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Abstract In order to detect small-scale deformations during

disease propagation while allowing large-scale deformation

needed for inter-subject registration, we wish to model de-

formation at multiple scales and represent the deformation

compactly at the relevant scales only. This paper presents the

kernel bundle extension of the LDDMM framework that al-

lows multiple kernels at multiple scales to be incorporated in

the registration. We combine sparsity priors with the kernel

bundle resulting in compact representations across scales,

and we present the mathematical foundation of the frame-

work with derivation of the KB-EPDiff evolution equations.

Through examples, we illustrate the influence of the kernel

scale and show that the method achieves the important prop-

erty of sparsity across scales. In addition, we demonstrate

on a dataset of annotated lung CT images how the kernel

bundle framework with a compact representation reaches the

same accuracy as the standard method optimally tuned with

respect to scale.
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1 Introduction

Deformation captured in image registration occur at multi-

ple scales: lungs deform at large scale during the respira-

tory phases while disease progression may only be detected

at small scales. Similarly, large-scale deformation is needed

when registering brains from different subjects while e.g.

atrophy in the hippocampus occur at small scales during

the progression of Alzheimer’s disease. Representing defor-

mation at multiple scales is therefore useful when perform-

ing statistics on small-scale features over a population re-

quiring large-scale inter-subject registration. In this paper,

we develop a method that represents deformation at multi-

ple scales while seeking to represent the deformation at the

relevant scales only. The resulting sparse, multi-scale ker-

nel bundle registration framework supports sparsity across

scales while extending the range of deformation expressed

by single-scale models. We extend the variational formula-

tion, the evolution equations, and the momentum conserva-

tion property of the single-scale method, and we derive and

test the construction to show that the cross-scale sparsity is

indeed achieved; that the extra capacity of the method does

not hamper generalization to test data; and that the method

removes the need for classical scale selection.

1.1 Background

The LDDMM framework (Large Deformation Diffeomor-

phic Metric Mapping, [12,6,8,20]) is widely used in the

field of computational anatomy to model deformation and

perform registration of geometric objects. It provides con-

venient parametrization of flows of diffeomorphisms and

a complete mathematical setting ensuring existence of op-

timal warps and allowing meaningful statistics to be per-

formed on the registration results. Recent work has shown
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(a) Sparse, kernel bundle (b) Non-sparse, kernel bundle (c) Sparse LDDMM (d) LDDMM

Fig. 1 Matching eleven landmarks (red) to eleven landmarks (black) and results (green) with four registration methods: (a) the proposed kernel

bundle multi-scale method with sparse prior; (b) the kernel bundle method without sparse prior; (c) LDDMM (single-scale) with sparse prior; and

(d) LDDMM (single-scale) without enforced sparsity. The arrows show the initial momentum with different colors for each of the three scales in

(a) and (b). Initially square grids are shown deformed by each diffeomorphism; the grids are colored with the log-trace of Cauchy-Green strain

tensor. (d) The inherent single-scale behaviour of LDDMM causes large deviation between the landmarks and results (black and green). (c) This

effect is increased when adding a sparse prior; the low number of non-zero momentum vectors indicate the sparsity. (b) With the kernel bundle and

multiple scales, the algorithm matches the points well through the increased capacity in the deformation description. (a) Adding a sparse prior to

the kernel bundle results in a compact representation (few non-zero momentum vectors) with sparsity across scales, and the sparser representation

continues to provide a good match between the landmarks and results (black and green). This happens without sacrificing warp regularity: the

deformed grid with sparse prior (a) is similar to the deformed grid without the prior (b).

that the infinite dimensional space of parameters for the reg-

istration can be successfully approximated using sparse, fi-

nite dimensional representations [10,17,9]. However, the no-

tion of kernels, which lies at the heart of the framework, and

the kernel shape and scale impose restrictions on the sparse

representations, and it limits the range of deformations the

model is able to express.

The key to obtain sparse representations without limiting

the range of the deformation model is to increase the capac-

ity of the deformation description. Locally, the capacity can

be increased with higher order momenta [17] but varying

the spatial extend of the deformation requires multiple sca-

les. Enabling LDDMM to model deformation occurring at

multiple scales has been the subject of several works [2,13,

14] resulting in improved registration results. Deformation

at different scales may however occur at different spatial

locations, and we wish to represent deformation at differ-

ent locations at the appropriate scales only. This requires a

multi-scale framework designed specifically to allow sparse

representations. Consider registering two images of fairly

uniform objects. The large-scale deformations can then be

expected to be located at the center of the object while lower

scale deformations occur close to the boundaries. While pre-

vious approaches will represent deformation at all scales at

all spatial locations, we aim for constructing a framework

able to represent deformation at the appropriate scales only.

In order to achieve this, we introduce the kernel bun-

dle framework (LDDKBM) which is designed to represent

deformation individually at different scales. This in partic-

ular allows the momentum field to vanish at some scales

while being non-zero at others at the same spatial locations,

a property we denote sparsity across scales. By applying

sparse priors on the momentum field at the different scales

individually, we explicitly force the cross-scale sparsity, and

the method therefore allows sparse deformation description

across space and scales. The resulting framework greatly

extends the range of deformations expressed by the sparse

models while allowing compact representations of deforma-

tion occurring at multiple scales.

With the sum of kernels multi-scale approach [14], the

distribution of deformation over scale must be the same for

all spatial locations. In contrast, the novel feature of the ker-

nel bundle representation is the ability to allow the distri-

bution of deformation over scale to be different for differ-

ent spatial locations. The new framework therefore does not

force the same scale distribution over the entire domain; in-

stead, it adds the flexibility of using a particular set of sca-

les in parts of the domain and different scales in other parts

of the domain. This defining property furthermore adds the

flexibility to incorporate priors on the scale distribution, and

it allows us to enforce sparsity in the representation. The

combination of the flexible representation and the support

for sparse priors increases the range and compactness of the

deformation model and thus distinguishes the kernel bundle

from previous multi-scale approaches.

1.2 Deformation at Multiple Scales; An Example

Figure 1 shows a simple example of landmark matching. In

order to register the points, movement is needed at both large

and small scales, and the single-scale nature of the LDDMM

algorithm limits its ability to match the points well. This

fact becomes even more expressed when adding a sparsity

prior. With multiple-scales, the match improves as seen by

the reduced deviation between the landmarks and results.

When adding a sparse prior to the kernel bundle, equivalent

precision can be obtained with a compact description which

exhibits sparsity across scales.
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1.3 Related Work

The deformable template model pioneered by Grenander [12]

and the flow approach by Christensen et al. [6] together with

the theoretical contributions of Dupuis et al. and Trouvé [8,

20] started the development of the LDDMM deformation

model. Beg et al. [1] developed algorithms for computing

optimal diffeomorphisms in the framework, and the momen-

tum representation has been used for statistics and for mo-

mentum based algorithms for the landmark matching prob-

lem [21]. The review paper [23] and the book [22] provide

excellent overviews of the theory and applications of LD-

DMM in medical imaging.

Multi-scale extensions of LDDMM have been treated in

several recent works. Bruveris et al. developed an extension

of LDDMM allowing two scales through the use of semi-

direct product groups [2] and Risser et al. [14] included scale

in LDDMM by adding kernels of different scales. The ap-

proach of Risser et al. does not divide the deformation de-

scription across scales and enforced sparsity will occur at all

scales simultaneously. This is in direct contrast to the result

we seek to obtain: we search for a representation that can

handle both small and large scale features independently to

allow different deformation at different scales, and we wish

to allow the effect of enforced sparsity to occur at different

scales individually. A representation supporting this spar-

sity across scales property is the main contribution of this

paper, and the fact that the kernel bundle representation sup-

ports this property fundamentally differentiates it from the

approach of Risser et al. With sparse priors, optimal results

in the kernel bundle framework will generally encode the de-

formation using different combinations of scales at different

spatial locations while the approach of Risser et al. imposes

the combination of scales to be the same for all spatial loca-

tions.

Outside the registration setting, the effect on the underly-

ing Hilbert spaces when scaling the kernel have been treated

in [11]. Increasing the capacity of the deformation descrip-

tion locally can been obtained with higher order momenta

[17].

The literature on sparse representations and sparse penalty

functions is wide, and we will in this paper limit the dis-

cussion to a small set of such priors [4]. A control point

formulation of LDDMM template-based image registration

has been developed by Durrleman et al. [10,9]. Sparsity is

enforced by a log−L1 og L1 penalty on the initial momenta,

and the prior guides a search towards low-dimensional rep-

resentations of deformation for populations of images. The

method was developed for image registration but the sparse

prior introduced apply to any finite dimensional LDDMM

implementation. The fixed size of the kernels does however

limit the expressiveness of the model. The fundamental idea

behind the present paper is to remove this limitation by us-

ing kernels of multiple scales.

1.4 Content and Outline

This paper combines the conference papers [18,16,19] and

adds additional new material. We aim at presenting a full

account of the kernel bundle framework that in the previ-

ous papers is also denoted the LDDKBM method (KB for

kernel bundle). The new material comprises full derivation

of the forwards and backwards gradient transport equations

which are fundamental for computing optimal warps with

the framework; additional algorithm information; discussion

on the relation to other multi-scale approaches; and extended

experiments section showing the obtained effect of sparsity

across scales and using cross validation to tune the regular-

ization weights for the method comparisons.

We start by discussing the variational formulation of LD-

DMM and the kernel bundle method before presenting the

theoretical construction allowing the multi-scale representa-

tion. We relate the method to other multi-scale approaches

before deriving the KB-EPDiff evolution equations. Next

follows the forwards and backwards transport equations with

implementation details and the extended experiments sec-

tion. We end the paper with discussing future work and con-

cluding remarks.

2 Registration: the LDDMM and Kernel Bundle

Variational Formulation

The kernel bundle framework extends the single-scale LD-

DMM (Large Deformation Diffeomorphic Metric Mapping)

framework by allowing regularization at multiple-scales in

the registration. We here provide an overview of the regis-

tration problem and the variational formulation used in both

frameworks.

In the kernel bundle and LDDMM frameworks, registra-

tion is performed through the action of diffeomorphisms on

geometric objects. The approach is very general and allows

the frameworks to be applied to both landmarks, curves, sur-

faces, images, and tensors. In the case of landmarks, the

action of a diffeomorphism ϕ takes the form ϕ .x = ϕ(x),

and given landmarks x1, . . . ,xN and y1, . . . ,yN , the registra-

tion amounts to a search for ϕ such that ϕ .xi ∼ yi for all

i = 1, . . . ,N. In exact matching, we wish ϕ .xi be exactly

equal to yi but, more frequently, we allow some amount of

inexactness to account for noise and give smoother diffeo-

morphisms. This is done by defining a quality of match mea-

sure U and a regularization measure E1 to give a combined

energy

E(ϕ) = E1(ϕ)+λU(ϕ) . (1)
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Here λ is a positive real representing the trade-off between

regularity and goodness of fit and U is often the L2-error

which in the landmark case takes the form U(ϕ)=∑N
i=1 ‖ϕ(xi)−

yi‖
2.

2.1 The Regularization Energy

The formulation of the regularization energy E1 in the ker-

nel bundle framework is an extension of the LDDMM for-

mulation. We here introduce notation which will lead to the

LDDMM formulation before describing the extension in the

next section. Let the domain Ω be a subset of of Rd with

d = 2,3 in applications, and let V denote a Hilbert space of

vector fields v : Ω → R
d such that V with associated norm

‖ · ‖V is included in L2(Ω ,Rd) and admissible as defined in

[22, Chap. 9]. Given a time-dependent vector field t 7→ vt

with

E1(vt) =

∫ 1

0
‖vt‖

2
V dt < ∞ (2)

the associated differential equation ∂tϕt = vt ◦ϕt has with

initial condition ϕs = ϕ a diffeomorphism ϕv
st as unique so-

lution. The set GV of diffeomorphisms built from V by such

differential equations is a Lie group, and V is its tangent

space at each point. The inner product on V associated to

the norm ‖·‖V makes GV a Riemannian manifold with right-

invariant metric. Setting ϕv
00 = IdΩ , the map t 7→ϕv

0t is a path

from IdΩ to ϕ with energy given by (2). We will use this no-

tation throughout the paper. A critical path for the energy is

a geodesic on GV , and the LDDMM regularization energy is

defined by

E1(ϕ) = min
vt∈V,ϕv

01=ϕ
E1(vt) = min

vt∈V,ϕv
01=ϕ

∫ 1

0
‖vs‖

2
V ds , (3)

i.e., it measures the minimal energy necessary to pass from

IdΩ to ϕ . The energy penalizes highly varying paths and,

therefore, a low value of E1(ϕ) implies that ϕ is regular.

The regularity is ultimately controlled by the norm on

V and this norm is associated to a reproducing kernel K :

Ω ×Ω → R
d×d . The kernel is often chosen to ensure ro-

tational and translational invariance [22] and the Gaussian

kernel K(x,y) = exp( ‖x−y‖2

σ 2 )Idd is a convenient and often

used choice. The scaling factor σ is not limited to Gaussian

kernels and allows for many kernels to vary the amount of

regularization. Larger scales lead in general to higher regu-

larization and smoother diffeomorphisms, whereas smaller

kernels penalize higher frequencies less and often gives bet-

ter matches. This phenomenon is in particular apparent for

objects with sparse information and images with e.g. areas

of constant intensity.

3 Kernels, Momentum, and the Kernel Bundle

The kernel bundle framework extends LDDMM by equip-

ping the diffeomorphism manifold GV in LDDMM with vec-

tor bundles allowing deformation to be described at different

scales. We start this section by discussing the relation be-

tween kernels and momentum in LDDMM before defining

the kernel bundle and discussing the mathematical founda-

tion behind the framework.

3.1 Kernel and Momentum

As a consequence of the assumed admissibility of V , the

evaluation functionals δx : v 7→ v(x) ∈ R
d are well-defined

and continuous for any x ∈ Ω . Thus, for any a ∈ R
d the

map a ⊗ δx : v 7→ aT v(x) belongs to the topological dual

V ∗ consisting of the continuous linear maps of V . This in

turn implies the existence of spatially dependent matrices

K : Ω ×Ω → R
d×d , the kernel, such that, for any constant

vector a ∈R
d , the vector field K(·,x)a ∈V represents a⊗δx

and 〈K(·,x)a,v〉V = a⊗ δx(v) for any v ∈ V , point x ∈ Ω

and vector a ∈ R
d . This latter property is denoted the repro-

ducing property and gives V the structure of a reproducing

kernel Hilbert space (RKHS). Tightly connected to the norm

and kernels is the notion of momentum given by the linear

momentum operator L : V → V ∗ ⊂ L2(Ω ,Rd) which satis-

fies

〈Lv,w〉L2(Ω ,Rd) =

∫

Ω

(

Lv(x)
)T

w(x)dx = 〈v,w〉V (4)

for all v,w ∈ V . The momentum operator connects the in-

ner product on V with the inner product in L2(Ω ,Rd), and

the image Lv of an element v ∈ V is denoted the momen-

tum of v. The momentum Lv might be singular and in fact

L
(

K(·,y)a
)

(x) is the Dirac measure δy(x)a. Considering K

as the map a 7→
∫

Ω K(·,x)a(x)dx, L can be viewed as the in-

verse of K. Confer [22] for a thorough introduction to repro-

ducing kernels, especially with a view towards the LDDMM

framework.

3.2 The Kernel Bundle

In order to describe deformation at different scales, we ex-

tend in the following the tangent vector space V to a family

of vector spaces W which will eventually lead to the bundle

construction. We consider a parameter set IW and subspaces

Vr, r ∈ IW of the tangent space V where each Vr is equipped

with a norm ‖ ·‖r, corresponding kernel Kr, and momentum

operator Lr. Typically, IW will be a discrete set or a closed

and bounded interval of R
+ representing different scales.
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(a) In LDDMM, a path on the manifold GV ⊂
Diff(Ω) is generated by integrating the time varying

vector field vt in the tangent space V .

(b) Wit the kernel bundle, a path wt in the vector space W , here

constructed from Vr1
, Vr2

, and Vr3
, sum through the map Ψ to a

vector field Ψ(wt ), which in turn generates a path on Diff(Ω).

Fig. 2 The manifold view of LDDMM and the kernel bundle.

We then let W be the space of Bochner integrable functions1

w : IW →V , wr ∈Vr such that

∫

IW

‖wr‖
2
r dr < ∞ and

∫

IW

‖wr‖r dr < ∞ .

The vector space structures on Vr induce a vector space struc-

ture on W , and the inner product

〈v,w〉W =

∫

IW

〈vr,wr〉r dr, v,w ∈W

turns W into a Hilbert space [7]. With this construction, we

obtain a vector bundle GV ×W , the kernel bundle, allowing

kernels of different sizes and shapes. A map Ψ : GV ×W →

T GV = GV ×V allows parts wr of a bundle vector w ∈W at

each scale r to be combined to one derivative vector in V . Ψ

is defined using the Bochner integral, i.e. Ψ(w) =
∫

IW
wr dr.

We note that the parameter space IW can be a compact

interval or finite set of scalars in which case the integral re-

duces to just a sum. Often, it will be an interval specifying

a scale range, and a practical implementation will discretize

the interval into a finite set of scalars.

1 The Bochner integral extends the Lebesgue integral to functions

taking values in Banach spaces. The Banach space norm allows defini-

tion of Lp-spaces of Banach valued functions. In particular, the L2-

spaces of functions taking values in Hilbert spaces are themselves

Hilbert spaces [7].

3.3 Flows in the Bundle Setting

We use the map Ψ to get a relation between paths in W and

paths in the manifold GV that is similar to the usual connec-

tion between paths in V and paths in GV . Given wt = {wr,t}r,

we define the path ϕ
Ψ (w)
0t , i.e. the path starting at IdΩ with

derivative ∂tϕ
Ψ (w)
0t =Ψ(wt)◦ϕ

Ψ (w)
0t . We can measure the en-

ergy of a bundle path wt by

E1(wt ) =
∫ 1

0
‖ws‖

2
W ds , (5)

and, using this energy, we get a new definition of the regu-

larization energy E1:

E1(ϕ) = min
wt∈W,ϕ

Ψ (w)=ϕ
01

E1(wt ) = min
wt∈W,ϕ

Ψ(w)=ϕ
01

∫ 1

0
‖ws‖

2
W ds

(6)

Together with a quality of match measure U(ϕ), this defines

the registration problem in the kernel bundle framework as

the search for diffeomorphisms minimizing

E(ϕ) = E1(ϕ)+λU(ϕ) (7)

with E1 given by (6). By design, paths in the kernel bundle

generating the diffeomorphisms have components at each

scale, and this is precisely the property that will later allow

us to enforce sparsity at different scales individually. This
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will be done by adding priors that affect the individual scale

components of bundle vectors to (7).

The above registration energy should be compared with

the LDDMM formulation (1) using the regularization (3). It

is immediately clear that the kernel bundle formulation is an

extension of the LDDMM regularization, since the original

regularization is the special case with only one scale and

hence W =V .

3.4 Structure of W

It is interesting to note that W possesses a structure very

similar to a RKHS. On V we have for each x ∈ Ω and a ∈
R

d the evaluation functionals a⊗δx(v) = aT v(x). Using the

integral map Ψ defined above, we define the linear maps on

W

a⊗δΨ
x (w) :=

∫

IW

a⊗δx(wr)dr =

∫

IW

aT wr(x)dr = a⊗δx(Ψ (w)) .

As seen from the equation, the maps evaluate wr at each

scale and integrate the results using Ψ . These maps are con-

tinuous and hence in the dual W ∗. For the elements K(·,x)a=

{K(·,x)ra}r ∈W , we have

〈K(·,x)a,K(·,y)b〉W =

∫

IW

〈K(·,x)ra,K(·,y)rb〉r dr

=
∫

IW

aT Kr(x,y)bdr = aT

∫

IW

Kr(x,y)bdr

= a⊗ δΨ
x (K(·,y)b) = aTΨ (K(x,y)b)

which is similar to the reproducing property in V except for

the integration performed by Ψ on the right-hand side of the

equation. Also, close to the RKHS situation, we see that

〈K(·,x)a,w〉W =

∫

IW

〈K(·,x)ra,wr〉r dr

=

∫

IW

aT wr(x)dr = a⊗ δΨ
x (w) , w ∈V

again with the integration of w occuring in a⊗ δΨ
x (w).

3.5 Multi-Scale Representation and Relation to other

Approaches

With the kernel bundle, the momentum components can vary

over scale, and any combination of small and large scale

features at each spatial location can be represented. In par-

ticular, the bundle allows sparse priors to force vanishing

momentum at one scale while allowing it to be non-zero at

other scales at the same position. The effect is to allow rep-

resenting deformation compactly with non-zero components

only at the right scales.

In contrast to this, the simultaneous coarse and fine method

developed by Risser et al. in [13,14] builds a kernel by sum-

ming Gaussians of different scale. This effectively changes

only the shape of the kernel and does not allow different

momentum at different scales. If momenta vanish, they will

vanish at all scales simultaneously, and, therefore, the abil-

ity to represent sparsity across scales that we search for here

is not possible.

When not using sparse priors and when the L2-norm is

combined linearly across scales, Bruveris et al. [3] showed

that optimal deformations with the kernel bundle coincide

with results obtained with the sum of kernels approach. Thus,

though the kernel bundle is able to represent sparsity across

scales, the cross-scale sparsity will not occur without adding

more scale information to the system. This seems challeng-

ing with the approach of Risser et al. but adding such in-

formation becomes straightforward with the scale decoupled

bundle representation which illustrates the descriptive power

offered by the kernel bundle. Imposing sparse priors as we

pursue later in this paper constitutes an example of this, and,

as we will see in the experiments, optimal deformations with

a prior do indeed increase the compactness of the representa-

tion and exhibit sparsity across scales. Correspondingly, in-

corporating scale information from the data term can guide

the deformation model further towards the right mixture of

scales and allow momentum-based statistics [21] to be per-

formed across scale. This is again possible with the decou-

pled bundle representation, and we are currently pursuing

this path.

4 Evolution Equations: Kernel Bundle EPDiff

In the single scale LDDMM case, the EPDiff equations (Euler-

Poincaré for diffeomorphism groups) describes the evolu-

tion of optimal paths for the registration problem. They are

most often formulated in the following continuous form: let

at = Lvt denote the momentum at time t and assume that ϕt

is a path minimizing E1(ϕ) with ϕ1 = ϕ minimizing E(ϕ)

and vt is the derivative of ϕt . Then vt satisfies the system

vt =
∫

Ω
K(·,x)at(x)dx ,

d

dt
at =−Datvt − at∇ · vt − (Dvt)

T at .

The first equation connects the momentum at with the veloc-

ity vt , and the second describes the evolution of the momen-

tum. The EPDiff equations can be interpreted as geodesic

equations on the manifold GV , and they are important for

implementations since they limit the search for optimal paths

to paths satisfying the system.

As we will show in this section, there exists similar equa-

tions with the kernel bundle: if Ψ(wt ) is the derivative of
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the path of diffeomorphisms ϕt minimizing (7) with ϕ = ϕ1

minimizing (7) then

wr,t =

∫

Ω
Kr(·,x)ar,t(x)dx ,

d

dt
ar,t =

∫

IW

−Dar,tws,t − ar,t∇ ·ws,t − (Dws,t)
T ar,t ds .

(8)

with ar,t being the momentum for the part wr,t of wt . In

essence, the standard EPDiff equations are integrated over

the parameter space IW to obtain the evolution of the mo-

mentum at each scale, and, in particular, the result will imply

that the momentum conservation property of LDDMM also

holds in kernel bundle case. We will derive the KB-EPDiff

equations in a more general form which implies the above

formulation, and, for doing this, we will follow the strategy

in [22] for the LDDMM case.

4.1 Euler-Lagrange equations

For any time varying path wt in W , we denote by ϕ
Ψ (w)
t1t2

the

diffeomorphism obtained by integrating Ψ(wt) from time t1

to time t2. The end of the integrated path ϕ
Ψ (w)
01 is the diffeo-

morphism used for the registration. For the energy E(wt) =

E1(wt) + λU(ϕ
Ψ (w)
01 ), we consider a variation ht ∈ W and

calculate

d

dε
E(wt + εht)|ε=0 = (9)

2

∫ 1

0
〈wt ,ht〉W dt +λ

d

dε
U(ϕ

Ψ (w)+εΨ(h)
01 )|ε=0 .

Following [22], we define Adϕv(x) = (Dϕ v) ◦ ϕ−1(x) for

v ∈ V and get a functional Ad∗ϕ on the dual V ∗ of V by

(Ad∗ϕρ |v) = (ρ |Adϕ(v)).
2 It is shown in [22] that a varia-

tion h̃t in V of the match functional satisfies

d

dε
U(ϕv+ε h̃

01 )|ε=0 =

∫ 1

0

(

Ad∗ϕv
t1

∂̄U(ϕv
01)
∣

∣h̃t

)

dt

with ∂̄U denoting the Eulerian differential of U (see [22,

Chap. 10]). Inserting into (9) gives

d

dε
E(wt + εht) = (10)

2

∫ 1

0
〈wt ,ht〉W dt +λ

∫ 1

0

(

Ad∗
ϕ

Ψ (w)
t1

∂̄U(ϕ
Ψ (w)
01 )

∣

∣Ψ(ht)

)

dt .

For each r, we define the operator Ad
T,r
ϕ v = Kr(Ad∗ϕ (Lrv))

which then satisfies
〈

Ad
T,r
ϕ v,wr

〉

r
=(Ad∗ϕ(Lrv)|wr), and we

can now derive the fundamental results [22, Prop. 11.6/Cor.

11.7] in the bundle case:

2 With a functional f ∈ V ∗ and a vector v ∈ V , the notation ( f |v)
denotes f evaluated on v, i.e. ( f |v) = f (v).

Proposition 1 If wt is an optimal path for E then for almost

every r ∈ IW ,

wt,r = Ad
T,r

ϕ
Ψ (w)
t1

w1,r

with w1,r =− 1
2
∇VrU(ϕ

Ψ (w)
01 ).

Proof Assume instead that there exists a time varying ht in

W and t ∈ [0,1] such that

0 <

∫

IW

〈

wt,r −Ad
T,r

ϕ
Ψ (w)
t1

w1,r,ht,r

〉

r

dr

=

∫

IW

〈wt,r,ht,r〉r
dr−

∫

IW

〈

Ad
T,r

ϕ
Ψ (w)
t1

w1,r,ht,r

〉

r

dr

= 〈wt ,ht〉+
1

2

∫

IW

(Ad∗
ϕ

Ψ (w)
t1

∂̄U(ϕ
Ψ (w)
01 )

∣

∣ht,r)dr

= 〈wt ,ht〉+
1

2
(Ad∗

ϕ
Ψ (w)
t1

∂̄U(ϕ
Ψ (w)
01 )

∣

∣Ψ(ht)) .

But the right hand side vanishes for all t and all ht by (10)

and the fact that wt is optimal for E , a contradiction.

Corollary 1 Under the same conditions, for almost every

r ∈ IW ,

wt,r = Ad
T,r

ϕ
Ψ (w)
t0

w0,r . (11)

The proof of the corollary is identical to the proof of [22,

Cor. 11.7].

4.2 Scale Conservation and KB-EPDiff

In the kernel bundle, the momentum of a path may differ

across scales. For a path wt in W , we let at be the bundle

momentum defined by at,r = Lr(wt,r) recalling that Lr is the

momentum operator at scale r. For each t, we can consider

at to be in the dual W ∗ by (at |w̃) =
∫

IW
(at,r|w̃r)dr which is

continuous since

∣

∣

(

at |w̃
)∣

∣≤

∣

∣

∣

∣

∫

IW

(

at,r|w̃r

)

dr

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

IW

〈wt,r, w̃r〉r
dr

∣

∣

∣

∣

≤‖wt‖‖w̃‖ .

Suppose now wt satisfies the transport equation (11) for al-

most every r ∈ IW . Then for all w̃ ∈W ,

(

at |w̃
)

=

∫

IW

〈wt,r , w̃r〉r dr =

∫

IW

〈

Ad
T,r

ϕ
Ψ (w)
t0

w0, w̃r

〉

r

dr

=
∫

IW

〈

w0,r,Ad
ϕ

Ψ(w)
t0

w̃r

〉

r

dr =
(

a0|Ad
ϕ

Ψ (w)
t0

w̃
)

(12)

where Ad
ϕ

Ψ (w)
t0

w̃ is the element of W obtained by applying

Ad
ϕ

Ψ (w)
t0

to each w̃r. The above equation shows that the mo-

mentum at time t is completely specified by the momentum
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at time 0 and thus reproduces the momentum conservation

property for LDDMM. Note that since w̃ can be chosen arbi-

traly in (12), the momentum is conserved for each scale sep-

arately. By differentiating Ad
ϕ

Ψ (w)
t0

w̃, the momentum conser-

vation property directly implies the equation

∂t

(

at |w̃
)

=−
(

at |DΨ(wt ) w̃−Dw̃Ψ (wt)
)

(13)

or, equivalently,

∂tat + ad∗Ψ (wt )
at = 0

with
(

ad∗Ψ (wt )
at |w̃

)

=
(

at |DΨ(wt ) w̃−Dw̃Ψ(wt)
)

. Both equa-

tions imply the system (8) and extend the EPDiff equations

for LDDMM. We denote them KB-EPDiff.

An important difference from the single-scale framework

relates to the energy along optimal paths. The relation to

geodesics in LDDMM suggests that the norm ‖vt‖V is con-

stant in t when vt is optimal for E1(ϕ). This is in fact the

case for LDDMM. With the kernel bundle, momentum is

conserved along optimal paths of E1(ϕ) though ‖wt‖W is

not constant. This occurs because the new energy is not di-

rectly related to a metric in the Riemannian sense.

4.3 KB-EPDiff for Landmarks: An Example

To give a concrete application of the KB-EPDiff equations,

we redo the calculation for LDDMM landmark matching

with scalars kernels to arrive at the corresponding system

with the bundle. The initial momentum a0,r will in this case

be supported at the N landmarks xi, i = 1 . . . ,N, i.e. a0,r =

∑N
i=1 a0,r,i⊗δxi

with vectors a0,r,i ∈R
d . We let xt,i denote the

trajectory of the ith landmark so that xt,i = ϕ
Ψ (w)
0t (x0,i).

Letting at,r,i = (Dϕ
Ψ (w)
t0 )T a0,r,i, we get from (12)

(

at,r|w̃
)

=

(

Ad∗
ϕ

Ψ(w)
t0

(

N

∑
i=1

a0,r,i ⊗ δx0,i

)

∣

∣

∣
w̃

)

=

(

N

∑
i=1

a0,r,i⊗ δx0,i

∣

∣

∣
Ad

ϕ
Ψ(w)
t0

(w̃)

)

=
N

∑
i=1

aT
0,r,i(Dϕ

Ψ (w)
t0 w̃)◦ϕ

Ψ(w)
0t (x0,i)

=

(

N

∑
i=1

at,r,i ⊗ δxt,i

∣

∣

∣
w̃

)

.

Since d
dt
(Dxt,iϕ

Ψ (w)
t0 )T =−Dxt,iΨ(wt )

T (Dx0,i ϕ
Ψ (w)
t0 )T , the deriva-

tive of the momentum satisfies

d

dt
at,r,i =

d

dt

(

(Dϕ
Ψ (w)
t0 )T a0,r,i

)

=−Dxt,iΨ(wt)
T at,r,i .

The trajectories of the landmarks and momentum evolution

is therefore completely described by the system

Ψ(wt ) =

∫

IW

∑N
l=1 Kr(·,xt,l)at,r,ldr

d
dt

at,r,i =−

(

∫

IW

∑N
l=1 D1

(

Ks(xt,i,xt,l)at,s,l

)T
ds

)

at,r,i

xt,i = ϕ
Ψ (w)
0t (x0,i) .

(14)

Note that the system is finite if IW is finite.

5 Sparse Kernel Bundle Representation

In a variety of applications, it is useful to obtain compact

representations in the form of sparse solutions [4]. The stan-

dard method of obtaining sparsity is to add a penalty func-

tion to a variational formulation of the problem. The penalty

function is also denoted a sparse prior.

Combining sparsity and multi-scale representations pro-

mises enhancements for both pairwise and group-wise reg-

istration: For statistics following pairwise registration with

the aim of retrieving scale information, it is paramount to

represent the deformation at the right scale only. Low-scale

deformation may be represented by high-scale momenta but

will require a higher number of non-zero parameters than

if represented at the correct low-scale. Enforcing sparsity

makes the low-scale representation more likely. This prop-

erty is possible with sparsity across scales as discussed be-

low.

For group-wise registration, each pair of images may be

registered with a sparsely parameterized deformation. How-

ever, the non-zero momenta may have different spatial lo-

calization for the different pairs of images. Sparsity should

therefore in this case be applied on a group level. Inter-

subject registration may however emphasize the need for

multi-scale representation: if modeling inter-subject differ-

ences using only a single large-scale, small scale features

may be lost. If using only small-scale deformation, the rep-

resentation will not be sparse.

Durrleman et al. [10] showed that the number of points

in a finite control point formulation of LDDMM can be con-

trolled by a log−L1 like penalty term: a weight λsp and trun-

cated log function

flogc(x) = max(log(x), log(c))− log(c)

is applied to the norms of the set of N single-scale momenta

resulting in the extension of (7) to the energy

E(ϕ) = E1(ϕ)+λU(ϕ)+λsp

N

∑
l=1

f (‖a0,l‖) (15)

with f = flogc . The prior is added to all elements of a popu-

lation of images, and it is shown that a fairly large reduction
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in the number of non-zero momenta does not affect the reg-

istration results much.

In the multi-scale case, the connection (4) between the

momentum space and the kernel bundle can also be exploited

in order to define penalty functions. Sparsity is generally for-

mulated via the L0-norm which on the bundle momentum

take the form

‖w‖L0 =

∫

IW

Area{Lrwr 6= 0}dr .

This reduces to the number of non-zero momentum vectors

‖w‖L0 =
∫

IW
|{Lwr 6= 0}|dr in the finite-dimensional case.

For sparse problems in general, optimization based on L0

penalty functions is a combinatorial problem and thus com-

putationally prohibitive. Instead, the L0-norm is approximated

by the L1-norm or similar functions.

In the multi-scale, finite dimensional setting, we parametrize

the bundle momentum in the same way as the momentum is

represented in the single-scale case: for N landmarks and R

scales or, equivalently, for N control points and R scales in

image registration, N ·R vectors a0,l,r will specify the initial

momentum. We then formulate a multi-scale sparse registra-

tion functional extending (15) by

E(ϕ) = E1(ϕ)+λU(ϕ)+
R

∑
r=1

λsp,r

N

∑
l=1

f (‖a0,l,r‖) (16)

and we require the evolution of at,l,r to follow the KB-EPDiff

equations. Here λsp,r denote scale-dependent weights on the

sparse prior f : Rd →R. As in the single-scale case, the idea

is to push small momentum vectors towards zero without

affecting large momenta much. We denote registration gov-

erned by (16) sparse kernel bundle registration.

5.1 Choice of Prior

Approximations of the L0-norm aiming to ease the com-

plexity of the combinatorial optimization has been consid-

ered in many applications [4]. Though a full discussion of

this subject out of scope of this paper, we will provide a

brief rationale for our choice of penalty function. We note

that ensuring convexity is not a major concern in this setting

because the non-linearity of the connection between initial

momenta and the match functional U makes the energy (7)

non-convex even before adding the prior.

The most widely used approximation is probably the L1-

norm which provide sparse solutions but has the downside

of penalizing large momenta relatively hard, and it therefore

provides poor approximation of the L0-norm in such cases.

The L1-norm has been applied to LDDMM in addition to

flogc [9]. Candès et al. [4] proposes several penalty functions

including the function

flog,ε(x) = log(1+ x/ε) .
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Fig. 3 The L0-norm for real valued data, and the approximations L1,

flogc , and flog,ε with ε = 0.5 and c = 0.25. The L1-norm provides poor

approximation for large values. The truncated log flogc is not non-zero

for small values.

Figure 3 illustrates the approximation of the L0-norm pro-

vided by the L1-norm, flogc , and flog,ε . Both flogc and flog,ε

suffer less from the poor approximation for large momenta.

Both necessitates a choice of parameter, c or ε . Though flog,ε

may seem more natural than flogc which is zero for small val-

ues, the gradient of flog,ε may cause numerical issues close

to zero. In the experiments section, we use flogc to get results

comparable with the single-scale algorithm in [10].

5.2 Sparsity Across Scales

An important quality of the sparse, multi-scale construction

is that a momentum vector a0,l,r at scale r may be zero while

a momentum vector a0,l,r′ at scale r′ for the same point may

be non-zero. Hence, a purely low-scale deformation may be

represented with momenta being non-zero at that particular

scale only. The kernel bundle construction is made explicitly

to allow independent velocity at the different scales, and the

behaviour of sparsity across scales is allowed by this fact. As

we will see in the experiments, optimal deformations com-

puted with a sparse prior do indeed exhibit sparsity across

scales.

The weights λsp,r should ideally be chosen by cross-

validation in same way the weight λ in (7) and the weight-

ing between scales in the bundle are determined. At this

point, we heuristically choose λsp,r either constant in r or

λsp,r = λsp/rα for a fixed scalar λsp and exponent α ≥ 0 in

order to compensate for the often larger momenta at small

scales.

6 Implementation

We here describe how optimal registrations with the kernel

bundle can be computed in the case of landmark match-

ing. Extending the method to images using a control point
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formulation similar to [10,9] and [17] poses no conceptual

problem.

The running time will primarily be dominated by the

backwards gradient transport described below. The system

parallelizes well and can be implemented on GPU hardware

[15]. The cost of adding a sparsity prior and computing its

gradient is insignificant compared to the cost of integrating

the flow equations described below. We do not experience

any substantial differences in the number of iterations of the

optimization procedure with and without sparse priors. The

computation time is primarily a function of the number of

landmarks and the number of included scales.

6.1 Algorithm

Since the evolution of the bundle momentum and veloc-

ity are required to follow the KB-EPDiff equations, we can

optimize (16) using gradient based optimization strategies.

A simple gradient descent scheme will given an guess for

the initial momentum a0 calculate the gradient ∇E(w0) =

∇E1(w0)+λ ∇U(w0) using w0 =Ka0, add the gradient from

the sparsity term if using sparse prior, and update a0 by

adding a vector proportional to the gradient. In practice, we

use limited-memory BFGS updates3.

The gradient ∇E(w0) can be computed using a two step

algorithm: the initial bundle velocity w0 is transported for-

ward in time to obtain the diffeomorphism ϕ before flowing

the gradient at time t = 1 backwards to obtain the gradi-

ent ∇E(w0) at t = 0. The gradient ∇U(w1) at t = 1 is pro-

vided by the similarity measure; if U measure the L2-error,

the gradient is just the vector with the ith component being

2(x1,i − yi) where yi are the target points.

The KB-EPDiff equations governing the forward inte-

gration and the backwards gradient transport constitute non-

linear ODEs which are finite if the set of scales IW is fi-

nite. In practice, IW is a discretization {s1, . . . ,sR} of an in-

terval [s1,sR] using R scalars. The ODEs can be integrated

using standard Runge-Kutta integrators such as MATLAB’s

ode45 solver. The systems are described in detail below.

The sparse penalty functions considered here have gra-

dients

∇ flogc(a0,l,r) = λsp,ra0,l,r/‖a0,l,r‖
2 ,

∇ flog,ε(a0,l,r) = λsp,ra0,l,r/((e+ ‖a0,l,r‖)‖a0,l,r‖) .

If applying ∇ flogc , ‖a0,l,r‖ is considered zero if it is less than

c in which case we do not add the gradient to ∇E(w0). Prun-

ing of small values a0,l,r may be done during the optimiza-

tion process but does not seem to effect stability of the algo-

rithm much.

3 See e.g. http://www.di.ens.fr/~mschmidt/

Software/minFunc.html .

6.2 Forward and Backward Transport

The diffeomorphism ϕ is determined by w0 by the KB-EPDiff

equations, and the forward transports integrates the KB-EPDiff

system (14) to generate ϕ . The system is a non-linear ODE

with w0 and the point positions x1, . . . ,xN as initial values.

Because w0 through the evolution of wt is uniquely linked

to w1, U(ϕ) can in addition be considered a function of

w1. The gradient ∇U(w0) can be obtained by differentiat-

ing (14) and solving the transpose system backwards with

∇U(w1) as initial condition. This approach is described in

the single-scale case in [22]. With multiple scales, the gradi-

ent ∇E1(w0) can be computed simultaneously with ∇U(w1)
by adding it to the backwards ODE. Combined, the gradient

∇E(w0) can be found as the solution at t = 0 of an affine,

non-autonomous ODE

ẏt = vt +Mtyt (17)

integrated from t = 1 to t = 0. The linear component trans-

ports ∇U(wt ) while the affine component transport ∇E1(wt ).

We provide explicit form of this system below.

As in Section 4.3, we let xt,i denote the point positions at

time t and the set of time-dependent vectors at,r,i is the mo-

mentum of the flow. These components are computed from

the forward integration of the KB-EPDiff equations (14).

Note that the momenta have components at each scale r. By

differentiating the KB-EPDiff equations we obtain the linear

ODE

ẏt = Btyt . (18)

The matrix Mt in the backwards equations (17) arises as

the transpose of the matrix Bt . Both systems (18) and (17)

have components coding the variation in point positions and

momentum, respectively. We denote these components bx
t,k

and ba
t,k,r for (18) and mx

t,k and ma
t,k,r for (17). Here k =

1, . . . ,N and we consider the case of a finite set of scales

R so that r = 1, . . . ,R. We assume the kernel K is scalar

K(x,y) = γ(‖x− y‖2)Idd with a real function γ and write

γt,kl for γ(‖xt,k − xt,l‖
2). Differentiating (14) then provides

the components of (18):

bx
k =

R

∑
r=1

N

∑
l=1

γr
klb

a
l,r + 2

R

∑
r=1

N

∑
l=1

γ̇r
kl(xk − xl)

T (mx
k −mx

l )al,r

ba
k,s =−2

R

∑
r=1

N

∑
l=1

γ̇r
kl(a

T
k,rm

a
l,r + aT

l,rm
a
k,s)(xk − xl)

− 2
R

∑
r=1

N

∑
l=1

γ̇r
kla

T
k,sal,r(m

x
k −mx

l )

− 4
R

∑
r=1

N

∑
l=1

γ̈r
kla

T
k,sal,r(xk − xl)

T (mx
k −mx

l )(xk − xl)

http://www.di.ens.fr/~mschmidt/
Software/minFunc.html
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where we omitted the time dependence of all terms to keep

the notation compact. By transposing Bt , we get Mt and

hence the linear parts of (17). This is in components

mx
k =−2

R

∑
r=1

N

∑
l=1

γ̇r
kl(a

T
k,rm

x
l + aT

l,rm
x
k)(xk − xl)

+ 2
R

∑
r,r′=1

N

∑
l=1

γ̇r′

kl(a
T
k,ral,r′m

a
k,r − aT

k,r′al,rm
a
l,r)

+ 4
R

∑
r,r′=1

N

∑
l=1

γ̈r′

kl(xk − xl)
T (aT

k,ral,r′m
a
k,r − aT

k,r′al,rm
a
l,r)(xk − xl)

ma
k,s =−

N

∑
l=1

γs
klm

x
l + 2

R

∑
r=1

N

∑
l=1

(xk − xl)
T (γ̇r

klm
a
k,r − γ̇s

klm
a
l,r)l,r .

The simpler affine term has components

mx
k =−4

R

∑
r=1

N

∑
l=1

γ̇r
kla

T
k,ral,r(xk − xl)

ma
k,s =−

N

∑
l=1

2γs
klm

a
l,s .

Letting mx
1,k equal the kth component of U(w1) and setting

ma
1,k,r to zero provides the initial conditions for the system.

After backwards integration, the components ma
0,k,r contain

∇E(a0) providing ∇E(w0) using w0 = Ka0.

7 Experiments

We perform four sets of experiments to illustrate and test

the behaviour of the kernel bundle method and its ability to

support sparsity across scales. We start with a simple syn-

thetic example to visually illustrate the differences between

the single and multi-scale, sparse and non-sparse methods.

In particular, will see that sparsity is achieved at the different

scales individually. We then present landmark based exam-

ples of matching hand outlines to test the methods ability to

represent both small and large scale features, and we illus-

trate the differences in the evolution in the diffeomorphism

manifold when matching with LDDMM and the kernel bun-

dle with sparse prior. Finally, we apply the method to regis-

ter annotated lung CT scans, and we show that the extra ca-

pacity of the method does not affect its ability to generalize

to test data; that manual scale selection is not necessary with

the multi-scale method; and that we can control the sparsity

across scales by varying the weight of the sparse prior.

7.1 Synthetic Example

Figure 1 presents a simple example which illustrates the ef-

fect of fusing sparsity and multiple scales. In the figure, we

show the results of matching two sets of 11 points using

the sparse kernel bundle method and the kernel bundle with-

out sparse prior together with results when using sparse and

non-sparse LDDMM algorithms. In all cases, we search for

a diffeomorphism transporting the moving points (red) to the

fixed points (black). The green points show the results of the

matchings, and the red dotted lines indicate the trajectory of

the moving points along the diffeomorphism path. The ini-

tial momenta a0,l,r, l = 1, . . . ,11 are shown with arrows. The

Gaussian kernels have scale σ = 6 for the single-scale LD-

DMM case and σ = 12,6,0.8 for the multi-scale methods in

grid units as indicated by the deformed grids,

The sparse prior on LDDMM forces vanishing momen-

tum for 4 of the 11 points. However, the fixed kernel scale

has serious effect on the registration quality: the points are

not quite well matched as seen by the large deviation be-

tween the landmarks and result points. The match is closer

with the kernel bundle algorithm without sparse prior but all

momenta at all scales are non-zero as shown by the non-

zero momentum vectors and the representation is far from

compact. The kernel bundle method with sparse prior ob-

tains the best of both worlds: even with vanishing momenta

for 6 of the 11 points, the match quality is comparable with

non-sparse LDDMM. Of the 3 · 11 momenta, 23 vanishes.

The result shows that sparsity does indeed occur across sca-

les: point 3 and 9 from above has non-vanishing momenta at

only the smallest scale, and the central point (point 6 from

above) has vanishing momentum only at the midmost scale.

7.2 Hand Outlines

We consider the hand outlines shown in Figure 4. Using the

landmarks (red dots) on the moving hand image, we wish to

compute the kernel bundle match against the landmarks on

the fixed image (black dots). The match is computed with

three scales (σ = 8,4,2 in units of the grid overlayed the

figures). Figure 4 shows the results of computing the match

with the kernel bundle together with results obtained with

single-scale LDDMM with each of the three scales sepa-

rately. For LDDMM with the largest scale, the match is poor

and the sharp bend of the thumb is especially badly mod-

elled. The situation improves for the middle scale though

the bend of the thumb is still not sufficiently sharp and the

match is bad for the middle fingers. For the smallest scales,

the thumb is correctly matched but now the smaller scale is

not able to model the even movement of the index finger.

The kernel bundle method is by including all scales able to

correctly register all the critical areas, and, at the same time,

it gives the best match of the landmarks.
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(a) LDDMM σ = 8 (b) LDDMM σ = 4 (c) LDDMM σ = 2

(d) Moving hand (top), fixed
hand (bottom)

(e) LDDKBM
 

Very Rigid

Very Non−Rigid

sharp bend lost poor match skewed index finger

good
matches

m
ea
n
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tc
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Fig. 4 Matching hands with single- and multiple scales. (d) The moving and fixed hands; (e) result of matching the hands with the kernel bundle

method; (a)-(c) results of matching the hands with the single-scale LDDMM method with three different scales separately (σ = 8,4,2). The red

landmarks of the moving hand are matched against the black landmarks of the fixed hand. The outline of the moving hand (red line) is transported

to the black outline and should be compared with the outline of the fixed image (black dashed). The kernel bundle method is by incorporating

movement at the multiple scales able to correctly match the critical areas on which LDDMM fails.

7.3 KB-EPDiff Across Scales

To illustrate the difference in the evolution of critical paths

with the kernel bundle and LDDMM, we match in Figure 5

again eleven points (red) against eleven points (black) with

results (green) using both LDDMM and kernel bundle method

with two scales and enforced sparsity. In the figure, the re-

sults of the two registrations are visible in row 1 and 2 right-

most, and the evolution of the critical paths generated by the

EPDiff and KB-EPDiff equations are shown with time in-

creasing across columns. The lower rows display the defor-

mation obtained with the kernel bundle separated for each

scale. We see how most of the transport occurs at the largest

scale while the lowest scale perform almost no horizontal

movement but takes care of the fine adjustment allowing the

kernel bundle method to obtain a good match. The sparse

prior forces compactness in the representation and spatial

locality of the fine scale movement.

7.4 Annotated Lung CT Registration

We now test the sparse kernel bundle on the publicly avail-

able DIR [5] dataset of lung CT images and manually an-

notated landmarks. We aim to show that the extra capac-

ity of the method does not affect its ability to generalize to

test data; that manual scale selection is not necessary with

the multi-scale method; and that we can control the spar-

sity across scales by varying the weight of the sparse prior.

We note important differences between the experiments per-

formed in the conference papers [18,19]: we test with sparse

priors, and we use the fast algorithm with the backwards

gradient transport developed in this paper to allow cross-

validation tuning of the regularization term λ in the ener-

gies (1) and (7). Thus, we are able to remove the influence

of λ on the experiments. In addition, we use isotropic ker-

nels and include more points in the experiments resulting in

markedly lower test errors and more robust evaluation.

The dataset consists of five cases of CT images for dif-

ferent stages of the inhale and exhale phases and annotated

landmarks for the maximum inhale and exhale phases, re-

spectively. The images and landmarks are available on grids

with voxel size varying slightly between the cases but close

to 0.6×0.6×2.5 mm. Further details can be found in the ref-

erence. For each case, the 300 publicly available landmarks,

xI
1, . . . ,x

I
300 for the maximum inhale phases and xE

1 , . . . ,x
E
300

for the maximum exhale phase, correspond pairwise. We
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Fig. 5 LDDMM and sparse kernel bundle match of landmarks (red) to landmarks (black) with results (green). The kernels are Gaussian with the

kernel bundle applying two scales. Time points of the critical paths are shown along the horizontal axis with the rightmost subfigures displaying

the final deformation. (top row) Critical path determined by EPDiff equations with LDDMM (single scale); (row 2) critical path determined by

KB-EPDiff equations with the sparse kernel bundle method; (row 3-4) individual contribution of each of the bundle scales (scale σ in grid units).

Initially square grids are shown deformed by the diffeomorphism, and the grids are colored with the trace of Cauchy-Green strain tensor indicative

of the mean stretch (log-scale for each row individually). With the sparse kernel bundle method, the largest scale contribute to most of the transport

movement with smooth deformation while the smallest scale performs fine adjustment of the trajectories to obtain a good match. The sparse prior

forces compactness in the representation and spatial locality of the fine scale movement.

will drive the registration using random subsets of these land-

marks, and evaluate the computed match using the target

registration error (TRE) measured on the landmarks not used

to drive the registration.

To compare single scale LDDMM and the sparse ker-

nel bundle method, we choose random subsets of 200 land-

marks to drive the registration, and for each such choice of

subset S and each of the five patient cases, we compute the

TRE (∑ j 6∈S ‖ϕ(xI
j)− xE

j ‖
2)1/2. We find the relative size of

the TRE against the value before the match (relative TRE),

and average over the patients and different choices of sub-

sets. This setup is performed for LDDMM with Gaussian

kernels with scale ranging between 10mm and 170mm and

with the kernel bundle method with five scales evenly dis-

tributed in the same range (σ = 10,50,90,130,170 mm.).

For each choice of random subset S, we tune the reg-

ularization term λ used in the energies (1) and (7) using

cross-validation on further subsets of S. This ensures that

possible variation in the effect of λ on the single- and multi-

scale methods does not influence the presented results. For

the kernel bundle, we let each scale contribute with equal

weight. For this experiment, we let the sparsity weight be

λsp = 0.02, and we let the prior vary over scale by λsp,r =

λsp/r. The result of the experiment is not affected when λsp

varies within a reasonable range of the chosen value, and we

further explore the choices of λsp and λsp,r below.

In Figure 6(a), we see that with single-scale LDDMM

the TRE decreases with increasing scale up to a scale of

70mm after which it starts increasing. This indicates that a

kernel scale of 70mm will be appropriate for LDDMM. As

displayed in Figure 6(b), the sparse kernel bundle method

attains an error lower than but within one standard devia-

tion of the best LDDMM result. Without tuning for scale,

the sparse kernel bundle method is thus as good as LD-

DMM, and classical scale selection by cross validation is not

needed with the multi-scale method. Furthermore, the re-

sults indicate that the same quality of match can be reached

with less data since we potentially could use the entire dataset

to drive the registration with the kernel bundle. Manual scale

selection will allow only a part of the data as input for the

registration as the rest is needed to select the kernel scale.

The experiment shows in addition that the extra capacity

and additional degrees of freedom of the kernel bundle do
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Fig. 6 LDDMM and the sparse kernel bundle method: (a) average rel-

ative TRE for different kernel scales (LDDMM) and the sparse kernel

bundle method (horizontal line and rightmost). Zero relative error indi-

cates perfect match and a relative error of one indicates no error reduc-

tion. Labels on the horizontal axis are kernel scale in mm (9 different

scales for LDDMM and the interval [10 170] discretized in five sca-

les for the sparse kernel bundle). (b) relative TRE for LDDMM (scale

in mm on horizontal axis) subtracted the respective relative errors with

the sparse kernel bundle again matching with the scale interval [10 170]
discretized in five scales. Positive values show superior performance of

the kernel bundle method. Error bars show standard deviation of the re-

sults.

not reduce the ability of the method to generalize to the test

data.

The computation time of each registration with a non-

optimzed CPU-only implementation of the algorithm incre-

ases from approximately 5 minutes with one scale to ap-

proximately 50 minutes with five scales. This increase can,

however, be removed using GPU acceleration as shown in

[15]. We further discuss computation time in Section 8.

To evaluate the effect of applying sparse priors with both

single and multiple scales, we compare LDDMM and the

kernel bundle both with sparse priors. We fix the regulariza-

tion term to λ = 8 and average over all 5 patients and several

randomly selected subsets of points to drive the match. We

provide LDDMM with the advantage by selecting an already
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of the sparsity weight γsp

Fig. 7 Sparse LDDMM and the sparse kernel bundle method: (a)

relative TRE (horizontal axis) versus relative compactness (vertical

axis) when the varying sparsity weight λsp; (b) relative TRE increase

(left axis, blue) and relative decrease in non-zero momenta (right axis,

green) as function of λsp. Results averaged over 5 patients. With a fac-

tor 5 reduction in non-zero parameters (horizontal line, top), relative

TRE for sparse kernel bundle registration is 0.188 in contrast to 0.213

for sparse LDDMM. Though the kernel bundle method achieves the

lowest relative TRE, the single scale method obtains the lowest total

number of parameters for a given relative TRE.

tuned best possible scale of σ = 50mm with these parame-

ters, and we test against the kernel bundle method using five

scales in the range 10mm to 170mm as in the previous ex-

periment (σ = 10,50,90,130,170 mm.). Again, we let the

scale parameters for the sparse prior vary by λsp,r = λsp/r.

The value of λsp,50 = λsp/50 is used for LDDMM in accor-

dance with the choice scale.

With this setup, Figure 7 shows the connection between

relative TRE, the sparsity weight λsp, and the fraction of mo-

menta being non-zero after the match. As seen from the top

figure, a reduction in the number of non-zero momenta of a

factor 5 to 10 can be obtained for kernel bundle with only

slightly increasing TRE. The sparse kernel bundle method

obtains the largest reduction of non-zero parameters for a

given increase in relative TRE. Though the kernel bundle
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Fig. 8 Sparsity across scales: relative TRE (left axis, blue) and rela-

tive decrease in non-zero momenta for each of three scales (right axis,

red (x)/green (o)/black (*)) as function of the scale weighting α aver-

aged over the 5 patients. The red (x) marked curve shows compactness

for the smallest scale (σ = 10), the green (o) marked curves for the

midmost scale (σ = 50) and the black (*) marked curves for the largest

scale (σ = 90). The TRE and total number of non-zero parameters stay

relatively constant though the distribution of non-zero parameters over

scale varies. In particular, the figure shows that sparsity across scales

is achieved.

method achieves the lowest relative TRE, sparse LDDMM

still provides the smallest number of total parameters for a

fixed relative TRE. This fact should be viewed in the light

that the sparse LDDMM method is already tuned to the best

scale, and that the kernel bundle has more degrees of free-

dom than LDDMM. The bottom figure shows the reduction

in non-zero momenta leveling out while the relative TRE in-

creases, though at a relatively slow pace. The absence of a

sharp increase in relative TRE makes the method fairly ro-

bust the actual choice of λsp.

The weighting of the sparsity parameter across scales

can be controlled by letting λsp,r = λsp/rα and varying α .

To explore this and the resulting cross-scale effects, we se-

lect λsp = 0.05, and plot the relative TRE against α in Fig-

ure 8. In addition, the figure shows how the distribution of

non-zero parameters at the different scales varies with α . To

give a clear visual picture of this effect, we use only three

scales (σ = 10,50,90 mm.). The increased penalty at small

scales for α > 1 and corresponding increased penalty for

large scales for α < 1 is clearly visible. Indeed, the differ-

ence in the number of non-zero parameters at the different

scales shows that sparsity across scales is achieved.

To illustrate the result of one lung registration with the

sparse kernel bundle method, Figure 9 shows the energy of

the initial velocity field for three bundle scales separately.

The uniform spread of the velocity provided by the large

scale kernels results in a smooth deformation even with only

20% percent non-zero momenta at that scale. The localized

deformation field provided by the sparsity of the smaller mo-

menta is in addition clearly visible.

8 Future Work

As previously discussed, when sparse priors are not used

and when the L2-norm is combined linearly across scales,

the cross-scale sparsity will not occur without adding more

information to the system. In this paper, we used sparse pri-

ors to address this issue and get the cross-scale sparsity but

the scale information may also be obtained more directly

by incorporating scale information from the data term. The

decoupled kernel bundle representation will support such a

construction, and we are currently working on including e.g.

image scale information in the framework.

Another way of obtaining scale information is to learn

compact models from datasets of populations of images. We

expect the sparse kernel bundle method to be particularly

powerful when applied to population analysis of e.g. atro-

phy during Alzheimer’s disease. The single-scale analysis

in [10,9] has already showed that the spatial distribution

of non-zero momenta can be learned across populations us-

ing sparse priors. Learning also the scale distribution with

the kernel bundle method can potentially lead to even more

compact models. After a learning phase, the extracted low-

dimensional model can then be used when registering new

data. This approach may both increase statistical power due

to the reduced dimensionality and increase the speed of the

registration process.

Though the execution time increases when multiple sca-

les are used in the registration, the increased computational

load can be offset using e.g. GPU acceleration [15]. In ad-

dition, if a very compact model is learned from population

datasets, the running time should decrease correspondingly

due to the reduced size of the differential systems. This could

potentially lead to a registration algorithm that is faster than

single-scale LDDMM.

9 Conclusion

The multi-scale kernel bundle framework extends the LD-

DMM framework by incorporating multiple kernels at mul-

tiple scales in the registration. The method allows represent-

ing deformation at multiple scales at different spatial loca-

tions, and it thereby increases the capacity of the deforma-

tion description while supporting application of sparse pri-

ors that ensure compact representation. Since the priors are

applied independently across the parts of the bundle, the al-

gorithm allows sparsity across scales, and the multiple sca-

les extend the range of deformation the algorithm is able

to model significantly. The method may as well be applied

to images in the finite dimensional setting promising similar

results and to group-wise registration extending the pairwise

experiments presented here.

We visually illustrate the method on synthetic data and

show the obtained sparsity across scales. We show the multi-
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(a) Slices of 3D lung image (b) energy, σ = 10 (c) energy, σ = 50 (d) energy, σ = 90

Fig. 9 Slices of 3D lung image and the multi-scale initial vector field at three scales that when combined generate the sparse kernel bundle

registration. Left to right: (a) slices of CT image, (b)-(d) squared L2-norm of the components at each of the three scales σ = 10,50,90 which in

combination make up the multi-scale bundle vector w0 generating ϕ at t = 0. The uniform spread of the velocity provided by the large scale kernels

results in a smooth flow even with only 20% percent non-zero momenta for that scale. The localized deformation field provided by the sparsity of

the smaller momenta is in addition clearly visible.

scale effects and cross-scale evolution on additional exam-

ples. In addition, when applying the method to a dataset of

annotated lung CT images, we demonstrate that the method

removes the need for classical scale selection; that sparsity

across scales is achieved; that the sparsity may be achieved

with only minor increase in registration error; and that the

extra capacity of the algorithm does not affect generaliza-

tion ability.

In addition to the applications demonstrated in this pa-

per, we expect the sparse kernel bundle method to be partic-

ularly powerful when applied to population analysis. From

both a theoretical and a practical point of view, the sparse

kernel bundle framework provides a compact representation

of deformation across scales.
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