Medical Imaging		
MVA 2023-2024		
http://www-sop.inria.fr/teams/asclepios/cours/MVA/		
x. Pennec		
Diffeomorphic deformations		
and computational anatomy		
\%	Epione team	
Mrá	2004, route des Lucioles B.P. 93	
Epione	06902 Sophia Antipolis Cedex	
MVA 2023-2024 ${ }^{\text {epatient/ emenelicine }}$	http://www-sop.inria.frlepione	1

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
MVA 2023-2024 e-patient/e-medicine
ww-sop.inria frlepione \qquad

Medical Image Processing - MVA 2023-2024
Tuesday afternoon
Course notes : http://www-sop.inria.fr/teams/asclepios/cours/MVA \qquad
Tue Oct 3, ENSPS 2E30, Introduction to Medical Image Acquisition and Image Filtering, [HD]
Tue Oct 10, ENSPS 3E34, Medical Image Registration [XP] \qquad
Tue Oct 17, ENSPS 2E30, Riemanian Geometry \& Statistics [XP]
Tue Oct 24, ENSPS 1B18, Basis of Image Segmentation [HD]
Tue Nov 7, ENSPS 2E30, Image Segmentation based on Clustering and Markov Random Fields [HD]
Tue Nov 14, ENSPS 3E34, Shape constrained image segmentation and Biophysical Modeling [HD]
Tue Nov 21, ENSPS 2E30, Analysis in the space of Covariance Matrices [XP]
Tue Nov 28, ENSPS 1B18, Diffeomorphic Registration end computational anatomy [XP]
Tu Dec 5, VISI Exam [HD, XP]
\qquad

CMVA 2023-2024 2 \qquad

Statistical Computing on Manifolds

 for Computational AnatomyMetric and Affine Geometric Settings for Lie Groups \qquad Deformable image registration
Riemannian frameworks on Lie groups
Lie groups as affine connection spaces
Extending statistics without a metric
The SVF framework for diffeomorphisms \qquad

Modeling longitudinal deformations in AD \qquad
Parallel transport of deformation trajectories
From velocity fields to AD models \qquad

MVA 2023-2024 \qquad

Goals of Registration

A dual problem

Find the point y of image J which is corresponding (homologous) to each points x of image I.

Determine the best transformation T that superimposes homologous points

Mathematical Formulation of registration (Brown, 1992)

Registration: Given two datasets (images) I and J,
find the geometric transformation I that best » aligns the physically hbmologous points voxels)

The deformable registration landscape in 1995
Transformation encoded by a displacement field: $\boldsymbol{T}(\boldsymbol{x})=\boldsymbol{x}+\boldsymbol{u}(\boldsymbol{x})$
Optical flow $\quad F(x, u)=-(I(x)-J(x+u)) \nabla J(x+u)$

Horn and Schunck, Artif. Intell. 17, 1981;
Aggarwal and Nandhakumar, Proc. IEEE 76, 1988; $\quad \frac{\partial u}{d t} \propto F(x, u)$
Barron et al., 1994
Linear elastic deformation $\quad \mu \nabla^{2} u+(\mu+\lambda) \nabla(\operatorname{div}(u))=F$ Broit, PhD 1981.
Bajcsy and Kovacic CVGIP 46, 1989
Gee, Reivich, Bajcsy, J. Comp. Assis.Tom. 17, 1993.
Fluid (images \& surface)

$$
\mu \nabla^{2} v+(\mu+\lambda) \nabla(\operatorname{div}(v))=F
$$

Christensen, Rabbitt, Miller, Phys. Med. Biol. 39, 1994
Christensen, Rabbitt, Miller. IEEE TIP. 5(10), 1996.
Thompson and Toga, IEEE TMI 15(4), 1996.
$\frac{\partial u}{\partial t}=v-(\nabla u) v$
Differential equations were costly to solve: > 1 day on mass-parallel machine
MVA 2023-2024
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Demons' algorithm (MRCAS 95, CVPR96, Media98)
$\mathrm{T}_{0}=$ Identity
Update field $\quad U_{n+1}=\frac{I-J \circ T_{n}}{\|\nabla I\|^{2}+\left(I-J \circ T_{n}\right)^{2}} \nabla I$

Regularization by Gaussian filtering

$\hat{T}_{n+1}=T_{n} \circ U_{n+1}$	T	$\widetilde{U}_{n+1}=G_{\sigma} * U_{n+1}$
$T_{n+1}=G_{\sigma} * \widehat{T}_{n+1}$		$T_{n+1}=T_{n} \circ \widetilde{U}_{n+1}$

Why does that work? Convergence? Change the similarity metric? \qquad MVA 2023-2024 \qquad

Interpretation of demons

$$
E(C, T)=\operatorname{SSD}(I, J, C)+\sigma\|C-T\|^{2}+\sigma \lambda \cdot \operatorname{Reg}(T)
$$

SSD : measures the similarity of intensities
Reg : regularization energy (quadratic)
λ, σ : smoothing and noise parameters
C : correspondences between points (vectors field)
T : transformation (regularized vector field)
Introduce correspondences (matches) as an auxiliary variable to decouple into a local non-convex
P. Cachier E. Bardinet, D. Dormont, X. Pennec and N. A.: Iconic Feature Based Nonrigid Registration: the PASHA Algorithm, Comp. Vision and Image Understanding (CVIU), Special Issue on Non Rigid Registration, 89 (2-3), 272-298, 2003.

MVA 2023-2024
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

PASHA Algorithm (2/2)

$$
E(C, T)=\operatorname{SSD}(I, J, C)+\sigma\|C-T\|^{2}+\sigma \lambda \cdot \operatorname{Reg}(T)
$$

Alternated minimization

Minimization with respect to C :
Find matches between points by optimizing $E_{S}+$ in the neighborhood of T
Gradient descent ($1^{\text {st, }} 2^{\text {bd }}$ order, e.g. Gauss-Newton)
Minimization with respect to T :
Find a smooth transformation that approximates C
Quadratic energy \Rightarrow convolution
Interest: fast computation

Newton optimization of the correspondence energy

$$
E(C)=\int\left(\left.I(x)-J(C(x))^{2} \cdot d x+\frac{\sigma_{i}^{2}}{\sigma_{x}^{2}} \int \right\rvert\, C(x)-T(x) \|^{2} \cdot d x\right.
$$

Exact solution of the quadratic approximation of the SSD \qquad
Solve $\left[(\nabla J \circ T) \cdot(\nabla J \circ T)^{t}+\frac{\sigma_{i}^{2}}{\sigma_{x}^{2}} I d\right] u=(J \circ T-I) \cdot(\nabla J \circ T)$
By inversion lemma: $\quad u=\frac{(J \circ T-I) \cdot(\nabla J \circ T)}{\|\nabla J \circ T\|^{2}+\sigma_{i}^{2} / \sigma_{x}^{2}}$
Local estimation of intensity variance: $\quad \sigma_{i}^{2}=(J \circ T-I)^{2}$
Assuming isotropic voxel size: $\quad \sigma_{x}^{2} \approx 1$ \qquad

$$
u=\frac{I-J \circ T}{\|\nabla I\|^{2}+(I-J \circ T)^{2}} \nabla I
$$

MVA 2023-2024

Efficient Regularization

Quadratic regularizer $\quad \operatorname{Reg}(T)=\int \sum_{k=1}^{\infty} \frac{\sum_{i_{i}+i_{k}}\left\|\partial_{\partial_{1}} \ldots \partial_{i_{k}}(T-I d)\right\|^{2}}{\sigma_{d}^{2 k} \cdot k!}$
Euler Lagrange optimization of $\mathrm{E}(\mathrm{T})=\int\|\mathrm{C}-\mathrm{T}\|^{2}+\operatorname{Reg}(T)$

$$
C-T+\sum_{\mathrm{k}=1}^{\infty} \frac{(-1)^{k} \Delta^{k}(T-I d)}{\sigma_{d}^{2 k} \cdot k!}=0
$$

Solution: Gaussian smooting $\quad \mathrm{T}_{\text {opt }}=G_{\sigma} * C$ with $\sigma=1 / \sigma_{d}$ \qquad
Pennec, Cachier, Ayache. Understanding the "Demon's Algorithm": 3D Non-Rigid registration by Gradient Descent. MICCAI 1999.

Extension to a family of quadratic filters

$$
G_{\sigma, \kappa}(\mathbf{u})=\frac{1}{(\sigma \sqrt{2 \pi})^{3}(1+\kappa)}\left(\mathrm{Id}+\frac{\kappa}{\sigma^{2}} \mathbf{u} \mathbf{u}^{T}\right) \exp \left(\frac{\mathbf{u}^{T} \mathbf{u}}{2 \sigma^{2}}\right)
$$

P. Cachier and N . Ayache. Isotropic energies, filters and splines for vectorial regularization. J. of Math. Imaging and Vision, 20(3):251-265, May 2004.

MVA 2023-2024

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Statistical Computing on Manifolds for Computational Anatomy

Metric and Affine Geometric Settings for Lie Groups \qquad
Reminder on deformable image registration
Riemannian frameworks on Lie groups
Lie groups as affine connection spaces
Extending statistics without a metric
The SVF framework for diffeomorphisms

Modeling longitudinal deformations in AD \qquad
Parallel transport of deformation trajectories
From velocity fields to AD models

MVA 2023-2024 \qquad

Morphometry through Deformations

Measure of deformation [D'Arcy Thompson 1917, Grenander \& Miller]
Observation $=$ "random" deformation of a reference template
Deterministic template $=$ anatomical invariants [Atlas \sim
Random deformations $=$ geometrical variability [Covariance matrix]

MVA 2023-2024

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Mean longitudinal deformation across subjects?
Convenient mathematical settings for transformations?
MVA 2023-2024 20 20 \qquad

Statistics on deformations

Statistics on displacement field/transformation parameters
Splines [Rueckert et al., TMI, 03],
PCA of Statistical shape models
Simple vector statistics, but inconsistency with group properties
The Riemannian approach (LDDMM)
Right-invariant metric on diffeos [Joshi, Miller, Trouvé, Younes...]
Parameterize diffeomorphisms by time-varying velocity fields
Good mathematical bases for statistics on non-linear spaces
No bi-invariant metric in general
Left/right Fréchet mean incompatible with group structure
The inverse of the mean is not the mean of the inverse
Examples with simple 2D rigid transformations

21

Natural Riemannian Metrics on Transformations

Transformations are Lie groups: Smooth manifold G compatible with group structure

Composition g o h and inversion g^{-1} are smooth
Left and Right translation $L_{g}(f)=g \circ f \quad R_{g}(f)=f \circ g$
Conjugation $\operatorname{Conj}_{g}(f)=g \circ f \circ \mathrm{~g}^{-1}$

Natural Riemannian metric choices
Chose a metric at Id: $\langle x, y\rangle_{l d}$
Propagate at each point g using left (or right) translation $\langle\mathrm{x}, \mathrm{y}\rangle_{\mathrm{g}}=\left\langle\mathrm{DL}_{\mathrm{g}}^{(-1)} \cdot \mathrm{x}, \mathrm{DL}_{\mathrm{g}}{ }^{(-1)} \cdot \mathrm{y}\right\rangle_{\mathrm{ld}}$

Implementation
Practical computations using left (or right) translations

$$
\operatorname{Exp}_{\mathrm{f}}(\mathrm{x})=\mathrm{f} \circ \operatorname{Exp}_{I d}\left(\mathrm{DL}_{\mathrm{f}^{(-1)}} \cdot \mathrm{x}\right) \quad \overrightarrow{\mathrm{fg}}=\log _{\mathrm{f}}(\mathrm{~g})=\mathrm{DL}_{\mathrm{f}} \cdot \log _{\mathrm{Id}}\left(\mathrm{f}^{(-1)} \circ \mathrm{g}\right)
$$

MVA 2023-2024

Example on 3D rotations

Space of rotations $\mathrm{SO}(3)$:
Manifold: R^{\top}. $R=\operatorname{ld}$ and $\operatorname{det}(R)=+1$
Lie group ($\mathrm{R}_{1} \circ \mathrm{R}_{2}=\mathrm{R}_{1} \cdot \mathrm{R}_{2}$ \& Inversion: $\mathrm{R}^{(-1)}=\mathrm{R}^{\top}$)
Metrics on $\mathrm{SO}(3)$: compact space, there exists a bi-invariant metric Left / right invariant / induced by ambient space $\langle\mathrm{X}, \mathrm{Y}\rangle=\operatorname{Tr}\left(\mathrm{X}^{\top} \mathrm{Y}\right)$

Group exponential
One parameter subgroups = bi-invariant Geodesic starting at Id Matrix exponential and Rodrigue's formula: $R=\exp (X)$ and $X=\log (R)$
Geodesic everywhere by left (or right) translation

$$
\log _{R}(U)=R \log \left(R^{\top} U\right) \quad \operatorname{Exp}_{R}(X)=R \exp \left(R^{\top} X\right)
$$

Bi-invariant Riemannian distance
$d(R, U)=\left\|\log \left(R^{\top} U\right)\right\|=\theta\left(R^{\top} U\right)$

General Non-Compact and Non-Commutative case

No Bi-invariant Mean for 2D Rigid Body Transformations

Metric at Identity: $\operatorname{dist}\left(\operatorname{Id},\left(\theta ; t_{1} ; t_{2}\right)\right)^{2}=\theta^{2}+t_{1}^{2}+t_{2}^{2}$

$$
T_{1}=\left(\frac{\pi}{4} ;-\frac{\sqrt{2}}{2} ; \frac{\sqrt{2}}{2}\right) \quad T_{2}=(0 ; \sqrt{2} ; 0) \quad T_{3}=\left(-\frac{\pi}{4} ;-\frac{\sqrt{2}}{2} ;-\frac{\sqrt{2}}{2}\right)
$$

Left-invariant Fréchet mean: $(0 ; 0 ; 0)$
Right-invariant Fréchet mean: $\left(0 ; \frac{\sqrt{2}}{3} ; 0\right) \simeq(0 ; 0.4714 ; 0)$

Questions for this talk:
Can we design a mean compatible with the group operations? Is there a more convenient structure for statistics on Lie groups?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Statistical Computing on Manifolds for Computational Anatomy

Metric and Affine Geometric Settings for Lie Groups \qquad
A short introduction to deformable image registration
Riemannian frameworks on Lie groups
Lie groups as affine connection spaces
Extending statistics without a metric
The SVF framework for diffeomorphisms

Modeling longitudinal deformations in AD \qquad
Parallel transport of deformation trajectories
From velocity fields to AD models

MVA 2023-2024
25

Basics of Lie groups

Flow of a left invariant vector field $\tilde{X}=D L . x$ starting from e
$\gamma_{x}(t)$ exists for all time
One parameter subgroup: $\gamma_{x}(s+t)=\gamma_{x}(s) \cdot \gamma_{x}(t)$
Lie group exponential (ATTN: different from Riemannian Exp)
Definition: $x \in \mathfrak{g} \rightarrow \operatorname{Exp}(x)=\gamma_{x}(1) \epsilon G$
Diffeomorphism from a a neighborhood of 0 in \mathfrak{a} to a
neighborhood of e in G (not true in general for inf. dim)
Baker-Campbell Hausdorff (BCH) formula
$B C H(x, y)=\log (\operatorname{Exp}(x) \cdot \operatorname{Exp}(y))=x+y+\frac{1}{2}[x, y]+\ldots$
3 curves at each point parameterized by the same tangent vector
Left / Right-invariant geodesics, one-parameter subgroups
Question: Can one-parameter subgroups be geodesics?
\qquad

Affine connection spaces

Affine Connection (infinitesimal parallel transport)
Acceleration = derivative of the tangent vector along a curve
Projection of a tangent space on a neighboring tangent space

Geodesics $=$ straight lines

Null acceleration: $\nabla_{\dot{\gamma}} \dot{\gamma}=0$
$2^{\text {nd }}$ order differential equation:
Normal coordinate system

Local exp and log maps (Strong form of Whitehead theorem: In an affine connection space, each point has a normal convex neighborhood (unique geodesic between any two points included in the NCN)

Canonical Connections on Lie Groups

A unique Cartan-Schouten connection
Symmetric (no torsion) and bi-invariant
For which geodesics through Id are one-parameter
\qquad subgroups (group exponential)

Matrices: $M(t)=A . \exp (t . V)$
Diffeos: left/right translations of Stationary Velocity Fields (SVFs)
Levi-Civita connection of a bi-invariant metric (if it exists) \qquad
Continues to exists in the absence of such a metric
(e.g. for rigid or affine transformations)

Symmetric space with central symmetry $S_{\psi}(\phi)=\boldsymbol{\psi} \boldsymbol{\phi}^{-1} \psi$ Matrix geodesic symmetry: $S_{A}(M(t))=A \exp (-t V) A^{-1} A=M(-t)$
[Lorenzi, Pennec. Geodesics, Parallel Transport \& One-parameter Subgroups for Diffeomorphic Image Registration. Int. J. of Computer Vision, 105(2):111-127, 2013.
MVA 2023-2024 29

Statistical Computing on Manifolds for Computational Anatomy

Metric and Affine Geometric Settings for Lie Groups \qquad
Riemannian / affine connection frameworks on Lie groups
Extending statistics without a metric
The SVF framework for diffeomorphisms

Modeling longitudinal deformations in AD
\qquad
Parallel transport of deformation trajectories
From velocity fields to AD models \qquad
\qquad
\qquad

Mean value on an affine connection space

Fréchet / Karcher means not usable (no distance) but:

$$
\mathrm{E}[\mathbf{x}]=\underset{y \in \mathrm{M}}{\operatorname{argmin}}\left(\mathrm{E}\left[\operatorname{dist}(y, \mathbf{x})^{2}\right] \Rightarrow \mathrm{E}[\overrightarrow{\overline{\mathbf{x}}}]=\int_{\mathrm{M}} \overrightarrow{\mathbf{x}} \overrightarrow{\mathbf{x}} \cdot p_{\mathbf{x}}(z) \cdot d \mathrm{M}(z)=0 \quad[P(C)=0]\right.
$$

Exponential barycenters

[Emery \& Mokobodzki 91, Corcuera \& Kendall 99]
$\int \log _{x}(y) \mu(d y)=0 \quad$ or $\quad \sum_{i} \log _{x}\left(y_{i}\right)=0$ \qquad
Existence? Uniqueness?
OK for convex affine manifolds with semi-local convex geometry [Arnaudon \& Li, Ann. Prob. 33-4, 2005]

Use a separating function (convex function separating points) instead of a distance
Algorithm to compute the mean: fixed point iteration (stability?)
\qquad
\qquad
\qquad

Bi-invariant Mean on Lie Groups

Exponential barycenter of the symmetric Cartan connection
Locus of points where $\sum \log \left(m^{-1} \cdot g_{i}\right)=0$ (whenever defined)
Iterative algorithm: $m_{t+1}=m_{t} \circ \operatorname{Exp}\left(\frac{1}{n} \Sigma \log \left(m_{t}^{-1} \cdot g_{i}\right)\right)$
First step corresponds to the Log-Euclidean mean
Corresponds to the first definition of bi-invariant mean of [V. Arsigny, X. Pennec, and N. Ayache. Research Report RR-5885, INRIA, April 2006.]

Mean is stable by left / right composition and inversion
If m is a mean of $\left\{g_{i}\right\}$ and h is any group element, then
$h \circ m$ is a mean of $\left\{h \circ g_{i}\right\}$,
$m \circ h$ is a mean of the points $\left\{g_{i} \circ h\right\}$
and $m^{(-1)}$ is a mean of $\left\{g_{i}^{(-1)}\right\}$
[Pennec \& Arsigny, Ch. 7 p.123-166 , Matrix Information Geometry, Springer, 2012] MVA 2023-2024 35

Special matrix groups

Heisenberg Group (resp. Scaled Upper Unitriangular Matrix Group) No bi-invariant metric
Group geodesics defined globally, all points are reachable
Existence and uniqueness of bi-invariant mean (closed form resp. solvable)

Rigid-body transformations

Logarithm well defined iff log of rotation part is well defined,
i.e. if the Givens rotation have angles $\left|\theta_{i}\right|<\pi$

Existence and uniqueness with same criterion as for rotation parts (same as Riemannian)

SU(n) and GL(n)
Logarithm does not always exists (need 2 exp to cover the group) If it exists, it is unique if no complex eigenvalue on the negative real line Generalization of geometric mean

Example mean of 2D rigid-body transformation

$$
T_{1}=\left(\frac{\pi}{4} ;-\frac{\sqrt{2}}{2} ; \frac{\sqrt{2}}{2}\right) \quad T_{2}=(0 ; \sqrt{2} ; 0) \quad T_{3}=\left(-\frac{\pi}{4} ;-\frac{\sqrt{2}}{2} ;-\frac{\sqrt{2}}{2}\right)
$$

\qquad
Metric at Identity: $\operatorname{dist}\left(I d,\left(\theta ; t_{1} ; t_{2}\right)\right)^{2}=\theta^{2}+t_{1}^{2}+t_{2}^{2}$
Left-invariant Fréchet mean: ($0 ; 0 ; 0$)
Log-Euclidean mean: $\left(0 ; \frac{\sqrt{2}-\pi / 4}{3} ; 0\right) \simeq(0 ; 0.2096 ; 0)$ \qquad
Bi-invariant mean: $\left(0 ; \frac{\sqrt{2}-\pi / 4}{1+\pi / 4(\sqrt{2}+1)} ; 0\right) \simeq(0 ; 0.2171 ; 0)$
Right-invariant Fréchet mean: $\left(0 ; \frac{\sqrt{2}}{3} ; 0\right) \simeq(0 ; 0.4714 ; 0)$

Generalization of the Statistical Framework
Covariance matrix \& higher order moments
Defined as tensors in tangent space
$\quad \Sigma=\int \log _{x}(y) \otimes \log _{x}(y) \mu(d y)$
Matrix expression changes
according to the basis
Other statistical tools
\quad Mahalanobis distance well defined and bi-invariant
$=$ Tangent Principal Component Analysis (t-PCA)
Principal Geodesic Analysis (PGA), provided a data likelihood
Independent Component Analysis (ICA)

Cartan Connections vs Riemannian

What is similar

Standard differentiable geometric structure [curved space without torsion]
Normal coordinate system with Exp_{x} et $\log _{x}$ [finite dimension]
Limitations of the affine framework
No metric (but no choice of metric to justify)
The exponential does always not cover the full group
Pathological examples close to identity in finite dimension
In practice, similar limitations for the discrete Riemannian framework
Global existence and uniqueness of bi-invariant mean?
Use a bi-invariant pseudo-Riemannian metric? [Miolane MaxEnt 2014]

What we gain

A globally invariant (composition \& inversion) symmetric space structure Simple geodesics, efficient computations (stationarity, group exponential) The simplest linearization of transformations for statistics?

Statistical Computing on Manifolds for Computational Anatomy

Metric and Affine Geometric Settings for Lie Groups
\qquad
Riemannian / affine connection frameworks on Lie groups
Extending statistics without a metric
The SVF framework for diffeomorphisms

Modeling longitudinal deformations in AD \qquad
Parallel transport of deformation trajectories
From velocity fields to AD models \qquad
\qquad

Riemannian Metrics on diffeomorphisms

Space of deformations

Transformation $\mathrm{y}=\phi(\mathrm{x})$
Curves in transformation spaces: $\phi(\mathrm{x}, \mathrm{t})$
Tangent vector $=$ speed vector field $\quad v_{t}(x)=\frac{d \phi(x, t)}{d t}$

Right invariant metric
$\left\|v_{t}\right\|_{\phi_{t}}=\left\|v_{t} \circ \phi_{t}^{-1}\right\|_{I d}$
Eulerian scheme
Sobolev Norm H_{k} or H_{∞} (RKHS) in LDDMM \rightarrow diffeomorphisms [Miller,
Trouve, Younes, Holm, Dupuis, Beg... 1998 - 2009]
Geodesics determined by optimization of a time-varying vector field Distance
$d^{2}\left(\phi_{0}, \phi_{1}\right)=\arg \min _{v_{t}}\left(\int\left\|v_{t}\right\|_{\phi_{i}}^{2} d t\right)$
Geodesics characterized by initial velocity / momentum Optimization for images is quite tricky (and lenghty)

MVA 2023-2024

Log-Euclidean Framework

Log-Euclidean processing of tensors
[Arsigny et al, MRM'06, SIAM'6]
Idea: one-to-one correspondence of tensors \qquad
with symmetric matrices, via the matrix logarithm.
Simple processing of tensors via their logarithm (vector space)
Consistency with group structure (e.g., inversion-invariance) \qquad
Log-Euclidean processing of linear transformations
[Arsigny et al, WBIR'06, Commowick, ISBI'06, Alexa et al, SIGGRAPH'02
Idea: linearize geometrical transformations close enough to identity via
matrix logarithm [restriction to data whose logarithm is well-defined]
Simply process transformations via their logarithm (vector space)!
E.g., fuse local linear transformations into global invertible deformations.

Use the group exp/log to map the group to its Lie Algebra \qquad

MVA 2023-2024

Examples: Polyaffine Transformations
[Arsigny, Pennec, Ayache, Medical Image Analysis, 9(6):507-523, Dec. 2005] [Arsigny et al WBIR'06]

Fusing two translations

Fusing two rotations

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The SVF framework for Diffeomorphisms

Idea: [Arsigny MICCAI 2006, Bossa MICCAI 2007, Ashburner Neuroimage 2007] Exponential of a smooth vector field is a diffeomorphism
Parameterize deformation by time-varying Stationary Velocity Fields

Direct generalization of numerical matrix algorithms
Computing the deformation: Scaling and squaring [Arsigny MICCAI 2006] recursive use of $\exp (\boldsymbol{v})=\exp (\boldsymbol{v} / 2) \circ \exp (\boldsymbol{v} / 2)$
Updating the deformation parameters: BCH formula [Bossa MICCAI 2007] $\exp (\boldsymbol{v}) \circ \exp (\varepsilon \boldsymbol{u})=\exp (\boldsymbol{v}+\varepsilon \boldsymbol{u}+[\boldsymbol{v}, \varepsilon \boldsymbol{u}] / 2+[\boldsymbol{v},[\boldsymbol{v}, \varepsilon \boldsymbol{u}]] / 12+\ldots)$
Lie bracket $[\boldsymbol{v}, \boldsymbol{u}](\mathrm{p})=\operatorname{Jac}(\boldsymbol{v})(\mathrm{p}) \cdot \boldsymbol{u}(\mathrm{p})-\operatorname{Jac}(\boldsymbol{u})(\mathrm{p}) \cdot \boldsymbol{v}(\mathrm{p})$
MVA 2023-2024 44

Computing the exponential

\qquad
\qquad
\qquad
\qquad
\qquad

Symmetric log-demons [Vercauteren MICCAI 08]
Idea: [Arsigny MICCAI 2006, Bossa MICCAI 2007, Ashburner Neuroimage 2007] Parameterize the deformation by SVFs
Time varying (LDDMM) replaced by stationary vector fields
Efficient scaling and squaring methods to integrate autonomous ODEs
\qquad

Log-demons with SVFs

Symmetric Log-Domain Demons
Use easy inverse: $\boldsymbol{T}^{-1}=\exp (-v)$
Iteration
Given images I_{0}, I_{l} and current transformation $T=\exp (\boldsymbol{v})$
Forward demons forces $\boldsymbol{u}^{\text {forw }}$
Backward demons forces $\boldsymbol{u}^{\text {back }}$
Update $\boldsymbol{v}_{\boldsymbol{c}} \leftarrow 1 / 2\left(\mathrm{BCH}\left(\boldsymbol{v}, \boldsymbol{u}^{\text {forw }}\right)-\mathrm{BCH}\left(-\boldsymbol{v}, \boldsymbol{u}^{\text {back }}\right)\right)$

Regularize (Gaussian): $\boldsymbol{v} \leftarrow \mathrm{K}_{\text {diff }} * \boldsymbol{v}_{c}$
Open-source ITK implementation

Very fast

[T Vercauteren, et al.. Symmetric Log-Domain Diffeomorphic Registration: A Demons-base
http://hdl.handle.net/10380/3060 Registration: ADemid $\begin{gathered}\text { Approach, MICCAI 2008] }\end{gathered}$
MVA 2023-2024
47

Statistical Computing on Manifolds for Computational Anatomy

Metric and Affine Geometric Settings for Lie Groups \qquad
Riemannian / affine connection frameworks on Lie groups
Extending statistics without a metric
The SVF framework for diffeomorphisms

Modeling longitudinal deformations in AD
Parallel transport of deformation trajectories
From velocity fields to AD models \qquad
\qquad

Alzheimer's Disease

Most common form of dementia
18 Million people worldwide \qquad
Prevalence in advanced countries
65-70: 2\%
70-80: 4\%
80-: 20\%
If onset was delayed by 5 years, number of cases worldwide would be halved
\qquad
Alzheimer's Disease
Most common form of dementia
18 Million people worldwide
Prevalence in advanced countries
$65-70: 2 \%$
$70-80: 4 \%$
80-:20\%
If onset was delayed by 5 years,
number of cases worldwide would
be halved

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Measuring Temporal Evolution with deformations:

 Deformation-based morphometryFast registration with deformation parameterized by SVF

https://team.inria.fr/asclepios/software/lcclogdemons/ [Lorenzi, Ayache, Frisoni, Pennec, Neuroimage 81, 1 (2013) 470-483] MVA 2023-2024

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
rom gravitation to computational anatomy: Parallel transport along arbitrary curves \qquad

Infinitesimal parallel transport $=$ connection $\nabla_{\gamma}(\mathbf{x}): \mathbf{T M} \rightarrow \mathbf{T M}$ \qquad
A numerical scheme to integrate symmetric connections:
Schild's Ladder [Elhers et al, 1972]
Build geodesic parallelogrammoid
Iterate along the curve

Schild's Ladder

Intuitive application to images \qquad
\qquad

[Lorenzi, Ayache, Pennec: Schild's Ladder for the parallel transport of deformations in time series of images, IPMI 2011]
MVA 2023-2024

\qquad
\qquad
\qquad
\qquad
\qquad

Parallel transport along geodesics

Simpler scheme along geodesics: Pole Ladder
\qquad

[Lorenzi, Pennec: Efficient Parallel Transport of Deformations in Time Series of Images: from Schild's to pole Ladder, JMIV 50(1-2):5-17, 2013]
MVA 2023-2024
58

Parallel transport along geodesics

Simpler scheme along geodesics: Pole Ladder

Numerical accuracy of pole ladder

- Order 4 in general affine manifolds

pole $(\mathrm{u})=\Pi(u)+\frac{1}{12} \nabla_{v} R(u, v)(5 u-2 v)$
$+\frac{1}{12} \nabla_{u} R(u, v)(v-2 u)+O(5)$

Error vanishes in symmetric spaces:
Pole ladder is exact in 1 step!
[XP. Parallel Transport with Pole Ladder: a Third Order Scheme in Affine Connection Spaces which is Exact in Affine Symmetric Spaces. Arxiv 1805.11436 MVA 2023-2024

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

| Atrophy estimation for Alzheimer |
| :--- | :--- |
| Alzheimer's Disease Neuroimaging Initiative (ADNI) |
| 200 NORMAL 3 years |
| 400 MCI 3 years |
| 200 AD 2 years |
| Visits every 6 month |
| 57 sites |
| |
| Data collected |
| Clinical, blood, LP |
| Cognitive Tests |
| Anatomical images:1.5T MRI (25\% 3T) |
| Functional images: FDG-PET (50\%), PiB-PET (approx 100) |
| MVA 2023-2024 |

\qquad
\qquad
\qquad
\qquad
\qquad
Conal, bled, LP
\qquad
\qquad

[Lorenzi et al, in Proc.
of IPMI 2011]
MVA 2023-2024
65 \qquad

Modeling longitudinal atrophy in AD from images
One year structural changes for 70 Alzheimer's patients
Median evolution model and significant atrophy (FdR corrected)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

Longitudinal model for AD
Estimated from 1 year changes - Extrapolation to 15 years 70 AD subjects (ADNI data)

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Study of prodromal Alzheimer's disease
98 healthy subjects, 5 time points (0 to 36 months).
41 subjects A $\beta 42$ positive ("at risk" for Alzheimer's)
Q: Different morphological evolution for $A \beta+$ vs $A \beta-$?

[Lorenzi, Ayache, Frisoni, Pennec, in Proc. of MICCAI 2011] MVA 2023-2024

72 \qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Study of prodromal Alzheimer's disease
Linear regression of the SVF over time: interpolation + prediction

\qquad
\qquad
\qquad
\qquad

Multivariate group-wise comparison
Multivariate group-wise comparis of the transported SVFs shows
statistically significant differences (nothing significant on $\log (d e t)$) \qquad
$T(t)=\operatorname{Exp}(\widetilde{v}(t)) * T_{0}$
[Lorenzi, Ayache, Frisoni, Pennec, in Proc. of MICCAI 2011] MVA 2023-2024 75

Statistical Computing on Manifolds for Computational Anatomy

\qquad

Metric and Affine Geometric Settings for Lie Groups
\qquad Riemannian / affine connection frameworks on Lie groups
Extending statistics without a metric
The SVF framework for diffeomorphisms
\qquad

Modeling longitudinal deformations in AD \qquad
Parallel transport of deformation trajectories
From velocity fields to AD models \qquad
\qquad

MVA 2023-2024 \qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
$P($ Critical area $) \approx$ Proximity to critical point + Surrounding flux Step1. Finding local maxima and minima for the pressure field (sources,sinks) Step2. Finding surrounding areas of maximal outwards/inwards flux (Expansion and Contraction)
\qquad

MVA 2023-2024
[Lorenzi et al, MICCAI 2012]
79 \qquad

Statistics on the topology of pressure maps

Critical areas optimizing the expected flux population-wise
Detect minima and maxima of mean symmetrized pressure maps
Extend probabilistic regions to zero crossings (pressure=probability) \qquad
Critical regions for the 1-year atrophy on 20 AD patients Expansion \qquad
\qquad
Contraction

\qquad
\qquad

- Statistics on a multiscale Morse-Smale complex?
\qquad

Group-wise flux analysis in Alzheimer's Quantification

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

From discovery to quantification

Hippocampal atrophy measures

NIBAD'12
 Mrccan 2012 Worksup on Movel
 AND RELATED DISORDER

\qquad

46 patients, 23 controls, blinded diagnosis
$0,2,6,12,26,38$ and 52 weeks scans, only baseline information
Test on intra-subject pairwise atrophy rates
Effect size on left hippocampus
Group six months one year two years $\begin{array}{llll}\text { INRIA - Regional Flux } & 1.02 & 1.33 & 1.47\end{array}$
Top-ranked on Hippocampal atrophy measures
Among competitors:
Freesurfer (Harvard, USA)
Montreal Neurological Institute, Canada Mayo Clinic, USA
University College of London, UK
MVA 2023-2024 University of Pennsylvania, USA

Statistical Computing on Manifolds for Computational Anatomy

\qquad

Metric and Affine Geometric Settings for Lie Groups \qquad
Riemannian / affine connection frameworks on Lie groups
Extending statistics without a metric
The SVF framework for diffeomorphisms

Modeling longitudinal deformations in AD
\qquad
Parallel transport of deformation trajectories
From velocity fields to AD models \qquad

Perspectives on statistics on deformation \qquad
\qquad

The Stationnary Velocity Fields (SVF) framework for diffeomorphisms \qquad
SVF framework for diffeomorphisms is algorithmically simple
Compatible with "inverse-consistency"
Vector statistics directly generalized to diffeomorphisms
\qquad

Registration algorithms using log-demons:
Log-demons: Open-source ITK implementation (Vercauteren MICCAI 2008)
http://hdl.handle.net/10380/3060
[MICCAI Young Scientist Impact award 2013]
Tensor (DTI) Log-demons (Sweet WBIR 2010):
https://gforge.inria.fr/projects/ttk
LCC log-demons for AD (Lorenzi, Neuroimage. 2013)
https://team.inria.fr/asclepios/software/lcclogdemons/
3D myocardium strain / incompressible deformations (Mansi MICCAl'10)
Hierarchichal multiscale polyaffine log-demons (Seiler, Media 2012)
http://www.stanford.edu/~cseiler/software.html
[MICCAI 2011 Young Scientist award]

A powerful framework for statistics

Parametric diffeomorphisms [Arsigny et al., MICCAI 06, JMIV 09]
One affine transformation per region (polyaffines transformations)
Cardiac motion tracking for each subject [McLeod, Miccai 2013]
\qquad
Log demons projected but with 204 parameters instead of a few millions \qquad

\qquad
\qquad
\qquad
\qquad

A powerful framework for statistics

Parametric diffeomorphisms [Arsigny et al., MICCAI 06, JMIV 09]
One affine transformation per region (polyaffines transformations)
Cardiac motion tracking for each subject [McLeod, Miccai 2013] \qquad
Log demons projected but with 204 parameters instead of a few millions
Group analysis using tensor reduction : reduced model
8 temporal modes $\times 3$ spatial modes $=24$ parameters (instead of 204)
\qquad

\qquad
\qquad

\qquad

\qquad
\qquad
\qquad
\qquad

Hierarchical Estimation of the Variability

\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Geometric Statistics for anatomical shapes

Study geometric structures

Riemannian, Finsler, affine, bundles, Lie groups

Generalize statistics

Real data have noise
Approximate invariance, factor analysis...

Design algorithm

Dimension reduction, Image processing.. \qquad

With important medical applications
Heart, brain diseases

http://geomstats.ai : a python library to implement

 generic algorithms on many Riemannian manifolds \qquadMean, PCA, clustering, parallel transport...
15 manifolds / Lie groups already
implemented (SPD, H(n), SE(n), etc)
implemented (SPD, $H(\mathrm{n}), \mathrm{SE}(\mathrm{n})$, etc)
Generic manifolds with geodesics by Generic manifolds with ge
integration / optimization
scikit-learn API (hide geometry, compatible with GPU \& learning tools).

10 introductory tutorials
35000 lines of code
~ 30 academic developers
7 hackathons organized in 2020-2022
Last one: 17-21 October 2022 IHP, Paris
[Miolane et al, JMLR 2020, Scipy 2020
Guigui et al, FnT in Mach. Learning 2023]
MVA 2023-2024

Pushing the frontiers of Geometric Statistics

Beyond the Riemannian / metric structure
Riemannian manifolds, Non-Positively Curved (NPC) metric spaces Affine connection, Quotient, Stratified spaces (trees, graphs) \qquad
Beyond the mean and unimodal concentrated laws Nested sequences (flags) of subspace in manifolds
A continuum from PCA to Principal Cluster Analysis?

Geometrization of statistics

Geometry of the space of samples

Explore influence of curvature, singularities (borders, corners, stratifications) on non-asymptotic estimation theory
Make G-Statistics an effective discipline for life sciences
\qquad
96

