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1 Evidence lower bound

We consider the generic case of a set X of N observed random variables
Xn, n ∈ [1, . . . N ]. It is assumed that those observation can be explained
by generic probabilistic model p(X|Z) where Z is a set of P latent (un-
observed) random variables. Note that in its generic form, the size of the
latent variable P may differ from the dimension N of the observed variable
X The associated inverse problem is described by graphical model of Fig.1.

The latent prior p(Z), the likelihood p(X|Z), the posterior p(Z|X), and
the marginal likelihood or evidence p(X) are related through the Bayes law
and law of total probability :

p(X|Z) =
p(X,Z)

p(Z)

p(Z|X) =
p(X|Z)p(Z)

p(X)

p(X) =
∑
Z

p(X|Z)p(Z) =
∑
Z

p(X,Z) if Z discrete

p(X) =

∫
p(X|Z)p(Z) dZ =

∫
p(X,Z) dZ if Z continuous

The estimation of the posterior probability p(Z|X), requires the com-
putation of the evidence p(X), the probability of observed variables, which
often cannot be computed in closed form.

Then, an approximation of the posterior distribution is introduced as
variable U(Z) ≈ p(Z|X). The evidence lower bound (ELBO) is linking the
evidence p(X) with its lower bound defined as function of the surrogate
variable U . We derive the ELBO for various configurations of the latent
space Z, depending on its discrete or continuous nature.
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1.1 Categorical latent variables

We assume that Z is a set of P categorical variables that can take K values.
We use one-hot-encoding for the latent variable Zp which means that Zp is a
vector of K binary values Zpk ∈ {0, 1} such that only one of such values is 1,

i.e.
∑K

k=1 Zpk = 1. We write eKi the canonical one-hot vector of dimension
K such that eKi [i] = 1 and eKi [j 6= i] = 0. The probability that variable Zp
is in class k writes as follows : p(Zp = eKk ) = p(Zpk = 1).

The surrogate posterior variable U follows the same structure as Z, i.e.
it is a collection of P categorical variables Up that can take K values. Fur-
thermore, we write p(Upk = 1) = upk such that up is a vector of dimension

K up = (up1, . . . upK)T ∈ [0, 1]K , such that :
∑K

k=1 upk = 1. Then we have :

log p(X) = (
K∑
k=1

upk) log p(X)

=
1

P
(
P∑
p=1

K∑
k=1

upk) log p(X)

Based on the definition of the conditional probability, we have p(X,Zpk) =

p(Zpk|X)p(X). Therefore we can write p(X) =
Upk

p(Zpk|X)
p(X,Zpk)

1
1
Upk

leading
to :

log p(X) =
1

P

P∑
p=1

K∑
k=1

Upk log

(
Upk

p(zpk|X)

)
+

N∑
p=1

K∑
k=1

Upk log p(X, zpk)−
N∑
p=1

K∑
k=1

Upk logUpk

= DKL(U ||p(Z|X)) + EU (log p(X,Z)) + H(U)

where

� DKL(U ||p(Z|X)) is the Kullback-Leibler divergence between the sur-
rogate probability distribution U and the posterior p(Z|X). This di-
vergence is positive or null and is null only if U = p(Z|X).

� EU (log p(X,Z)) =
∑N

n=1

∑K
k=1 Unk log p(xn, zn) is the expectation of

the complete log likelihood p(X,Z) with respect to variable U .

� H(U) = −
∑N

n=1

∑K
k=1 Unk logUnk is Shannon entropy of variable U

Since the Kullback-Leibler divergence is positive, the quantity LV I =
EU (log p(X,Z)) + H(U) is the evidence lower bound :

log p(X) ≥ LV I = EU (log p(X,Z)) + H(U) = log p(X)−DKL(U ||p(Z|X))
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Figure 1: (a) Graphical model of a generic inverse problem with observed
values xn explained by latent variable Zn;(b) Graphical model of a generic
inverse problem for the Expectation-Maximization where the parameters
θX , θZ are estimated jointly with the latent variable Z.

The opposite of the lower bound is the variational free energy :
LV FE = −LV I .

The lower bound can take several forms for instance including the like-
lihood p(X|Z) and prior probabilities p(Z) since p(X,Z) = p(X|Z)p(Z):

LV I = −DKL(U ||p(X,Z)) (1)

= EU (log p(X|Z))−DKL(U ||p(Z)) (2)

This last expression used in the variational autoencoder literature can be
interpreted in the following way. The first term EU (log p(X|Z)) is such that
the log likelihood is maximized (equivalent to the goodness of fit) while the
second term −DKL(U ||p(Z)) penalizes the complexity of surrogate function
U with respect to the prior p(Z).

Continuous case . If X and Z are continuous variables, we write β ∈ RP
the integration variables for probability density function Z(β). Then we can
show similarly to the categorical case that the same relations holds for the
lower bound. In this case the surrogate function U(β) ∈ [0, 1] approximating
the posterior sums to unity (

∫
RP U(β) dβ = 1) and we have the following
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relations:

DKL(U ||p(Z|X)) =

∫
Rl
U(β) log

(
U(β)

p(Z = β|X)

)
dβ

EU (log p(X,Z)) =
N∑
n=1

∫
Rl
U(β) log p(xn, Z = β) dβ

H(U) = −
∫
Rl
U(β) logU(β) dβ

Note the lower bound expression is very generic as the latent variable
Z may in fact include different random variables some of them commonly
considered as parameters and other as hidden variables. The joint proba-
bility p(X,Z) is usually expanded to reveal to true relationships between
variables.

2 Expectation-Maximization algorithm

2.1 Generic Algorithm

The EM algorithm applies when one wants to estimate the parameters θ =
{θX , θZ} associated with the likelihood function p(X|Z, θX) or the prior
p(Z|θZ).

The second condition to apply the EM algorithm is that the marginal
likelihood (aka the evidence) p(X|θ), and the posterior probability p(Z|X, θ)
can be computed in closed form.

In this case, the estimation of the parameters θ is normally done by the
maximization of the marginal log likelihood log p(X|θ). Yet, this maximiza-
tion is often difficult to perform in closed form.

The EM algorithm instead aims at replacing the maximization of the
log marginal likelihood θopt = arg minθ log p(X|θ) by the maximization of
its lower bound or equivalently by the minimization of the variational free
energy :

(θopt, Uopt) = arg min
θ,U
LV I(U, θ) = log p(X|θ)−DKL(U ||p(Z|X, θ))

By choosing U = p(Z|X, θ), the Kullback Leibler divergence becomes null
and the lower bound is equal to the marginal log likelihood. By introducing
the additional variable U(Z), the maximization is relaxed and proceeds by
iterating between these two steps :
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� Expectation-Step. The lower bound LV I(U, θ) = log p(X|θ)−DKL(U ||p(Z|X, θ))
is optimized with respect to U by choosing U = p(Z|X, θ).

� Maximization-Step. The lower bound LV I(U, θ) = EU (log p(X,Z|θ))+
H(U) is maximized with respect to θ. More precisely, only the condi-
tional expectation depends on θ and therefore θt+1 = arg maxθ EU (log p(X,Z|θ)).
This optimization with respect to EU (log p(X,Z|θ)) is provably easier
to perform than with respect to the log marginal likelihood.

Therefore the EM-algorithm can be seen as the relaxation of a maxi-
mization problem by introducing an extra variable which is solved by an
alternate optimization. The iterative maximization of the lower bound is
displayed in Fig. 2.

Figure 2: Illustration of the EM algorithm as the maximization of a lower
bound; at each iteration the E-step consists in creating the lower bound
which is touching the log likelihood at θt; the M-step consists in optimizing
the lower bound at θt+1

The EM algorithm iterative increase the log-likelihood but is not guar-
anteed to converge towards a global maximum.

2.2 Application 1 : Gaussian Mixture Model

We show how the EM algorithm applies in the case of a Gaussian Mixture
model. In such case, the observed random variable Xn ∈ R is continuous
and the latent variable Zn is a categorical variable belonging to K class.
Furthermore, there are as many latent variables as observed ones (P = N),
and the observations XN are conditionally independent knowing the latent
variable Zn. Then for each class k, the Xn value is assumed to follow a
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Gaussian distribution characterized by its mean value µk and variance σ2
k

such that θX = {µk, σ2
k}:

p(Xn|Znk = 1) = N (xn;µk, σ
2
k)

The prior on the label p(Z) is constant for all samples and parameterized by
a multivariate Bernoulli having parameters θZ = πk such that

∑K
k=1 πk = 1.

Thus we have :

p(Znk = 1) = πk

The associated graphical model is displayed in Fig. 3(a).
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N

(b)

Figure 3: (a) Graphical model of a Gaussian mixture model with observed
values Xn explained by latent variable Zn;(b)

If this case, the marginal likelihood can be written in closed form :

p(X) =

K∑
k=1

p(Xn|Znk)p(Znk) =

K∑
k=1

πkN (Xn;µk, σ
2
k)

and the posterior probability :

p(Znk = 1|Xn) =
πkN (Xn;µk, σ

2
k)∑K

l=1 πlN (Xn;µl, σ
2
l )

(3)

The EM algorithm aims to maximize the log marginal likelihood log p(X|θ)
by introducing a surrogate probability function Unk and by maximizing a
lower bound LV I(U, θ) of the log marginal likelihood. In this case, we have
p(Xn, Zn) = p(Xn|Zn)p(Zn) which implies that :

LV I(U, θ) = log p(X|θ)−DKL(U ||p(Z|X, θ))
= EU (log p(X,Z|θ)) + H(U)

=
N∑
n=1

K∑
k=1

Unk
(
log(πkN (Xn;µk, σ

2
k))− logUnk

)

6



The 2 steps of the EM-algorithm then becomes :

� E-step. Determine Unk = p(Znk = 1|Xn) as the posterior probability
given by equation 3.

� M-step. Maximize LV I(U, θ) with respect to θZ = {πk} and θX =
{µk, σ2

k} giving :

πk =

∑N
n=1 Unk
N

µk =

∑N
n=1 UnkXn∑N
n=1 Unk

σ2
k =

∑N
n=1 Unk(Xn − µk)2∑N

n=1 Unk

2.3 Application 2 : Student-t distribution

In this case, we consider fitting a Student-t distribution on a set of observa-
tions {Xn}. A Student-t is a generalization of a Gaussian distribution where
an additional parameter ν, the degrees of freedom, is introduced. When
ν → +∞, then the Student-t S(x;µ, σ2, ν)→ N (x;µ, σ2) converges towards
a Gaussian distribution. For finite values of ν the Student-t distribution
has an heavy tail, meaning that it makes values away from the mean more
probable than for a normal distribution. The probability density function
of a student is :

S(x;µ, σ2, ν) =
Γ(ν+1

2 )

Γ(ν2 )

1√
2πσ2

(
1 +

(x− µ)2

σ2ν

)− ν+1
2

(4)

Given N observations Xn ∈ R the problem is to estimate the 3 param-
eters θ of the Student-t distribution i.e. , the mean µ, variance σ2 and
degrees of freedom ν. The maximization of the log likelihood log p(X|θ) =∑N

n=1 p(Xn|θ) does not lead to any closed form expression unlike the Gaus-
sian case. Instead of resorting to the joint non linear optimization θopt =
arg maxθ log p(X|θ), one can use an EM algorithm where µ and σ2 (but not
ν) can be estimated in closed form.

This EM fitting approach is possible because a Student-t distribution
may be seen as a Gaussian scale mixture, i.e. as an infinite mixture of
Gaussian distributions having the same mean but varying variance. More
precisely, the precision (inverse of the variance) is following a Gamma law
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(a) (b)

Figure 4: (a) Student-t distribution of zero mean and unit standard devia-
tion and various values of the number of degrees of freedom ν. For ν =∞,
the distribution becomes a Gaussian distribution.(b) Gamma distribution
Ga(x; ν2 ,

ν
2 ) for various value of ν. Each distribution has mean 1 and vari-

ance 2
ν .

parameterized by ν
2 :

S(x;µ, σ2, ν) =

∫ ∞
0
N (x;µ, σ2/τ) Ga(τ ;

ν

2
,
ν

2
) dτ (5)

The Gamma distribution Ga(τ ;α, β) = βατα−1e−βτ

Γ(α) (see Fig 4(b)) applies
on positive scalars and is classically defined by the shape α and rate β
parameters (the scale parameters θ = 1/β is also often used).

We can then formulate the problem of fitting the parameters θ = {µ, σ2, ν}
of a Student-t distribution from data, as solving with the EM algorithm an
inverse problem involving the hidden variables τn and the parameters θ.

More precisely, writing T = {τn} the hidden variables, and θX = {µ, σ2}
the Gaussian parameters, we have :

p(Xn|θX , τn) = N (Xn;µ, σ2/τn)

p(τn|ν) = Ga(τn;
ν

2
,
ν

2
)

The marginal log likelihood is same as the likelihood associated with the
Student-t p(Xn|θ) =

∫∞
0 p(Xn|τn) p(τn|ν) dτn = S(Xn; ν, σ2, ν).
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Figure 5: (a) Graphical model for fitting a Student-t with observed values
Xn following a Gaussian distribution and precision variables τn following a
Gamma distribution;(b)

The posterior distribution of the hidden variable τ used in the E-step
can be written as a Gamma distribution :

p(τn|Xn) ∝ p(Xn|τn) p(τn)

= Ga(τn; an, bn)

with an = ν+1
2 and bn = ν

2 + (Xn−µ)2

2σ2 .
The complete log-likelihood involved in the lower bound is written as :

log p(Xn, τn|θ) = log p(Xn|τn, θX) + log p(τn|ν)

= −1

2
log 2π − 1

2
log σ2 +

1

2
log τn −

τn
2σ2

(Xn − ν)2

− log Γ(
ν

2
) +

ν

2
log

ν

2
+ (

ν

2
− 1) log τn −

ν

2
τn

The EM-algorithm proceeds by introducing N continuous variables Un(τ).
In the E-step, those variables are set to Un(τ) = p(τn|Xn, θ) = Ga(τn; an, bn).

The M-step relies on the evidence lower bound LV I(U, θ) = EU (log p(X,Z|θ))+
H(U). Since, the entropy term H(U) is independent of θ, we concentrate on
the expectation term :

EU (log p(X,Z|θ)) =
N∑
n=1

∫ ∞
0

Un(τn) log p(Xn, τn|θ) dτn

= −N
2

log 2π − N

2
log σ2 +

1

2

N∑
n=1

E[log τn]− 1

2σ2

N∑
n=1

(Xn − µ)2E[τn]

−N log Γ(
ν

2
) +N

ν

2
log

ν

2
+ (

ν

2
− 1)

N∑
n=1

E[log τn]− ν

2

N∑
n=1

E[τn]
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where E[τn] =
∫∞

0 τnGa(τn; an, bn) and E[log τn] =
∫∞

0 log τnGa(τn; an, bn).
Since the expectation of a Gamma function Ga(τn;α, β) is α

β , we have
E[τn] = an

bn
. The second term can be also computed in closed form and

gives : E[log τn] = ψ(an)− log bn where ψ(x) is the digamma function. We
introduce the quantity τ̂n = E[τn] = an

bn
= ν+1

ν+
(Xn−µ)2

σ2

as the expectation of

the normalized precision.
The M-step consists in finding the mean µ, the variance σ2 and the

degrees of freedom which maximizes EU (log p(X,Z|θ)). The maximization
gives with respect to µ and σ2 gives two closed form relations:

∂EU (log p(X,Z|θ))
∂µ

= 0⇒ µ =

∑N
n=1 τ̂nXn∑N
n=1 τ̂n

∂EU (log p(X,Z|θ))
∂σ2

= 0⇒ σ2 =
1

N
(
N∑
n=1

(Xn − µ)2τ̂n)

We see that τ̂n acts as a weight associated with each data Xn. When the

Mahalanobis distance (Xn−µ)2

σ2 is larger than 1, then the expected normalized
precision τ̂n = ν+1

ν+
(Xn−µ)2

σ2

becomes less than 1 and therefore are less taken

into account than those data points that are closer to the mean value.
For the optimization of the degrees of freedom ν, no closed-form solution

can be obtained and numerical optimization must be performed :

∂EU (log p(X,Z|θ))
∂ν

= 0⇒ ψ(
ν

2
)− log

ν

2
= 1 +

1

N

N∑
n=1

(ψ(an)− log bn − τ̂n)

ψ(
ν + 1

2
)− ψ(

ν

2
) + log

ν

2
− log

ν + 1

2
=

1

N

N∑
n=1

(τ̂n − log τ̂n − 1)

3 Mean Field Approximation

3.1 Generic Result

We consider the generic case of section 1 of observed random variables X
of dimension N and latent variables Z of dimension P . The objective of
the mean field approximation is to approximate the posterior probability
p(Z|X) as a function q(Z) which factorizes over its components. Assuming
that Z ∈ RP is a continuous variable and that β ∈ RP is the integration
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variable such that
∫
RP p(Z = β) dβ = 1, then we assume that

q(β) =

P∏
p=1

qp(βp)

where βp ∈ R is the p component of vector β. In other words, we assume
that q(β) is a product of P univariate functions. This hypothesis drastically
simplifies the estimation of the posterior probability but at the same time
is a very crude approximation of the true posterior.

The evidence lower bound presented in section 1, can be written as
follows :

DKL(U ||p(Z|U)) = log p(X)− EU (log p(X,Z))−H(U)

We now replace U(β) with q(β) =
∏P
p=1 qp(βp) in this expression. We get :

DKL(U ||p(Z|U)) = log p(X) +

∫
RP

P∏
p=1

qp(βp)

− log p(X,β) +
P∑
p=1

log qp(βp)

 dβ

Now we consider that the qp(βp), p 6= j are known for a specific index j. We
write the condition on qj(βj) to minimize the Kullback-Leibler divergence.

DKL(q||p(Z|q)) = cst +

∫
R
qj(βj) log qj(βj) dβj−∫

R
qj(βj)

∫
RP−1

∏
p 6=j

qp(βp) log p(X,β) dβ 6=j

 dβj

= cst +DKL(qj ||q̃j)

where by construction we have :

log q̃j =

∫
RP−1

∏
p 6=j

qp(βp) log p(X,β) dβ6=j + cst (6)

Thus for qj(βj) to minimize the discrepancy between p(Z|X) and q(Z), it is
necessary that qj(βj) = q̃j(βj) where:

q̃j(βj) =
exp

(∫
RP−1

∏
p 6=j qp(βp) log p(X,β) dβ6=j

)
∫
R exp

(∫
RP−1

∏
p 6=j qp(βp) log p(X,β) dβ 6=j

)
dβj

(7)

11



The mean-field algorithm thus proceeds by optimizing each approximate
marginal distributions qj(βj) separately and by iterating other all marginals.
Algorithm 1 provides a sketch of the mean field algorithm.

Algorithm 1: Mean Field approximation of posterior p(Z|X)

input : Joint probability function p(X,β) = p(X|Z = β)p(Z = β)
output: Approximate marginal distribution

q(β) =
∏P
p=1 qp(βp) ≈ p(Z|X)

/* Initialize the approximate marginals to q0
j (βj) */

for p← 1 to P do
qp(βp)← q0(βp)

/* Loop until the change in the distribution q(βj) is

smaller than a threshold */

do

qold ←
∏P
p=1 qp(βp)

/* Update the marginals one after the other */

for p← 1 to P do
Update qp(βp) according to Eq.9

while ‖qold −
∏P
p=1 qp(βp)‖ < ε

3.2 EM algorithm

3.3 Hidden Potts Model

We extend the previous work in Gaussian Mixture Model by modifying
the hypothesis about the prior on the label. In section2.2, the prior on
the labels p(Znk = 1) was supposed to be constant for all samples, i.e.
p(Znk = 1) = πk. In the Hidden Potts Model, we make a less stringent
hypothesis by assuming that the prior of a label in a graph (and more
precisely in an image), depends on its neighbors. Let O(n) be set of all voxel
neighbors to voxel n. Then the Potts model assumes that the probability of
a label depends on the label of its neighbors as follows:

p(Znk|ZO(n)) ∝ πk exp

−α ∑
i∈O(n)

(2ZikZnk − 1)


where ZO(n) is the set of random label variables on the neighbors of site n,
and α is a positive scalar (often written as the inverse of a temperature)
and πk is a prior label probability. Since Zn is a vector of binary variables,
the product 2ZikZnk− 1 is equal to 1 if Zn and Zi belong to the class k and
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is equal to −1 otherwise. Another way to write the prior probability is by
writing the log prior label probability:

log p(Z|θZ) =
N∑
n=1

K∑
k=1

log p(Znk)

=

 ∑
E(n,m)

K∑
k=1

−α(2ZnkZmk − 1) +N

K∑
k=1

log πk

− logDZ

where DZ is a normalizing constant, E(n,m) is the set of edges connecting
two neighboring nodes and θZ = {α} ∪ {πk}. The joint probability then
writes as :

log p(X,Z) = log p(X|Z) + log p(Z)

=
N∑
n=1

K∑
k=1

Znk logN (xn;µk, σ
2
k) + log(Z)

=
∑
E(n,m)

K∑
k=1

−α(2ZnkZmk − 1) +

N∑
n=1

K∑
k=1

Znk
(
log πkN (xn;µk, σ

2
k)
)
− logDZ

We approximate the posterior p(Z|X) as the factorized function q(Z) =∏N
n=1 qn(Zn) where qn(Zn) follows a multivariate Bernoulli distribution (aka

multinoulli distribution, aka categorical distribution) parameterized by the
vector q̂n = [q̂nk] ∈ RK such that qn(eKk ) = q̂nk and

∑K
k=1 q̂nk = 1. Therefore

the approximation is fully determined by the matrix of size N ×K of q̂nk.
In this case, the posterior approximation of a variable Zn is considered to
be independent from the other variables Zm which is a strong hypothesis.

To get a good approximation q(Z), it is necessary to minimize the
Kullback-Leibler divergence DKL(q||p(Z|X)) which leads to the mean-field
update of equation 8. Writing this update on discrete latent variables gives:

log qj(Zj) =

eK∑
Z1=e1

. . .

eK∑
Zj−1=e1

eK∑
Zj+1=e1

. . .

eK∑
ZN=e1

∏
p 6=j

qp(Zp) log p(X,Z1, . . . , ZN ) + cst

=
∑

Z̃∈Z−j

∏
p 6=j

qp(Z̃p) log p(X, Z̃ ∪ Zj) + cst

where ei (dropping the subscript K) is a one-hot encoded vector of size K
where ei[i] = 1 and ei[j 6= i] = 0. Z−j is the set of all possible latent
variables of dimension N − 1 which does not include Zj . The cardinality of
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Z−j is therefore KN−1. Thus Z̃ is a vector of random variables Zp of size
N − 1 and Z̃ ∪ Zj is a latent vector of size N which is built by inserting Zj
into Z̃. In this equation, we are only interested in the functions of Zj , the
rest being store in a const which will be eliminated by the normalization
process. Therefore, it is important to isolate in log p(X, Z̃ ∪ Zj) the terms
that depend on Zj . We get :

log p(X, Z̃ ∪ Zj) =
∑

n∈O(j)

K∑
k=1

−α(2ZnkZjk − 1) +
K∑
k=1

Zjk
(
log πkN (xj ;µk, σ

2
k)
)

+ cst

Furthermore we note that
∑eK

Zp=e1
qp(Zp) = 1 because

∑K
k=1 q̂nk = 1. There-

fore the sum over Z−j can be restricted to the sum over node j and its neigh-
bors in O(j). Furthermore, we can discard all sums over latent variables that
are not involved in a term of log p(X, Z̃ ∪ Zj). Finally, we get :

log qj(Zjl = 1) = q̂jl =
∑

n∈O(j)

−α(2q̂nl − 1) +
(
log πlN (xj ;µl, σ

2
l )
)

+ cst

This leads to the following relationship after normalization:

q̂jl =
exp(

∑
n∈O(j)−α(2q̂nl − 1))πlN (xj ;µl, σ

2
l )∑K

k=1 exp(
∑

n∈O(j)−α(2q̂nk − 1))πkN (xj ;µk, σ
2
k)
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