 52 weeks scans, only baseline information
Test on intra-subject pairwise atrophy rates

=X

Effect size on left hippocampus
Group sixmonths oneyear two years
INRIA - Regional Flux 1.02 133 147
Top-ranked on Hippocampal atrophy measures

I' Among competitors:
Freesurfer (Harvard, USA)
Montreal Neurological Institute, Canada

Mayo Clinic, USA
University College of London, UK
MVA 2023-2024 University of Pennsylvania, US
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Statistical Computing on Manifolds
for Computational Anatomy

Metric and Affine Geometric Settings for Lie Groups
o Riemannian / affine connection frameworks on Lie groups
o Extending statistics without a metric
o The SVF framework for diffeomorphisms

Modeling longitudinal deformations in AD
o Parallel transport of deformation trajectories

o From velocity fields to AD models

Perspectives on statistics on deformation

— —
MVA 2023-2024 84
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The Stationnary Velocity Fields (SVF)
framework for diffefomorphisms

o SVF framework for diffeomorphisms is algorithmically simple
o Compatible with “inverse-consistency”
o Vector statistics directly generalized to diffeomorphisms.

Registration algorithms using log-demons:

o Log-demons: Open-source ITK implementation (Vercauteren MICCAI 2008)
http://hdl.handle.net/10380/3060
[MICCAI Young Scientist Impact award 2013]
Tensor (DTI) Log-demons (Sweet WBIR 2010):
https://gforge.inria.fr/projects/ttk

o

o

LCC log-demons for AD (Lorenzi, Neuroimage. 2013)
https://team.inria.fr/ascl Isoftware/I nons/

3D myocardium strain / incompressible deformations (Mansi MICCAI'10)
Hierarchichal multiscale polyaffine log-demons (Seiler, Media 2012)

http://lwww.stanford.edu/~cseiler/software.html
[MICCAI 2011 Young Scientist award]

o

o

—
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A powerful framework for statistics

Parametric diffeomorphisms [Arsigny et al., MICCAI 06, JMIV 09]

o One affine transformation per region (polyaffines transformations)
o Cardiac motion tracking for each subject [McLeod, Miccai 2013]

Log demons projected but with 204 parameters instead of a few millions

AHA regions Stationary velocity fields Diffeomorphism
— —
MVA 2023-2024 86
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A powerful framework for statistics

Parametric diffeomorphisms [Arsigny et al., MICCAI 06, JMIV 09]

o One affine transformation per region (polyaffines transformations)
o Cardiac motion tracking for each subject [McLeod, Miccai 2013]
Log demons projected but with 204 parameters instead of a few millions

o Group analysis using tensor reduction : reduced model
8 temporal modes x 3 spatial modes = 24 parameters (instead of 204)

Evolution of principal time modes Healthy controls Tetralogy of Fallot
@

Affine
parameters
A

—
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Hierarchical Deformation model

Population level:

Spatial structure of the anatomy common
to all subjects (]

Lo []

Subject level:
stdev: -2.00
Varying deformation atoms for each subject

N1 K

[v]  [w] [ L]

[ ][ ] [ ][] [0 ] (10 ] [ ] [
4
Aff(3) valued trees

MVA 2023-2024 88
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Hierarchical Estimation of the Variability

Oriented bounding boxes Weights Structure First mode of variation
sidev: -2.00
Level 0 \ I
Global
scaling
sidov; <200
Level 1 G
N v Thickness
sidov: 200
Level 2 ‘ j \
\ Angle and
. ramus

47 subjects [Seiler, Pennec, Reyes, Medical Image Analysis 16(7):1371-1384, 2012]

—
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Hierarchical Estimation of the Variability

sidov: 200
Level 3 s t & :
» 4
Two sides
F sidov: -2.00
Teeth
. B w X
Level 5 . Dy Xy
N &y

47 subjects [Seiler, Pennec, Reyes, Medical Image Analysis 16(7):1371-1384, 2012]
| —

—
MVA 2023-2024 90

Towards more complex geometries?

Statistics on surfaces seen as currents / varifolds

o Characterize curves or surfaces by the flux (along or through them) of
all smooth vector fields (in a RKHS)

Extrinsinc statistical analysis in space of currents (mean, PCA)
[Durrleman et al, MFCA 2008] (mean current is not a surface)

o Need for sub-Riemannian geometry

o

Left Ventricle

A

Left Epicardium o Original Shape (1476 delta currenté) \
Right Ventricl
ight Ventricle o Compressed Shape (281 delta currents)
—_—
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Towards more complex geometries?

Non quadratic metric: Statistics on Finsler spaces?

[ Image from Sepasian, Thije Boonkkamp, Florack, Ter Haar Romeny, Vilanova
Riemann-Finsler Multi-valued Geodesic Tractography for HARDI ]

Finsler manifold-valued image processing?

[ Image shamelessly stolen
from Luc Florac’s talk]

—
MVA 2023-2024

Towards more complex geometries?

Laminar sheets in the myocardium:

- Torsion: Non-integrable geometry!

—
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Geometric Statistics for anatomical shapes

Study geometric structures
o Riemannian, Finsler, affine, bundles, Lie groups

Generalize statistics
o Real data have noise
o Approximate invariance, factor analysis...

Design algorithm
o Dimension reduction, Image processing...

With important medical applications
o Heart, brain diseases

—
MVA 2023-2024 94
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: a python library to implement

generic algorithms on many Riemannian manifolds

pypi package (220, buid |passing codecov |92%

Mean, PCA, clustering, parallel transport...

15 manifolds / Lie groups already
implemented (SPD, H(n), SE(n), etc)
Generic manifolds with geodesics by
integration / optimization

scikit-learn API (hide geometry, compatible
with GPU & learning tools).

10 introductory tutorials
~ 35000 lines of code S\ |
~30 academic developers 0 2 4
7 hackathons organized in 2020-2022 ) N
Last one: 1721 October 2022 IHP, Paris ;
[ Miolane et al, JMLR 2020, Scipy 2020 : M

Guigui et al, FnT in Mach. Learning 2023 ]
—

Schild'sipole Ladders

Rotations-Translations sPD i

MVA 2023-2024

Pushing the frontiers of Geometric Statistics

Beyond the Riemannian / metric structure
o Riemannian manifolds, Non-Positively Curved (NPC) metric spaces
o Affine connection, Quotient, Stratified spaces (trees, graphs)

Beyond the mean and unimodal concentrated laws
o Nested sequences (flags) of subspace in manifolds
o A continuum from PCA to Principal Cluster Analysis?

Geometrization of statistics
o Geometry of the space of samples
o Smooth manifolds with rough boundaries
o Explore influence of curvature, singularities
(borders, corners, stratifications)
on non-asymptotic estimation theory Geometric Statistics

Make G-Statistics an effective discipline for life sciences

—
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The G-Statistics groups

B . ¢

Yann Thanwerdas

’ Geometric Statistics
: D
TR ] y

Morten Pedersen

I !
Nicolas Guigui

R Elodie Maignant
N

X I
James Benn

Dimbihery
Rabenoro
b Anna Calissano
A b
Luis G. Pereira Internship + PhD positions available Tom Szwagier
| —
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