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Abstract. To achieve sparse parametrizations that allows intuitive analysis, we aim to represent
deformation with a basis containing interpretable elements, and we wish to use elements that have
the description capacity to represent the deformation compactly. To accomplish this, we introduce in
this paper higher-order momentum distributions in the LDDMM registration framework. While the
zeroth order moments previously used in LDDMM only describe local displacement, the first-order
momenta that are proposed here represent a basis that allows local description of affine transfor-
mations and subsequent compact description of non-translational movement in a globally non-rigid
deformation. The resulting representation contains directly interpretable information from both
mathematical and modeling perspectives. We develop the mathematical construction of the registra-
tion framework with higher-order momenta, we show the implications for sparse image registration
and deformation description, and we provide examples of how the parametrization enables registra-
tion with a very low number of parameters. The capacity and interpretability of the parametrization
using higher-order momenta lead to natural modeling of articulated movement, and the method
promises to be useful for quantifying ventricle expansion and progressing atrophy during Alzheimer’s
disease.
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1. Introduction. In many image registration applications, we wish to describe
the deformation using as few parameters as possible and with a representation that
allows intuitive analysis: we search for parametrizations with basis elements that have
the capacity to describe deformation sparsely while being directly interpretable. For
instance, we wish to use such a representation to compactly describe the progressive
atrophy that occurs in the human brain suffering from Alzheimer’s disease and that
can be detected by the expansion of the ventricles [19, 13].

Image registration algorithms often represent translational movement in a dense
sampling of the image domain. Such approaches fail to satisfy the above goals: low
dimensional deformations such as expansion of the ventricles will not be represented
sparsely; the registration algorithm must optimize a large number of parameters; and
the expansion cannot easily be interpreted from the registration result.

In this paper, we use higher-order momentum distributions in the LDDMM regis-
tration framework to obtain a deformation parametrization that increases the capacity
of sparse approaches with a basis consisting of interpretable elements. We show how
the higher-order representation model locally affine transformations, and we use the
compact deformation description to register points and images using very few param-
eters. We illustrate how the deformation coded by the higher-order momenta can be
directly interpreted and that it represents information directly useful in applications:
with low numbers of control points, we can detect the expanding ventricles of the
patient shown in Figure 1.1.

1.1. Background. Most of the methods for non-rigid registration in medical
imaging model the displacement of each spatial position by either a combination of
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(a) Baseline with control points.
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(b) Follow up (box marking zoom area, figure
(c) and (d)).
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(c) log-Jacobian in ventricle area.
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(d) Initial deformation field in ventricle area.

Fig. 1.1. Progressing Alzheimer’s disease cause atrophy and expansion of the ventricles. By
placing five deformation atoms in the ventricle area of the baseline MRI scan [20] and by using
higher-order momenta, we can detect the expansion. (a) The position of the deformation atoms
shown in the baseline scan; (b) the follow up scan; (c) the log-Jacobian determinant of the generated
deformation in the ventricle area (red box in (b)); (d) the vector field at t = 0 of the generated
deformation. The logarithm of the Jacobian determinant and the divergence at the deformation
atoms are positive which is in line with the expected ventricle expansion, confer also Figure 7.5.

suitable basis functions for the displacement itself or for the velocity of the voxels.
The number of control points vary between one for each voxel [2, 17, 7] and fewer with
larger basis functions [25, 5, 11]. For all methods, the infinite-dimensional space of
deformations is approximated by the finite- but high-dimensional subspace spanned
by the parametrization of the individual method. The approximation will be good
if the underlying deformation is close to this subspace, and the representation will
be compact, if few basis functions describe the deformation well. The choice of ba-
sis functions play a crucial role, and we will in the rest of the paper denote them
deformation atoms. Two main observations constitute the motivation for the work
presented in this paper:

Observation 1: Order of the Deformation Model. In the majority of registration
methods, the deformation atoms model the local translation of each point. We wish
a richer representation which is in particular able to model locally linear components
in addition to local translations. The Polyaffine and Log-Euclidean Polyaffine [3,
1] frameworks pursue this by representing the velocity of a path of deformations
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locally by matrix logarithms. Ideas from the Polyaffine methods have recently been
incorporated in e.g. the Demons algorithm [32] but, to the best of our knowledge, not
in the LDDMM registration framework. We wish to extend the set of deformation
atoms used in LDDMM to allow representation of first- and higher-order structure and
hence incorporate the benefits of the Polyaffine methods in the LDDMM framework.

Observation 2: Order of the Similarity Measure. When registering DT images,
the reorientation is a function of the derivative of the warp; curve normals also contain
directional information which is dependent on the warp derivative and airway trees
contain directional information in the tree structure which can be used for measuring
similarity. These are examples of similarity measures containing higher-order infor-

mation. For the case of image registration, the warp derivative may also enter the
equation either directly in the similarity measure [24, 22] or to allow use of more image
information than provided by a sampling of the warp. Consider an image similarity
measure on the form U(ϕ) =

∫

Ω
F (Im(ϕ−1(x)), If (x))dx. A finite sampling of the

domain Ω can approximate this with

Ũ0(ϕ) =
1

N

N
∑

k=1

F (Im(ϕ−1(xk)), If (xk)) .

Letting {p1, . . . , pP } be uniformly distributed points around 0, we can increase the
amount of image information used in Ũ0(ϕ) without additional sampling of the warp
by using a first-order approximation of ϕ−1:

Ũ1(ϕ) =
1

NP

N
∑

k=1

N
∑

l=1

F (Im(Dϕ−1pl + ϕ−1(xk)), If (pl + xk)) .

This can be considered an increase from zeroth to first-order in the approximation of
U . Besides including more image information than provided by the initial sampling
of the warp, the increase in order allows capture of non-translational information -
e.g. rotation and dilation - in the similarity measure. The approach can be seen as a
specific case of similarity smoothing; more examples of smoothing in intensity based
image registration can be found in [9].

We focus on deformation modeling with the Large Deformation Diffeomorphic
Metric Mapping (LDDMM) registration framework which has the benefit of both
providing good registrations and drawing strong theoretical links with Lie group the-
ory and evolution equations in physical modeling [8, 34]. Most often, high-dimensional
voxel-wise representations are used for LDDMM although recent interest in compact

representations [11, 28] show that the number of parameters can be much reduced.
These methods use interpolation of the velocity field by deformation atoms to repre-
sent translational movement but deformation by other parts of the affine group cannot
be compactly represented.

The deformation atoms are called kernels in LDDMM. The kernels are centered at
different spatial positions and parameters determine the contribution of each kernel.
In this paper, we use the partial derivative reproducing property [35] to show that
partial derivatives of kernels fit naturally in the LDDMM framework and constitute
deformation atoms along with the original kernels. In particular, these deformation
atoms have a singular higher-order momentum and the momentum stays singular
when transported by the EPDiff evolution equations. We show how the higher-order
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momenta allow modeling locally affine deformations, and they hence extend the capac-
ity of sparsely discretized LDDMM methods. In addition, they comprise the natural
vehicle for incorporating first-order similarity measures in the framework.

1.2. Related Work. A number of methods for non-rigid registration have been
developed during the last decades including non-linear elastic methods [21], parametriza-
tions using static velocity fields [2, 17], the demons algorithm [29, 32], and spline-based
methods [25, 5]. For the particular case of LDDMM, the groundbreaking work ap-
peared with the deformable template model by Grenander [16] and the flow approach
by Christensen et al. [7] together with the theoretical contributions of Dupuis et
al. and Trouvé [10, 30]. Algorithms for computing optimal diffeomorphisms have
been developed in [4], and [31] uses the momentum representation for statistics and
develops a momentum based algorithm for the landmark matching problem.

Locally affine deformations can be modeled using the Polyaffine and Log-Euclidean
Polyaffine [3, 1] frameworks. The velocity of a path of deformations is here computed
using matrix logarithms, and the resulting diffeomorphism flowed forward by integrat-
ing the velocity. Ideas from the Polyaffine methods have recently been incorporated in
e.g. the Demons algorithm [32, 26]. In LDDMM, the deformation atoms, the kernels,
represent translational movement and the non-translational part of affine transforma-
tions cannot directly be represented. We will show how partial derivatives of kernels
constitute deformation atoms which allow representing the linear parts of affine trans-
formations. From a mathematical point of view, this is possible due to the partial
derivative reproducing property (Zhou [35]). The partial derivative reproducing prop-
erty, partial derivatives of kernels, and first-order momenta have previously been used
in [6] to derive variations of flow equations for LDDMM DTI registration, in [14] to
match landmarks with vector features, and in [15] to match surfaces with currents.
Confer the monograph [34] for information on RKHSs and their role in LDDMM.

In order to reduce the dimensionality of the parametrization used in LDDMM,
Durrleman et al. [11] introduced a control point formulation of the registration prob-
lem by choosing a finite set of control points and constraining the momentum to be
concentrated as Dirac measures at the point trajectories. As we will see, higher-order
momenta make a finite control point formulation possible which is different in impor-
tant aspects. Younes [33] in addition considers evolution in constrained subspaces.

Higher-order momenta increase the capacity of the deformation parametrization,
a goal which is also treated in sparse multi-scale methods such as the kernel bundle
framework [28]. This method concerns the size of the kernel in contrast to the order
which we deal with here. As we will discuss in the experiments section, the size
of the kernel is important when using the higher-order representation as well, and
representations using higher-order momenta will likely complement the kernel bundle
method if applied together.

1.3. Content and Outline. We start the paper with an overview of LDDMM
registration and the mathematical constructs behind the method. In the following
section, we describe registration using higher-order image information and parame-
terization using higher-order momentum distributions. We then turn to the mathe-
matical background of the method and describe the evolution of the momentum and
velocity fields governed by the EPDiff evolution equations in the first-order case. The
next sections describes the relation to polyaffine approaches, the effect of varying
the initial conditions, and the backwards gradient transport. We then provide ex-
amples and illustrate how the deformation represented by first-order atoms can be
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interpreted when registering human brains with progressing atrophy. The paper ends
with concluding remarks and outlook.

2. LDDMM Registration, Kernels, and Evolution Equations. In the LD-
DMM framework, registration is performed through the action of diffeomorphisms on
geometric objects. This approach is very general and allows the framework to be ap-
plied to both landmarks, curves, surfaces, images, and tensors. In the case of images,
the action of a diffeomorphism ϕ on the image I : Ω→ R takes the form ϕ.I = I ◦ϕ−1,
and given a fixed image If and moving image Im, the registration amounts to a search
for ϕ such that ϕ.Im ∼ If . In exact matching, we wish ϕ.Im be exactly equal to If
but, more frequently, we allow some amount of inexactness to account for noise in the
images and allow for smoother diffeomorphisms. This is done by defining a similarity
measure U(ϕ) = U(ϕ.Im, If ) on images and a regularization measure E1 to give a
combined energy

E(ϕ) = E1(ϕ) + λU(ϕ.Im, If ) . (2.1)

Here λ is a positive real representing the trade-off between regularity and goodness
of fit. The similarity measure U is in the simplest form the L2-error

∫

Ω |ϕ.Im(x) −
If (x)|

2dx but more advanced measures can be used (e.g. [23, 18, 9]).
In order to define the regularization term E1, we introduce some notations in the

following: Let the domain Ω be a subset of Rd with d = 2, 3, and let V denote a
Hilbert space of vector fields v : Ω → R

d such that V with associated norm ‖ · ‖V is
included in L2(Ω,Rd) and admissible [34, Chap. 9], i.e. sufficiently smooth. Given a
time-dependent vector field t 7→ vt with

∫ 1

0

‖vt‖
2
V dt <∞ (2.2)

the associated differential equation ∂tϕt = vt ◦ ϕt has with initial condition ϕs a
diffeomorphism ϕvst as unique solution at time t. The set GV of diffeomorphisms
built from V by such differential equations is a Lie group, and V is its tangent space
at the identity. Using the group structure, V is isomorphic to the tangent space at
each point ϕ ∈ GV . The inner product on V associated to a norm ‖ · ‖V makes
GV a Riemannian manifold with right-invariant metric. Setting ϕv00 = IdΩ, the map
t 7→ ϕv0t is a path from IdΩ to ϕ with energy given by (2.2) and generated by vt. We
will use this notation extensively in the following. A critical path for the energy (2.2)
is a geodesic on GV , and the regularization term E1 is defined using the energy by

E1(ϕ) = min
vt∈V,ϕv

01
=ϕ

∫ 1

0

‖vs‖
2
V ds , (2.3)

i.e. it measures the minimal energy of diffeomorphism paths from IdΩ to ϕ. Since
the energy is high for paths with great variation, the term penalizes highly varying
paths, and a low value of E1(ϕ) thus implies that ϕ is regular.

2.1. Kernel and Momentum. As a consequence of the assumed admissibility
of V , the evaluation functionals δx : v 7→ v(x) ∈ R

d is well-defined and continuous
for any x ∈ Ω. Thus, for any z ∈ R

d the map z ⊗ δx : v 7→ zT v(x) belongs to the
topological dual V ∗, i.e. the continuous linear maps on V . This in turn implies the
existence of spatially dependent matrices K : Ω × Ω → R

d×d, the kernel, such that,
for any constant vector z ∈ R

d, the vector field K(·, x)z ∈ V represents z ⊗ δx and
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〈K(·, x)z, v〉V = z ⊗ δx(v) for any v ∈ V , point x ∈ Ω and vector z ∈ R
d. This

latter property is denoted the reproducing property and gives V the structure of a
reproducing kernel Hilbert space (RKHS). Tightly connected to the norm and kernels
is the notion of momentum given by the linear momentum operator L : V → V ∗ ⊂
L2(Ω,Rd) which satisfies

〈Lv,w〉L2(Ω,Rd) =

∫

Ω

(

Lv(x)
)T
w(x)dx = 〈v, w〉V

for all v, w ∈ V . The momentum operator connects the inner product on V with the
inner product in L2(Ω,Rd), and the image Lv of an element v ∈ V is denoted the
momentum of v. The momentum Lv might be singular and in fact L

(

K(·, y)z
)

(x) is
the Dirac measure δy(x)z. Considering K as the map z 7→

∫

ΩK(·, x)z(x)dx, L can
be viewed as the inverse of K. We will use the symbol ρ for the momentum when
considered as a functional in V ∗ while we switch to the symbol z when the momentum
is realized as a vector field on Ω or for the parameters when the momentum consists
of a finite number of singular point measures.

Instead of deriving the kernel from V , the opposite approach can be used: build V
from a kernel, and hence impose the regularization in the framework from the kernel.
With this approach, the kernel is often chosen to ensure rotational and translational

invariance [34] and the scalar Gaussian kernel K(x, y) = exp(− ‖x−y‖2

σ2 )Idd is an often
used choice. Confer [12] for details on the construction of V from Gaussian kernels.

2.2. Optimal Paths: The EPDiff Evolution Equations. The relation be-
tween norm and momentum leads to convenient equations for minimizers of the energy
(2.1). In particular, the EPDiff equations for the evolution of the momentum zt for
optimal paths assert that if ϕt is a path minimizing E1(ϕ) with ϕ1 = ϕ minimizing
E(ϕ) and vt is the derivative of ϕt then vt satisfies the system

vt =

∫

Ω

K(·, x)zt(x)dx ,

d

dt
zt = −Dztvt − zt∇ · vt − (Dvt)

T zt

with Dzt and Dvt denoting spatial differentiation of the momentum and velocity
fields, respectively. The first equation connects the momentum zt with the velocity
vt, and the second equation describes the time evolution of the momentum. In the
most general form, the EPDiff equations describe the evolution of the momentum
using the adjoint map. Following [34], define the adjoint Adϕv(x) = (Dϕv) ◦ ϕ−1(x)
for v ∈ V . The dual of the adjoint is the functional Ad∗ϕ on the dual V ∗ of V defined

by (Ad∗
ϕρ|v) = (ρ|Adϕ(v)).

1 Define in addition AdTϕv = K(Ad∗ϕ(Lv)) which then

satisfies
〈

AdTϕv, w
〉

= (Ad∗
ϕ(Lv)|w), and let∇ϕU denote the gradient of the similarity

measure U with respect to the inner product on V so that 〈∇ϕU, v〉V = ∂ǫU(ψv0ǫ◦ϕ) for
any variation v ∈ V and diffeomorphism path ψv0ǫ with derivative v. For optimal paths
vt, the EPDiff equations assert that vt = AdTϕv

t1
v1 with v1 = − 1

2∇ϕv
01
U which leads

to the conservation of momentum property for optimal paths. Conversely, the EPDiff
equations reduce to simpler forms for certain objects. For landmarks x1, . . . , xN , the

1Here and in the following, we will use the notation (p|v) := p(v) for evaluation of the functional
p ∈ V ∗ on the vector field v ∈ V .
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momentum will be concentrated at point trajectories xt,k := ϕt(xk) as Dirac measures
zt,k ⊗ δxt,k

leading to the finite dimensional system of ODE’s

vt =

N
∑

l=1

K(·, xt,l))zt,l ,
d

dt
ϕt(xk) = vt(xt,k) ,

d

dt
zt,k = −

N
∑

l=1

∇1K(xt,l, xt,k)z
T
t,kzt,l .

(2.4)

3. Registration with Higher-Order Information. We here introduce higher-
order momentum distributions for registration using higher-order information with
the LDDMM framework. We start by motivating the construction by considering the
approximation used when computing the similarity measure. We then describe the
deformation encoded by higher-order momenta and the evolution equations in the
finite case, and we use this to derive a registration algorithm using first-order infor-
mation. The mathematical background behind the method will be presented in the
following sections.

We will motivate the introduction of higher-order momenta by considering a spe-
cific case of image registration: we take on the goal of using a control point formulation
[11] when solving the registration problem (2.1) and hence aim for using a relatively
sparse sampling of the velocity or momentum field. To achieve this, we will consider
the coupling between the transported control points {ϕ−1(x1), . . . , ϕ

−1(xN )} and the
similarity measure in order to ensure the momentum stays singular and localized at
the point trajectories while removing the need for warping the entire image at every
iteration of the optimization process.

Considering a similarity measure U(ϕ) =
∫

Ω
F (Im(ϕ−1(x)), If (x))dx as discussed

in the introduction, and a finite discretization Ũ0(ϕ) = 1/N
∑N

k=1 F (ϕ.Im(xk), If (xk))

with a sparse set of control points {xk}. While using Ũ0(ϕ) to drive registration of
the images will be very efficient in evaluating the warp in few points, it will suffer
correspondingly from only using image information present in those points. Apart
from not being robust under the presence of noise in the images, the discretization
implies that local dilation or rotation around the points ϕ−1(xk) cannot be detected:
any variation v ∈ V of ϕ keeping ϕ−1(xk) constant for all k = 1, . . . , N will not change
Ũ0(ϕ). Formally, if ψ0ǫ is a diffeomorphism path that is equal to ϕ at t = 0 and has
derivative v at t = 0, i.e. ∂ǫψ0ǫ = v and ψ00 = ϕ, then

∂ǫF (ψ0ǫ.Im(xk), If (xk)) = ∂1F (ϕ.Im(xk), If (xk)) ·
(

∇ϕ−1(xk)Im
)T
v(ϕ−1(xk))

which vanishes if v(ϕ−1(xk)) = 0. Here ∂1F denotes the derivative of F : R2 → R

with respect to the first variable.
A simple way to include more image information in the similarity measure is to

convolve with a kernel Ks, and thus extend Ũ0 to

U1(ϕ) =
1

N

N
∑

k=1

cKs

∫

Ω

Ks(p+ xk, xk)F (ϕ.Im(p+ xk), If (p+ xk))dp

with cKs
a normalization constant. If Ks is a box kernel, this amounts to a finer

sampling of both the image and warp, and hence a finer discretization of the Riemann
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integral. The kernel Ks should not be confused with the RKHS kernel connected to
the norm on V that is used when generating the V -gradient. A Gaussian kernel may
be used for Ks, and more information on using smoothing kernels for intensity based
image registration can be found in [9, 36].

The measure U1(ϕ) is problematic since a variation of ϕ would affect not only
the point ϕ−1(xk) but also ϕ.Im(p + xk), and U

1(ϕ) will therefore be dependent on
ϕ.Im(p+xk) for any p whereKs(p, xk) is non-zero. In this situation, the momentum is
no longer concentrated in Dirac measures located at ϕ−1

t (xk), and it will be necessary
to increase the sampling of the warp. However, a first-order expansion of ϕ−1 yields
the approximation

Ũ1(ϕ) =
1

N

N
∑

k=1

cKs

∫

Ω

Ks(p+xk, xk)F (Im(Dxk
ϕ−1p+ϕ−1(xk)), If (p+xk))dp . (3.1)

The measure Ũ1(ϕ) is now again local depending only on ϕ−1(xk) and the first-order
derivatives Dxk

ϕ−1. It offers the stability provided by the convolution with Ks,
and, importantly, variations v of ϕ keeping ϕ−1(xk) constant but changing Dxk

ϕ−1

do indeed affect the similarity measure. This implies that Ũ1(ϕ) is able to catch
rotations and dilations and drive the search for optimal ϕ accordingly. Please note
the differences with the approach of Durrleman et al. [11]: when using Ũ1(ϕ) as
outlined here, the need for flowing the entire moving image forward is removed and
the momentum field will stay singular directly thus removing the need for constraining
the form of the velocity field.

3.1. Evolution and Deformation with Higher-Order Information. The
dependence on Dϕ in the similarity measure Ũ1(ϕ) raises the question of how to
represent variations of Dϕ in the LDDMM framework. As we will outline here, higher-
order momenta appear as the natural choice for such a representation that keeps the
benefits of the finite control point formulation. Mathematical details will follow in
the next sections.

Recall the reproducing property of the RKHS structure, i.e. 〈K(·, x)z, v〉V =
z ⊗ δx(v) for v ∈ V , x ∈ Ω and z ∈ R

d. Let us define the maps z ⊗ Dα
x : V → R

that extend the Diracs z⊗ δx(v) by measuring the derivative of v at x. These will be
denoted higher-order Diracs, and we say that the momentum distribution is of higher-
order if it is a sum of higher order Diracs. When applying the momentum operator L
to the higher-order Diracs, we will get partial derivatives Dα

xK of the RHKS kernel
K.

In particular, we will see that when using similarity measures such as Ũ1(ϕ), the
momentum field will be a linear combination of higher-order Diracs and the velocity
field will, correspondingly, be a linear combination of partial derivatives of K. This
will imply that the finite dimensional system of ODE’s (2.4) describing the EPDiff
equations in the landmark case will be extended so that the velocity vt will contain
partial derivatives Dα

xK. In the first-order case, we will get the velocity

v(·) =

N
∑

l=1

(

K(·, xl)zl +

d
∑

j=1

DjK(·, xl)z
j
l

)

(3.2)

where zi denotes the coefficients of the Dirac measures as in (2.4) but now the ad-
ditional vectors zji denote the coefficients of the first-order Diracs zji ⊗D

j
xi

for each
of the d dimensions j = 1, . . . , d. We will later show how these coefficients evolve.
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(a) The RHKS kernel encodes
local translation.

(b) Ensembles of kernels can
approximate locally affine de-
formation.

(c) Derivatives of the kernel
directly encode locally affine
deformation.

Fig. 3.1. The deformation encoded by the kernel: (a) the RHKS kernel, here a Gaussian of
scale 8 in grid units, encodes local translation; (b) locally affine deformation, here expansion, can be
approximated by placing kernels close together. When moving these kernels infinitesimally close, the
derivative of the kernel arises in the limit, and (c) the derivative encode locally affine deformation
directly. With higher-order momenta, we will use derivatives of the kernel as deformation atoms.

Combined with knowledge of how variations of zi and zji affect the system, we can
transport variational information along the optimal paths specified by the EPDiff
equations and thus provide the necessary building blocks for a first-order registration
algorithm.

Figure 3.1 illustrates how the local translation encoded by the kernel is com-
plemented by locally affine deformation when incorporating first-order momenta and
corresponding partial derivatives of the kernel. Using the language of deformation
atoms, the first-order constructions adds partial derivatives of kernels to the usual set
of atoms, and the deformation atoms are thus able to compactly encode expansion,
contraction, rotation etc. We can directly interpret the coefficients of the first-order
momenta as controlling the magnitude of these first-order deformations. In Figure 7.1
in the experiments section, we give additional illustrations of the deformation encoded
by the new atoms.

3.2. Algorithm for First-Order Registration. In this section, we will derive
a registration algorithm for similarity measures incorporating first-order information
such as Ũ1(ϕ). Since the algorithm works for general first-order measures, we will
again let U denote the similarity measure with Ũ1(ϕ) being just a particular example.

There exists various choices of optimization algorithms for LDDMM registration.
Roughly, they can be divided into two groups based on whether they represent the
initial momentum/velocity or the entire path ϕt. Here, we take the approach of
incorporating first-order momenta with the shooting method of e.g. Vaillant et al.
[31]. The algorithm will take a guess for the initial momentum, integrate the EPDiff
equations forward, compute the similarity measure gradient ∇U(ϕ), and flow the
gradient backwards to provide an improved guess.

The registration problem (2.1) consists of both the similarity measure and the
minimal path energy E1. For e.g. landmark based registration, the similarity U(ϕ) is
most often expressed in terms of ϕ directly whether as the similarity measure is usually
dependent on the inverse ϕ−1 for image registration. In the first case, the gradient
∇ϕU is known, and, given the initial momentum z0, we can obtain the gradient ∇z0U
for a gradient descent based optimisation procedure from the backwards transport
equations that we derive in Section 6. For the energy part, it is a fundamental property
of critical paths in the LDDMM framework that the energy stays constant along the



10

path. Thus, we can easily compute the gradient from the expressions provided in
Section 4. Given this, the zeroth order matching algorithm in the initial momentum
is generalized to zeroth and first-order momenta in Algorithm 1.

Algorithm 1 Matching with Zeroth and First-Order Momenta.

z0 ← initial guess for initial momentum
repeat

Solve EPDiff equations forward
Compute similarity U
Solve backwards the transpose equations
Compute the energy gradient ∇‖v0‖

2

Update z0 from ∇‖v0‖
2 +∇z0U

until convergence

Traditionally, the similarity measure U(ϕ) is in image matching formulated using
the inverse of ϕ, and this approach was taken when formulating the approximation
Ũ1(ϕ) in (3.1). For this reason, at finite control point formulation is naturally ex-
pressed using a sampling {x1, . . . , xN} in the target image with the algorithm opti-
mizing for the momentum z1 at time t = 1. The evaluation points ϕ−1(xk) are then
generated by flowing backwards from t = 1 to t = 0, and the gradient of U(ϕ) can
be computed in ϕ−1(xk) before being flowed forwards to update z1. Algorithm 1 will
accommodate this situation by just reversing the integration directions. The control
points can be chosen either at e.g. anatomically important locations, at random, or on
a regular grid. In the experiments, we will register expanding ventricles using control
points placed in the ventricles.

3.3. Numerical Integration. The integration of the flow equations can be
performed with standard Runge-Kutta integrators such as Matlabs ode45 procedure.
With zeroth order momenta only and N points, the forward and backwards system
consist of 2dN equations. With zeroth and first-order momenta, the forward system
is extended to N(2d+ d2) and the backwards system to 2N(d+ d2). For d = 3, this
implies an 2.5 times increase in the size of the forward system and 4 times increase
in the backwards system. As suggested in Figure 3.1, the first-order system can be
approximated using ensembles of zeroth-order atoms. Such an approximation would
for d = 3 require at least four zeroth-order atoms for each first-order atom making
the size of the approximating system equivalent to the first-order system. Due to the
non-linearity of the systems, the effect of the approximation introduced with such as
an approach is not presently established.

In addition to the increase in the size of the systems, the extra floating point op-
erations necessary for computing the more complicated evolution equations should be
considered. The additional computational effort should, however, be viewed against
the fact that the finite dimensional system can contain orders of magnitude fewer
control points, and the added capacity of deformation description included in the
derivative information. In addition and in contrast to previous approaches, we trans-
port the similarity gradient only at the control point trajectories, again an order of
magnitude reduction of transported information.

4. Higher-Order MomentumDistributions. We now link partial derivatives
of kernels to higher-order momenta using the derivative reproducing property, and we
provide details on the EPDiff evolution equations that we outlined in the previous
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section. We underline that the analytical of structure of LDDMM is not changed
when incorporating higher-order momenta, and the evolution equations will thus be
particular instances of the general EPDiff equations. These equations in Hamiltonian
form constitutes the explicit expressions that allows implementation of the registration
algorithm.

We will restrict to scalar kernels when appropriate for simplifying the notation.
Scalar kernels are diagonal matrices where all diagonal elements are equal. Thus, we
can consider K(x, y) both a matrix and a scalar so that the entries Kj

i (x, y) of the
kernel in matrix form equals the scalar K(x, y) if and only if i = j and 0 otherwise.

4.1. Derivative Reproducing Property. Recall the reproducing property of
the RKHS structure, i.e. 〈K(·, x)z, v〉V = z ⊗ δx(v) for v ∈ V , x ∈ Ω and z ∈ R

d.
Zhou [35] shows that this property holds not only for the kernel but also for its partial
derivatives. Letting Dα

xv denote the derivative of v ∈ V at x ∈ Ω with respect to the
multi-index α,

Dα
xv =

∂|α|

∂α1

x1 . . . ∂
αd

xd

v(x)

and defining (Dα
xKz)(y) = Dα

x (K(·, y)z) for z ∈ R
d, Zhou proves that Dα

xKz ∈ V
and that the partial derivative reproducing property

〈Dα
xKz, v〉V = zTDα

x (v) (4.1)

holds when the maps in V are sufficiently smooth for the derivatives to exist. We
denote the maps z ⊗ Dα

x : V → R defined by z ⊗ Dα
x (v) := zTDα

x v higher-order

Diracs, and we say that the momentum distribution is of higher order if it is a sum
of higher-order Diracs. It follows that

z ⊗Dα
x =

(

v 7→ 〈Dα
xKz, v〉V

)

∈ V ∗ .

As a consequence, we can connect higher-order momenta and partial derivatives Dα
xK

of the kernel. Recall that the momentum map L : V → V ∗ satisfies 〈Lv,w〉L2 =
〈v, w〉V . With the higher-order momenta,

〈LDα
xKz, v〉L2

= 〈Dα
xKz, v〉V = z ⊗Dα

x (v) = 〈z ⊗D
α
x , v〉L2 .

Thus LDα
xKz = z ⊗Dα

x or, shorter, LDα
xK = Dα

x . That is, partial derivatives of the
kernel and higher-order momenta corresponds just as the kernels and Diracs measures
in the usual RKHS sense.

Consider a map on diffeomorphisms U : GV → R e.g. an image similarity measure
dependent on ϕ. In a finite dimensional setting with N evaluation points xk, U would
decompose as U(ϕ) = P ◦ Q(ϕ) with Q(ϕ) = (ϕ(x1), . . . , ϕ(xN )) and P : RdN →
R. Introducing higher-order momenta, we let Q(ϕ) = (Dα1

x1
(ϕ), . . . , DαJ

xN
(ϕ)) with J

multi-indices αj , and decompose U as U(ϕ) = P ◦ Q(ϕ) with P : RdNJ → R. We
allow αj to be empty and hence incorporate the standard zeroth order case. The
partial derivative reproducing property now lets us compute the V -gradient of U as
a sum of partial derivatives of the kernel.

Proposition 4.1. Let ∇kjP denote the gradient with respect to the variable

indexed by D
αj

xk
(ϕ) in the expression for Q. Then the gradient ∇ϕU ∈ V of U with

respect to the inner product in V is given by ∇ϕU =
∑N

k=1

∑J

j=1D
αj
xkK∇

kj

Q(ϕ)P .
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Proof. The gradient ∇ϕU at ϕ is defined by 〈∇ϕU, v〉 = ∂ǫU(ǫv + ϕ) for all
variations v ∈ V . For such v, we get using (4.1) that

∂ǫU(ǫv + ϕ) = ∂ǫP ◦Q(ǫv + ϕ) = ∂ǫP (D
αj
xk
(ǫv + ϕ)) = ∂ǫP (ǫD

αj
xk
v +Dαj

xk
ϕ)

=

N
∑

k=1

J
∑

j=1

(∇kj
Q(ϕ)P )

TDαj

xk
v =

〈

N
∑

k=1

J
∑

j=1

Dαj

xk
∇kj
Q(ϕ)P, v

〉

V

.

4.2. Momentum and Energy. As a result of Proposition 4.1, the momentum
of the gradient of U is L∇ϕU =

∑N
k=1

∑J
j=1∇

kj

Q(ϕ)P ⊗D
αj

xk
. In general, if v ∈ V is

represented by a sum of higher-order momenta, the energy ‖v‖2V can be computed
using (4.1) as a sum of partial derivatives of the kernel evaluated at the points xk.
To keep the notation brief, we restrict to sums of zeroth and first-order momenta in
the following. If v(·) =

∑N

k=1

(

K(xk, ·)zk +
∑d

j=1D
jK(xk, ·)z

j
k

)

, we get the energy

‖v‖2V =

〈

N
∑

k=1

(

K(xk, ·)zk +
d

∑

j=1

DjK(xk, ·)z
j
k

)

,
N
∑

k=1

(

K(xk, ·)zk +
d

∑

j=1

DjK(xk, ·)z
j
k

)

〉

V

=

N
∑

k,l=1

〈K(xl, ·)zl,K(xk, ·)zk〉V +

N
∑

k,l=1

d
∑

j,i=1

〈

DjK(xl, ·)z
j
l , D

iK(xk, ·)z
i
k

〉

V

+ 2

N
∑

k,l=1

d
∑

j=1

〈

DjK(xl, ·)z
j
l ,K(xk, ·)zk

〉

V

=

N
∑

k,l=1

(

zTl K(xl, xk)zk +

d
∑

j,i=1

zi,Tk Di
2D

j
1K(xl, xk)z

j
l + 2

d
∑

j=1

zTk D
j
1K(xl, xk)z

j
l

)

(4.2)

with Dj
qK(·, ·) denoting differentiation with the respect to the qth variable, q = 1, 2,

and jth coordinate, j = 1, . . . , d. For scalar symmetric kernels, this expression reduces
to

‖v‖2V =

N
∑

k,l=1

(

zTl K(xl, xk)zk +

d
∑

j,i=1

(

D2∇1K(xl, xk)
)i

j
zi,Tk zjl

+ 2

d
∑

j=1

(∇1K(xl, xl))
jzTk z

j
l

)

.

4.3. EPDiff Equations. It is important to note that higher-order momenta
offer a convenient representation for the gradients of maps U incorporating derivative
information but since the partial derivatives of kernels are members of V and the
higher order momentum in the dual V ∗, the analytical of structure of LDDMM is not
changed. In particular, the adjoint form of the EPDiff equations, i.e. that optimal
paths vt satisfy vt = AdTϕv

t1
v1 with v1 = − 1

2∇ϕv
01
U , is still valid. The momentum

ρ1 = Lv1 is transported to the momentum ρt by Ad∗ϕv
t1
p1. Because

(ρt|w) = (ρ1|Adϕv
t1
(w)) = (ρ1|(Dϕ

v
t1 w) ◦ (ϕ

v
t1)

−1) ,
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if ρ1 is a sum of higher-order Diracs, ρt will be sum of higher-order Diracs for all t.
However, since the time evolution of (ρt|w) with the above relation involves derivatives
of Dϕvt1, this form is inconvenient for computing ρt. Instead, we make use of the
Hamiltonian form of the EPDiff equations [34, P. 265]. Here, the momentum ρt
is pulled back to ρ0 but with a coordinate change of the evaluation vector field:
the Hamiltonian form µt is defined by

(

µt
∣

∣w
)

:=
(

ρ0
∣

∣(Dϕv0t)
−1(y)w(y)

)

y
where the

subscript stresses that (Dϕv0t)
−1(y)w(y) is evaluated as a y-dependent vector field.

To simplify the notation, we write just ϕt instead of ϕv0t. Using this notation, the
evolution equations become

∂tϕt(y) =

d
∑

j=1

(

µt
∣

∣Kj(ϕt(x), ϕt(y))
)

x
ej

(

∂tµt
∣

∣w
)

= −

d
∑

j=1

(

µt
∣

∣

(

µt
∣

∣D2K
j(ϕt(x), ϕt(y))w(y)

)

x
ej
)

y
.

(4.3)

The system forms an ordinary differential equation describing the evolution of the
path and momentum [34] when (ρ0|w) does not involve derivatives of w, e.g. when ρ0
and hence ρt is a vector field zt and the first equation therefore is an integral

∂tϕt(y) =

∫

Ω

K(ϕt(y), ϕt(x))zt(x)dx .

For the higher-order case, we will need to incorporate additional information in the
system.

Again we restrict to finite sums of zeroth and first-order point measures, and we
therefore work with initial momenta on the form

ρ0 =

N
∑

k=1

z0,k ⊗ δx0,k
+

N
∑

k=1

d
∑

j=1

zj0,k ⊗D
jδx0,k

(4.4)

with xt,r as usual denoting the point positions ϕt(xi) at time t. Then

(

µt
∣

∣w
)

=
(

ρ0
∣

∣Dϕt(y)
−1w(y)

)

y

=

∫

Ω

(

N
∑

k=1

z0,k ⊗ δx0,k
+

N
∑

k=1

d
∑

j=1

zj0,k ⊗D
jδx0,k

)

Dϕt(y)
−1w(y)dy

=

N
∑

k=1

((

Dϕt(x0,k)
−1,T z0,k +

d
∑

j=1

(

DjDϕt(x0,k)
−1

)T
zj0,k

)

⊗ δx0,k

∣

∣w
)

+

N
∑

k=1

d
∑

j=1

(

Dϕt(x0,k)
−1,T zj0,k ⊗D

jδx0,k

∣

∣w
)

showing that µt =
∑N

k=1 µt,k ⊗ δx0,k
+
∑N

k=1

∑d

j=1 µ
j
t,k ⊗D

jδx0,k
with

µt,k = Dϕt(x0,k)
−1,T z0,k +

d
∑

j=1

(

DjDϕt(x0,k)
−1

)T
zj0,k

µjt,k = Dϕt(x0,k)
−1,T zj0,k .

(4.5)
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The momentum ρt can the be recovered as

(

ρt
∣

∣w
)

=
(

µt
∣

∣w ◦ ϕt
)

=
(

N
∑

k=1

µt,k ⊗ δx0,k
+

N
∑

k=1

d
∑

j=1

µjt,k ⊗D
jδx0,k

)

w ◦ ϕt

=
N
∑

k=1

µt,k ⊗ δxt,k
w +

N
∑

k=1

d
∑

j=1

µj,Tt,kDw(D
jϕt)(x0,k)

=

N
∑

k=1

µt,k ⊗ δxt,k
w +

N
∑

k=1

d
∑

j=1

(

d
∑

i=1

(Diϕt)(x0,k)
jµit,k

)

⊗Djδxt,k
w

and hence the coefficients of the momentum zt,k and zjt,k (confer (4.4)) are given by

zt,k = µt,k and zjt,k =
∑d

i=1(D
iϕt)(x0,k)

jµit,k. We note that both zjt,k and µjt,k are
coordinate vectors of the first-order parts of the momentum in ordinary and Hamil-
tonian form respectively. For each point k and time t, these coordinate vectors thus
represent two d× d tensors.

4.4. Time Evolution. Even though µt,k in (4.5) depend on the second order
derivative of ϕ, we will show that the complete evolution in the zeroth and first-order
case can be determined by solving for the points ϕt(xk,0), the matrices Dϕt(xk,0),
and the vectors µt,k. This will provide the computational representation we will use
when implementing the systems.

Using (4.3), ϕt evolves according to

∂tϕt(y) =

d
∑

i=1

∫

Ω

N
∑

k=1

(

µTt,k ⊗ δx0,k
+

d
∑

j=1

µjt,k ⊗D
jδx0,k

)

Ki(ϕt(x), ϕt(y))dx ei

=

d
∑

i=1

N
∑

k=1

(

µTt,kK
i(ϕt(x0,k), ϕt(y)) +

d
∑

j=1

µj,Tt,kD1K
i(ϕt(x0,k), ϕt(y))D

jϕt(x0,k)
)

ei .

With scalar kernels, the trajectories xt,k are given by

∂tϕt(x0,k) =

N
∑

l=1

(

K(ϕt(x0,l), ϕt(x0,k))µt,l +

d
∑

j=1

∇1K(ϕt(x0,l), ϕt(x0,k))
TDjϕt(x0,l)µ

j
t,l

)

.

It is shown in [34] that the evolution of the matrix Dϕt(xk,0) is governed by

∂tDϕt(y)a =

d
∑

i=1

(

µt
∣

∣D2K
i(ϕt(x), ϕt(y))Dϕt(y)a

)

x
ei .

Inserting the Hamiltonian form of the higher-order momentum, each component (r, c)



15

(row/column) of the matrix Dϕt(y) thus evolves according to

∂tDϕt(y)
c
r =

(

µt
∣

∣D2K
r(ϕt(x), ϕt(y))Dϕt(y)ec

)

x

=

∫

Ω

N
∑

k=1

(

µt,k ⊗ δx0,k
+

d
∑

j=1

µjt,k ⊗D
jδx0,k

)

D2K
r(ϕt(x), ϕt(y))Dϕt(y)ecdx

=

N
∑

k=1

µTt,kD2K
r(ϕt(x0,k), ϕt(y))Dϕt(y)ec

+

N
∑

k=1

d
∑

j=1

µj,Tt,k
(

d
∑

i=1

(

Di
1D2K

r(ϕt(x0,k), ϕt(y))
)(

Djϕt(x0,k)
)i)

Dϕt(y)ec .

With scalar kernels, the evolution at the trajectories is then

∂tDϕt(x0,k)
c =

N
∑

l=1

(

∇2K(ϕt(x0,l), ϕt(x0,k))
TDcϕt(x0,k)µt,l

+
d

∑

j=1

(

D1∇2K(ϕt(x0,l), ϕt(x0,k))D
jϕt(x0,l)

)T
Dcϕt(x0,k)µ

j
t,l

)

.

The complete derivation of the evolution of µt is notationally heavy and can be
found in the supplementary material for the paper. Combining the evolution of µt
with the expressions above, we arrive at the following result:

Proposition 4.2. The EPDiff equations in the scalar case with zeroth and first-

order momenta are given in Hamiltonian form by the system

∂tϕt(x0,k) =
N
∑

l=1

(

K(xt,l, xt,k)µt,l +
d

∑

j=1

∇1K(xt,l, xt,k)
TDjϕt(x0,l)µ

j
t,l

)

∂tDϕt(x0,k)
c =

N
∑

l=1

(

∇2K(xt,l, xt,k)
TDcϕt(x0,k)µt,l

+

d
∑

j=1

(

D1∇2K(xt,l, xt,k)D
jϕt(x0,l)

)T
Dcϕt(x0,k)µ

j
t,l

)

∂tµt,k = −
N
∑

l=1

(

(

µTt,kµt,l
)

∇2K(xt,l, xt,k)

+

d
∑

j=1

(

µj,Tt,k µt,l
)

D2∇2K(xt,l, xt,k)D
jϕt(x0,k)

+
d

∑

j=1

(

µTt,kµ
j
t,l

)

D1∇2K(xt,l, xt,k)D
jϕt(x0,l)

+

d
∑

j,j′=1

(

µj
′,T
t,k µjt,l

)

D2

(

D1∇2K(xt,l, xt,k)D
jϕt(x0,l)

)

Dj′ϕt(x0,k)
)

µjt,k = Dϕt(x0,k)
−1,T zj0,k .

(4.6)

Note that both x1,k = ϕv01(x0,k) and Dϕv01(x0,k) are provided by the system
and hence can be used to evaluate a similarity measure that incorporates first-order
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information. As in the zeroth order case, the entire evolution can be recovered by the
initial conditions for the momentum.

5. Locally Affine Transformations. The Polyaffine and Log-Euclidean Poly-
affine [3, 1] frameworks model locally affine transformations using matrix logarithms.
The higher-order momenta and partial derivatives of kernels can be seen as the LD-
DMM sibling of the Polyaffine methods, and diffeomorphism paths generated by
higher-order momenta, in particular, momenta of zeroth and first-order, can locally
approximate all affine transformations with linear component having positive deter-
minant. The approximation will depend only on how fast the kernel approaches zero
towards infinity. The manifold structure of GV provides this result immediately. In-
deed, let ϕ(x) = Ax + b be an affine transformation with det(A) > 0. We define a
path ϕt of finite energy such that ϕ1 ≈ ϕ which shows that ϕ1 ∈ GV and can be
reached in the framework. The matrices of positive determinant is path connected
so we can let ψt be a path from Idd to A and define ψ̃t(x) = ψtx + bt. Then with
ṽt(x) = (∂tψt)ψ̃

−1
t (x) + b, we have ∂tψ̃t(x) = (∂tψt)x+ b = ṽt ◦ ψ̃t(x) and

x+

∫ 1

0

ṽt ◦ ψ̃t(x)dt = x+

∫ 1

0

(∂tψt)x+ bdt = ϕ(x) .

Now use that (∂tψt)ψ̃
−1
t (x) = (∂tψt)(ψt)

−1(x−bt) and let theMt = (m1,t . . .md,t) be
the t-dependent matrix (∂tψt)(ψt)

−1 so that the first term of ṽt(x) equals Mt(x− bt).
Then choose a radial kernel, e.g. a Gaussian Kσ, and define the approximation vt of
ṽt by

vt(x) =

d
∑

j=1

Dj

ψ̃t(0)
Kσ(x)mj,t +Kσ(ψ̃t(0), x)b . (5.1)

The path ϕv01 generated by vt then has finite energy, and

ϕv01(x) = x+

∫ 1

0

vt ◦ ϕ
v
0t(x)dt ≈ ϕ(x)

with the approximation depending only on the kernel scale σ. Note that the affine
transformations with linear components having negative determinant can in a similar
way be reached by starting the integration at a diffeomorphism with negative Jacobian
determinant.

In the experiments section, we will illustrate the locally affine transformations
encoded by zeroth and first-order momenta, and, therefore, it will be useful to intro-
duce a notation for these momenta. We encode the translational part of either the
momentum or velocity using the notation

Tslx(b) = Kσ(x, ·)b

and the linear part by

Linx(M) =

d
∑

j=1

Dj
xKσ(·)mj

with m1,mj being the columns of the matrix M . Equation (5.1) can then be written

vt(x) = Linψ̃t(0)
(Mt) + Tslψ̃t(0)

(b) . (5.2)
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We emphasize that though we mainly focus on zeroth and first-order momenta, the
mathematical construction allows any order momenta permitted by the smoothness
of the kernel at order zero.

6. Variations of the Initial Conditions. In Algorithm 1, we used the varia-
tion of the EPDiff equations when varying the initial conditions and in particular the
backwards gradient transport. We discuss both issues here.

A variation δρ0 of the initial momentum will induce a variation of the system
(4.6). By differentiating that system, we get the time evolution of the variation. To
ease notation, we assume the kernel is scalar on the form K(x, y) = γ(|x − y|2) and
write γt,lk = K(xt,l, xt,k).

2 Variations of the kernel and kernel derivatives such as the
entity δ∇1K(xt,l, xt,k) below depend only on the variation of point trajectories δxt,l
and δxt,k. The full expressions for these parts are provided in supplementary material
for the paper. The variation of the point trajectories in the derived system then takes
the form

∂tδϕt(x0,k) =
N
∑

l=1

(

δK(xt,l, xt,k)µt,l + γt,lkδµt,l
)

+

N
∑

l=1

d
∑

j=1

(

δ∇1K(xt,l, xt,k)
TDjϕt(x0,l)µ

j
t,l +∇1K(xt,l, xt,k)

T δDjϕt(x0,l)µ
j
t,l

+∇1K(xt,l, xt,k)
TDjϕt(x0,l)δµ

j
t,l

)

The similar expressions for the evolution of δµt,k and δDϕt(x0,k) are provided in the

supplementary material. The variation of µjt,k is available as

δµjt,k = −
(

Dϕt(x0,k)
−1δDϕt(x0,k)Dϕt(x0,k)

−1
)T
zj0,k +Dϕt(x0,k)

−1,T δzj0,k .

However, when computing the backwards transport, we will need to remove the de-
pendency on δzj0,k which is only available for forward integration. Instead, by writing

the evolution of µjt,k in the form

∂tµ
j
t,k = ∂tDϕt(x0,k)

−1,T zj0,k = −
(

Dϕt(x0,k)
−1∂tDϕt(x0,k)Dϕt(x0,k)

−1
)T
zj0,k

= −Dϕt(x0,k)
−1,T ∂tDϕt(x0,k)

Tµjt,k ,

we get the variation

∂tδµ
j
t,k = −δDϕt(x0,k)

−1,T∂tDϕt(x0,k)
Tµjt,k −Dϕt(x0,k)

−1,T ∂tδDϕt(x0,k)
Tµjt,k

−Dϕt(x0,k)
−1,T ∂tDϕt(x0,k)

T δµjt,k .

6.1. Backwards Transport. The correspondence between initial momentum
ρ0 and end diffeomorphism ϕv01 asserted by the EPDiff equations allows us to view the
similarity measure U(ϕv01) as a function of ρ0. Let A denote the result of integrating
the system for the variation of the initial conditions from t = 0 to t = 1 such that
w = Aδρ0 ∈ V for a variation δρ0. We then get a corresponding variation δU in the
similarity measure. To compute the gradient of U as a function of ρ0, we have

δU(ϕv01) =
〈

∇ϕv
01
U,w

〉

V
=

〈

∇ϕv
01
U,Aδρ0

〉

V
=

〈

AT∇ϕv
01
U, δρ0

〉

V ∗
.

2The subscript notation is used in accordance with [34]. Please note that γt,lk contains three
separate indices, i.e. the time t and the point indices l and k.
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Thus, the V ∗-gradient of ∇ρ0U is given by AT∇ϕv
01
U . The gradient can equivalently

be computed in momentum space at both endpoints of the diffeomorphism path using
the map P defined in Proposition 4.1.

The complete system for the variation of the initial conditions is a linear ODE,
and, therefore, there exists a time-dependent matrix Mt such that the ODE

∂tyt =Mtyt

has the variation as a solution yt. It is shown in [34] that, in such cases, solving the
backwards transpose system

∂twt = −M
T
t wt (6.1)

from t = 1 to t = 0 provides the value of ATw. Therefore, we can obtain ∇ρ0U by
solving the transpose system backwards. The components of Mt can be identified
by writing the evolution equations for the variation in matrix form. This provides
MT
t and allows the backwards integration of the system 6.1. The components of the

transpose matrix Mt are provided in the supplementary material for the paper.

7. Experiments. In order to demonstrate the efficiency, compactness, and in-
terpretability of representations using higher-order momenta, we perform four sets of
experiments. First, we provide four examples illustrating the type of deformations
produced by zeroth and first-order momenta and the relation to the Polyaffine frame-
work. We then use point based matching using first-order information to show how
complicated warps that would require many parameters with zeroth order deforma-
tion atoms can be generated with very compact representations using higher-order
momenta. We underline the point that higher-order momenta allow low-dimensional
transformations to be registered using correspondingly low-dimensional representa-
tions: we show how synthetic test images generated by a low-dimensional transfor-
mation can be registered using only one deformation atom when representing using
first-order momenta and using the first-order similarity measure approximation (3.1).
We further emphasize this point by registering articulated movement using only one
deformation atom per rigid part, and thus exemplify a natural representation that
reduces the number of deformation atoms and the ambiguity in the placement of the
atoms while also reducing the degrees of freedom in the representation. Finally, we
illustrate how higher-order momenta in a natural way allow registration of human
brains with progressing atrophy. We describe the deformation field throughout the
ventricles using few deformation atoms, and we thereby suggest a method for detecting
anatomical change using few degrees of freedom. In addition, the volume expansion
can be directly interpreted from the parameters of the deformation atoms. We start
by briefly describing the similarity measures used throughout the experiments.

For the point examples below, we register moving points x1, . . . , xN against fixed
points y1, . . . , yN . In addition, we match first-order information by specifying values
of Dj

xk
ϕ. This is done compactly by providing matrices Yk so that we seek Dxk

ϕ = Yk
for all k = 1, . . . , N . The similarity measure is simple sum of squares, i.e.

U(ϕ) =

N
∑

i=1

‖ϕ(xk)− yk‖
2 + ‖Dxk

ϕ− Yk‖
2

using the matrix 2-norm. This amounts to fitting ϕ against a locally affine map with
translational components yk and linear components Yk. For the image cases, we use
L1-similarity to build the first-order approximation (3.1) with the smoothing kernel
Ks being Gaussian of the same scale as the LDDMM kernel.
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(a) Expansion (b) Contraction

(c) Rotation (−π/2) (d) Two rotations (π/2)

Fig. 7.1. The effect of the generated deformation on an initially square grid for several initial
first-order momenta: Using the notation of section 5, (a) expansion ρ0 = Lin0(Id2); (b) contraction
ρ0 = Lin0(−Id2); (c) rotation ρ0 = Lin0(Rot(v)), v = −π/2; (d) two rotations v = π/2. The kernel
is Gaussian with σ = 8 in grid units, and the grids are colored with the trace of Cauchy-Green strain
tensor (log-scale). Notice the locality of the deformation caused by the finite scale of the kernel, and
that the deformation stays diffeomorphic even when two rotations force conflicting movements.

7.1. First Order Illustrations. To visually illustrate the deformation gener-
ated by higher-order momenta, we show in Figure 7.1 the generated deformations
on an initially square grid with four different first-order initial momenta. The de-
formation locally model the linear part of affine transformations and the the locality
is determined by the Gaussian kernel that in the examples has scale σ = 8 in grid
units. Notice for the rotations that the deformation stays diffeomorphic in the pres-
ence of conflicting forces. The similarity between the examples and the deformations
generated in the Polyaffine framework [1] underlines the viewpoint that the registra-
tion using higher-order momenta constitutes the LDDMM sibling of the Polyaffine
framework.

7.2. First Order Point Registration. Figure 7.2 presents simple point based
matching results with first-order information. The lower points (red) are matched
against the upper points (black) with match against expansion Dϕ(xk) = 2Id2 and

rotation Dϕ(xk) = Rot(v) =

(

cos(v), sin(v)
− sin(v), cos(v)

)

for v = ∓π/2. The optimal dif-

feomorphisms exhibit the expected expanding and turning effect, respectively. We
stress that the deformations are generated using only two deformations atoms with
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(a) Match with dilations (expansion) (b) Match with rotations (−π/2 and π/2)

Fig. 7.2. Two moving points (red) are matched against two fixed points (black) with results
(green) and with match against (a) expansion Dϕ(xk) = 2Id2, i = 1, 2; and (b) rotation Dϕ(xk) =
Rot(v), v = ∓π/2, i = 1, 2. The kernel is Gaussian with σ = 8 in grid units, and the grids are
colored with the trace of Cauchy-Green strain tensor (log-scale).

combined 12 parameters. Representing equivalent deformation using zeroth order
momenta would require a significantly increased number of atoms and a correspond
increase in the number of parameters.

7.3. Low Dimensional Image Registration. We now exemplify how higher-
order momenta allow low-dimensional transformations to be registered using corre-
spondingly low-dimensional representations. We generate two test images by applying
two linear transformations, an dilation and a rotation, to a binary image of a square,
confer the moving images (a) and (e) in Figure 7.3. By placing one deformation atom
in the center of each fixed image and by using the similarity measure approxima-
tion (3.1), we can successfully register the moving and fixed images. The result and
difference plots are shown in Figure 7.3. The dimensionality of the linear transfor-
mations generating the moving images is equal to the number of parameters for the
deformation atom. A registration using zeroth order momenta would need more than
one deformation atom which would result in a number of parameters larger than the
dimensionality. The scale of the Gaussian kernel used for the registration is 50 pixels.

7.4. Articulated Motion. The articulated motion of the finger3 in Figure 7.4
(a) and (b) can be described by three locally linear transformations. With higher-
order momenta, we can place deformation atoms at the center of the bones in the
moving and fixed images, and use the point positions together with the direction of
the bones to drive a registration. This natural and low dimensional representation
allows a fairly good match of the images resembling the use of the Polyaffine affine
framework for articulated registration [26]. A similar registration using zeroth order
momenta would need two deformation atoms per bone and lacking a natural way
to place such atoms, the positions would need to be optimized. With higher-order
momenta, the deformation atoms can be placed in a natural and consistent way, and

3X-ray frames from http://www.archive.org/details/X-raystudiesofthejointmovements-wellcome
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(c) Registration result
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(e) Moving image
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(f) Fixed image
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(h) Difference

Fig. 7.3. With linear transformations, the dimensionality of the higher-order representation
matches the dimensionality of the transformation. A dilation (e) and rotation (d) is applied to the
fixed binary images (b) and (f), respectively. The registration results (c) and (g) subtracted from
the fixed images are shown in the difference pictures (d) and (h). The registration is performed
with a single first-order momenta in the center of the pictures, and the number of parameters for
the registration thus matches the dimensionality of the linear representations. The slight differences
between results and fixed images are caused by the first-order approximation in (3.1). Increasing the
kernel size, adding more control points, or using second order momenta would imply less difference.
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(c) Result, first-order

Fig. 7.4. Registering articulated movement using directional information of the bones: the
landmarks and bone orientations (red points and arrows) in the moving image (a) are matched
against the landmarks and bone orientations (green points and arrows) in the fixed image (b). The
result using first-order momenta (c) can be obtained with a low number of deformation atoms that
can be consistently placed at the center of the bones. A corresponding zeroth order representation
would use a higher number of atoms with a corresponding increase in the number of parameters.

the total number of free parameters is lower than a zeroth order representation using
two atoms per bone.

7.5. Registering Atrophy. Atrophy occurs in the human brain among patients
suffering from Alzheimer’s disease, and the progressing atrophy can be detected by
the expansion of the ventricles [19, 13]. Since first-order momenta offer compact
description of expansion, this makes a parametrization of the registration based on
higher-order momenta suited for describing the expansion of the ventricles, and, in
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addition, the deformation represented by the momenta will be easily interpretable. In
this experiment, we therefore suggest a registration method that using few degrees of
freedom describes the expansion of the ventricles, and does so in a way that can be
interpreted when doing further analysis of e.g. the volume change.

We use the publicly available Oasis dataset4 [20], and, in order to illustrate the
use of higher-order momenta, we select a small number of patients from which two
baseline scans are acquired at the same day together with a later follow up scan. The
patients are in various stages of dementia, and, for each patient, we rigidly register
the two baseline and one follow up scan [9].

The expanding ventricles can be registered by placing deformation atoms in the
center of the ventricles of the fixed image as shown in Figure 1.1. For each patient,
we manually place five deformation atoms in the ventricle area of the first baseline 3D
volume. It is important to note that though we localize the description of the defor-
mation to the deformation atoms, the atoms control the deformation field throughout
the ventricle area. Based on the size of the ventricles, we use 3D Gaussian kernels
with a scale of 15 voxels, and we let the regularization weight in (2.1) be λ = 16.
The effect of these choices is discussed below. Each deformation atom consists of a
zeroth and first-order momenta. We use L1 similarity to drive the registration [9]5

and, for each patient, we perform two registrations: we register the two baseline scans
acquired at the same day, and we register one baseline scan against the follow up scan.
Thus, the baseline-baseline registration should indicate no ventricle expansion, and we
expect the baseline-follow up registration to indicate ventricle expansion. Figure 1.1
shows for one patient the placement of the control points in the baseline image, the
follow up image, the log-Jacobian determinant in the ventricle area of the generated
deformation, and the initial vector field driving the registration.

The use of first-order momenta allows us to interpret the result of the registrations
and to relate the results to possible expansion of the ventricles. The volume change is
indicated by the Jacobian determinant of the generated deformation at the deforma-
tion atoms as well as by the divergence of the first-order momenta. The latter is avail-
able directly from the registration parameters. We plot in Figure 7.5 the logarithm of
the Jacobian determinant and the divergence for both the same day baseline-baseline
registrations and for the baseline-follow up registrations. Patient 1 − 4 are classified
as demented, patient 5 and 6 as non-demented, and all patient have constant clinical
dementia rating through the experiment. The time-span between baseline and follow
up scan is 1.5-2 years with the exception of 3 years for patient four. As expected, the
log-Jacobian is close to zero for the same day baseline-baseline scans but it increases
with the baseline-follow up registrations of the demented patients. In addition, the
correlation between the log-Jacobian and the divergence shows how the indicated vol-
ume change is related directly to the registration parameters; the parameters of the
deformation atoms can in this way be directly interpreted as encoding the amount of
atrophy.

We chose two important parameters above: the kernel scale and the regularization
term. The choice of one scale for all patients works well if the ventricles to be registered
are of approximately the same size at the baseline scans. If the ventricles vary in size,
the scale can be chosen individually for each patient. Alternatively, a multi-scale
approach could do this automatically which suggests combining the method with e.g.
the kernel bundle framework [27]. Depending on the image forces, the regularization

4http://www.oasis-brains.org
5See also http://image.diku.dk/darkner/LOI.
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Fig. 7.5. Indicated volume change: (a) The average log-Jacobian determinant of the generated
deformation at the 5 deformation atoms for six patients (1-4 demented, 5-6 non-demented); (b)
divergence of the 5 higher-order momenta representing the deformation. The divergence can be
extracted directly from the parameters of the first-order momenta, and the correlation between the
log-Jacobian and the divergence as seen by the similarity between (a) and (b) therefore shows the
interpretability of the deformation atoms. The time-span between baseline and follow up scans are
1.5-2 years with the exception of 3 years for patient four (arrows).

term in (2.1) will affect the amount of expansion captured in the registration. Because
of the low number of control points, we can in practice set the contribution of the
regularization term to zero without experiencing non-diffeomorphic results. It will be
interesting in the future to estimate the actual volume expansion directly using the
parameters of the deformation atoms with this less biased model.

8. Conclusion and Outlook. We have introduced higher-order momenta in the
LDDMM registration framework. The momenta allow compact representation of lo-
cally affine transformations by increasing the capacity of the deformation description.
Coupled with similarity measures incorporating first-order information, the higher-
order momenta improve the range of deformations reached by sparsely discretized
LDDMM methods, and they allow direct capture of first-order information such as
expansion and contraction. In addition, the constitute deformation atoms for which
the generated deformation is directly interpretable.

We have shown how the partial derivative reproducing property implies singular
momentum for the higher-order momenta, and we used this to derive the EPDiff
evolution equations. By computing the forward and backward variational equations,
we are able to transport gradient information and derive a matching algorithm. We
provide examples showing typical deformation coded by first-order momenta and how
images can be registered using a very few parameters, and we have applied the method
to register human brains with progressing atrophy.

The experiments included here show only a first step in the application of higher-
order momenta: the representation may be applied to register entire images; merging
the method with multi-scale approaches will increase the description capacity and may
lead to further reduction in the dimensionality of the representation. Combined with
efficient implementations, higher-order momenta promise to provide a step forward in
compact deformation description for image registration.



24

REFERENCES

[1] Vincent Arsigny, Olivier Commowick, Nicholas Ayache, and Xavier Pennec, A fast and
Log-Euclidean polyaffine framework for locally linear registration, J. Math. Imaging Vis.,
33 (2009), pp. 222–238.

[2] Vincent Arsigny, Olivier Commowick, Xavier Pennec, and Nicholas Ayache, A Log-
Euclidean framework for statistics on diffeomorphisms, in MICCAI 2006, 2006, pp. 924–
931.

[3] Vincent Arsigny, Xavier Pennec, and Nicholas Ayache, Polyrigid and polyaffine trans-
formations: A novel geometrical tool to deal with non-rigid deformations – application to
the registration of histological slices, Medical Image Analysis, 9 (2005), pp. 507–523.

[4] M. Faisal Beg, Michael I. Miller, Alain Trouvé, and Laurent Younes, Computing large
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