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Abstract. The Large Deformation Diffeomorphic Metric Mapping frame-
work constitutes a widely used and mathematically well-founded setup
for registration in medical imaging. At its heart lies the notion of the
regularization kernel, and the choice of kernel greatly affects the results
of registrations. This paper presents an extension of the LDDMM frame-
work allowing multiple kernels at multiple scales to be incorporated in
each registration while preserving many of the mathematical properties
of standard LDDMM. On a dataset of landmarks from lung CT images,
we show by example the influence of the kernel size in standard LDDMM,
and we demonstrate how our framework, LDDKBM, automatically in-
corporates the advantages of each scale to reach the same accuracy as
the standard method optimally tuned with respect to scale. The frame-
work, which is not limited to landmark data, thus removes the need for
classical scale selection. Moreover, by decoupling the momentum across
scales, it promises to provide better interpolation properties, to allow
sparse descriptions of the total deformation, to remove the trade-off be-
tween match quality and regularity, and to allow for momentum based
statistics using scale information.

Keywords: diffeomorphic registration, computational anatomy, LDD-
KBM, LDDMM, scale, sparsity, kernels, momentum, landmarks

1 Introduction

Among the many methods for non-rigid registration in medical imaging, the
Large Deformation Diffeomorphic Metric Mapping framework (LDDMM) has
the benefit of both providing good registrations and drawing strong theoretical
links with Lie group theory and evolution equations in physical modeling [5,
17]. The mathematical foundation ensures that optimization procedures find
diffeomorphic optima and allows statistics to be performed on the results of
registrations [9, 15].

Diffeomorphisms in the LDDMM framework are regularized by a norm, which
not only greatly influences the computed registration but also affects subsequent



statistics. The norm is often connected to a kernel, and since deformation fre-
quently occurs at different scales, the choice of appropriate kernel scale will in
such cases involve compromises between regularity and registration quality. In
addition, in order to reduce computational complexity and provide meaningful
statistics, it would be desirable to introduce sparsity in the framework which
further complicates the choice of kernels.

In this paper, we propose a generalization of LDDMM allowing multiple ker-
nels at multiple scales to be incorporated into the registration. We extend the
theory by introducing a multi-scale kernel bundle, and the resulting Large Defor-
mation Kernel Bundle Mapping (LDDKBM) framework keeps the strong math-
ematical foundation while giving significant benefits. Unlike previous methods,
our construction explicitly decouples the momentum across scales allowing the
algorithm to adapt to the different scales in the input data. This makes classical
scale selection unnecessary and removes the common trade-off between match
quality and regularity of the diffeomorphism. The ability to describe the defor-
mation at precisely the right scales promises to allow for sparse representations
and statistics incorporating scale information.

1.1 Deformation at Multiple Scales; An Example

Figure 1 shows a simple example of landmark matching. In order to register the
points, movement is needed at both large and small scales, and the standard LD-
DMM algorithm faces a compromise between regularity of the diffeomorphism
and match quality. The registration in the fourth image is performed by the
method developed in this paper incorporating kernels at different scales, and the
result shows how the trade-off between regularity and quality has been removed.
Furthermore, no cross validation for choosing the kernel size is needed and con-
trary to previous methods, the computed momentum is represented only at the
appropriate scales.

1.2 Related Work

Besides LDDMM, many methods for non-rigid registration are in use today in-
cluding elastic methods [11], parametrizations using static velocity fields [1, 8]
and the demons algorithm [13, 16]. The deformable template model pioneered by
Grenander in [7] and the flow approach by Christensen et al. [4] was paramount
in the development of LDDMM together with the theoretical contributions of
Dupuis et al. and Trouvé [6, 14]. Algorithms for computing optimal diffeomor-
phisms have been developed in [2], and [15] uses the momentum representation
for statistics and develops a momentum based algorithm for the landmark match-
ing problem. The review paper [18] and the book [17] provide excellent overviews
of the theory and applications of LDDMM in medical imaging.

The role of the kernel and deformation at different scales have been addressed
by Risser et al. in [12], where the authors propose a multi-kernel LDDMM ap-
proach which constructs new kernel shapes by adding Gaussian kernels. Our
method differs from this approach by extending LDDMM to allow decoupling of
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Fig. 1. Matching four landmarks (red) to four landmarks (green, crossed) with results
(black) for Gaussian kernels of difference sizes (scale σ in grid units). Top row: standard
LDDMM, bottom row: the proposed LDDKBM method. An initially square grid is
shown deformed by each diffeomorphism along with two test points (red triangles)
transported by the diffeomorphism to the black triangles. The grids are colored with
the trace of Cauchy-Green strain tensor (log-scale). The compromise between regularity
and match quality is visible for the standard LDDMM method. The poor match for
the smallest scale is due to the lack of “carpooling” effect [10]. Notice that for standard
LDDMM with the smallest scales, the test points are not moved at all or split up. The
proposed method obtain both a regular diffeomorphism and a good match, and the
test points are transported in an arguably natural way.

the energy and momentum at each scale, and it therefore enables the algorithm
to select the appropriate deformation at each scale individually. The differences
between the methods are detailed later in the paper.

1.3 Content and Outline

In the next section, we give an overview of the LDDMM framework and its use in
non-rigid registration in medical imaging. In particular, the focus will be on the
role of the kernel. We then progress to developing our key contribution, the multi-
scale kernel bundle framework LDDKBM, and highlight the important properties
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of the construction. We will show how the decoupling of scales differentiates
the construction from previous methods and promises sparse representations.
The evaluation of the method on a dataset of landmarks obtained from CT
lung images will show the automatic incorporation of the appropriate scale and
indicate why the method allows sparsity. The paper thus contributes by

(1) highlighting the role of the kernel in LDDMM and showing how the regis-
tration results depend on the choice of kernel,

(2) developing the multi-scale kernel bundle generalization LDDKBM to auto-
matically incorporate multiple scales in the registration,

(3) and showing how the developed method removes the need for the classical
scale selection while promising improved momentum based statistics and
sparse representations.

We note that while the evaluation is performed on landmark data, the LDDKBM
framework is very general, and it will apply to different types of data as well.
We are currently working on an implementation for image registration, and we
consider this paper a first step which eventually will lead to the method being
useful for clinical applications.

2 LDDMM and Kernels

The Large Deformation Diffeomorphic Metric Mapping framework provides a
well-defined metric structure on spaces of diffeomorphisms and gives convenient
ways to parametrize such spaces. We here give a brief overview of the LDDMM
construction before going into details about the use of kernels in the framework.
Landmarks will be used for the examples, though both the LDDMM framework
and the kernel bundle we will develop also apply to images, curves, surfaces, and
tensors.

Registration of geometric objects is often performed by defining an action of
diffeomorphisms on the objects before searching for diffeomorphisms matching
the objects through the action. For example, in order to register landmarks
x1, . . . , xN and y1, . . . , yN in R

d, d = 2, 3, we search for a diffeomorphism ϕ :
R

d → R
d such that ϕ(xi) = yi. Frequently, a perfect match is not possible or

even not desirable because noisy data may force the diffeomorphism to be highly
irregular. Instead, we search for ϕ minimizing

E(ϕ) = E1(ϕ) + λU(ϕ) (1)

where E1(ϕ) is a regularization measure, U(ϕ) a measure of the quality of the
match, and λ > 0 a weight. A simple and often used choice for U are the L2 error
which takes the form U(ϕ) =

∑N
i=1 ‖ϕ(xi)−yi‖

2 for landmarks. In the LDDMM
framework, the regularization measure E1(ϕ) is defined as the minimum energy
of paths of diffeomorphisms transporting the identity IdΩ to ϕ, i.e.

E1(ϕ) = min
vt∈V,ϕv

01=ϕ

∫ 1

0

‖vs‖
2
V ds (2)
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with ‖ · ‖V being a right invariant Riemannian metric on the tangent space V

of derivatives of such paths, and ϕv
0t denoting the path starting at IdΩ with

derivative ∂tϕ
v
0t = vt ◦ϕ

v
0t. This norm is chosen to penalize highly varying paths

and, therefore, a low value of E1(ϕ) implies that the path to reach ϕ, and hence
ϕ itself, is regular. In addition, the norm and tangent space V is chosen to
ensure several important properties, which include ensuring a minimizer for E

exists and that integration in V is well-defined. The latter property enables us
to represent many diffeomorphisms as endpoints of paths ϕv

0t.

2.1 The Tangent Space

The norm on the tangent space V is most often chosen to ensure V is a repro-
ducing kernel Hilbert space [17]. If the domain Ω is a subset of Rd so that V is a
subset of the maps Ω → R

d, one can with an appropriate norm ‖ ·‖V on V show
the existence of a kernel K : Ω × Ω → R

d×d so that, for any constant vector
a ∈ R

d, the vector field K(·, x)a ∈ V , and 〈K(·, x)a,K(·, y)b〉V = aTK(x, y)b
for all points x, y ∈ Ω and all vectors a, b ∈ R

d. This latter property is denoted
the reproducing property and it provides a way to evaluate the inner product
on the span of the kernel elements. Tightly connected to the norm and kernels
is the momentum, which is named so because of its connection to momentum in
classical mechanics. The momentum operator L on V is defined by

〈Lv,w〉L2(Ω) =

∫

Ω

(

Lv(x)
)T

w(x)dx = 〈v, w〉V

and hence it connects the inner product on V with the inner product in L2(Ω).
As we will see in the landmark case, the value Lv might be singular and in fact
L
(

K(·, y)a
)

(x) is the Dirac measure δy(x)a. These relations lead to convenient
equations for minimizers of the energy (1). In particular, the EPDiff equations
for the evolution of the momentum at for optimal paths assert that if ϕt is a
path minimizing E1(ϕ) with ϕ1 = ϕ minimizing E(ϕ) and vt is the derivative of
ϕt then vt satisfies the system

vt =

∫

Ω

K(·, x)at(x)dx ,

d

dt
at = −Datvt − at∇ · vt − (Dvt)

T at .

The first equation connects the momentum at with the velocity vt. The EPDiff
equations reduces to particular forms for several objects. For landmarks x1, . . . , xN ,
the momentum will be concentrated at ϕt(xi) as Dirac measures ai,tδϕt(xi) lead-
ing to the finite dimensional system of ODE’s

vt =

N
∑

l=1

K(·, ϕt(xl))al,t ,
d

dt
ϕt(xi) = vt(ϕt(xi)) ,

d

dt
ai,t = −

N
∑

l=1

D1K(ϕt(xi), ϕt(xl))a
T
i,tal,t .

(3)
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2.2 Kernels

There is some freedom in the choice of kernel or, equivalently, the operator L

but, in lack of general models for e.g. deformations of organs to be registered
[11], it is hard to give satisfactory modelling arguments specifying the kernel
shapes. Rotational and translational invariance is commonly assumed [17] and

the Gaussian kernel K(x, y) = exp( |x−y|2

σ2 )Idd is a convenient and often used
choice. The scaling factor σ is not limited to Gaussian kernels and a scaling factor
needs to be determined for both Gaussian kernels and many other proposed
kernel shapes.

Larger scales lead in general to higher regularization and smoother diffeo-
morphisms, whereas smaller kernels penalize higher frequencies less and often
gives better matches. This phenomenon is in particular apparent for objects
with sparse information, such as the point matching problem (3) illustrated in
Figure 1 and images with e.g. areas of constant intensity.

3 LDDKBM: A Multi-Scale Kernel Bundle

To incorporate multiple kernels in the framework, we extend LDDMM by a
multi-scale kernel bundle. The construction, which we denote LDDKBM (Large
Deformation Diffeomorphism Kernel Bundle Mapping) is very general and allows
both multiple kernel shapes and scales though varying the scale of the kernel
constitutes the most obvious use. We start by outlaying the framework and later
discuss how it deviates from other proposals incorporating scale space ideas.

As described in the previous sections, a time varying vector field vt in the
tangent space V generates a path ϕv

0t of diffeomorphisms. This provides a view
of the space of diffeomorphisms GV obtainable in this way as a manifold having
V as its tangent space at all points, confer Figure 2(a). The norm ‖ · ‖V works
as a metric making GV a Riemannian manifold. In this view, the regularization
factor E1 is the energy of the path ϕt, and this energy is tightly connected to
the kernel arising from the norm on V .

In order to use more kernels, we extend the tangent space V to the family
W = {Vr}r∈IW of Hilbert spaces Vr parametrized by scalars r in a set IW so
that, for each r, Vr is a subspace of the tangent space V but equipped with
a different metric. The key point here is to allow the norms ‖ · ‖Vr

on Vr and
connected kernels Kr to vary with r. In this way, the tangent bundle GV × V

is extended to a vector bundle GV ×W which we denote the multi-scale kernel
bundle. The space W inherits the vector space structure from each Vr , and it
is a pre-Hilbert space with norm ‖w‖2W =

∫

IW
‖wr‖

2
Vr
dr. Using the norm, we

define the energy EW
1 of paths in W by EW

1 (wt) =
∫ 1

0 ‖ws‖
2
Wds.

With appropriate conditions on Vr and the norms ‖ · ‖Vr
, W is a Hilbert

space and, by possibly restricting to a subspace, we can pass from W to V using
the map Ψ : W → V defined by integration Ψ(w) =

∫

IW
wrdr for elements

w = {wr}r ∈ W . Since we as usual have a connection between paths in V and
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(a) In standard LDDMM, a path on
the manifold Diff(Ω) is generated
by integrating the time varying vec-
tor field vt in the tangent space V .

(b) A path wt in the vector space W , here
constructed from Vr1 , Vr2 , and Vr3 , sum
through the map Ψ to a vector field Ψ(wt),
which in turn generates a path on Diff(Ω).

Fig. 2. The manifold view of standard LDDMM and LDDKBM.

paths on the manifold GV , we get using Ψ a similar relation between paths
wt = {wr,t}r in W and paths in GV by

wt 7→ ϕ
Ψ(w)
0t , (4)

i.e. ϕ
Ψ(w)
0t is the path starting at IdΩ with derivative ∂tϕ

Ψ(w)
0t = Ψ(wt) ◦ ϕ

Ψ(w)
0t .

The path energy EW
1 gives a regularization measure on diffeomorphisms

EW
1 (ϕ) = min

wt∈W,ϕ
Ψ(w)
01 =ϕ

∫ 1

0

‖ws‖
2
W ds (5)

which, together with a quality of match measure U(ϕ), allows a reformulation
of the registration problem as the search for a diffeomorphism minimizing

EW (ϕ) = EW
1 (ϕ) + λU(ϕ) . (6)

The above formulation should be compared with the standard LDDMM formu-
lation (1) using the regularization (2). It is immediately clear that the proposed
method is an extension of standard LDDMM, since the original regularization
is the special case with only one scale and hence W = V .

We note that the parameter space IW can be a compact interval or finite set
of scalars in which case the integral reduces to just a sum. Often, it will be an
interval specifying a scale range, and a practical implementation will discretize
the interval into a finite set of scalars.
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3.1 Evolution Equations

Many of the properties of standard LDDMM are retained in the LDDKBM con-
struction. Importantly, the evolution equations for solutions of the registration
problem take on a form very similar to the EPDiff equations; if Ψ(wt) is the
derivative of the path of diffeomorphisms ϕt minimizing (5) with ϕ = ϕ1 mini-
mizing (6) then

wr,t =

∫

Ω

Kr(·, x)ar,t(x)dx ,

d

dt
ar,t =

∫

IW

−Dar,tws,t − ar,t∇ · ws,t − (Dws,t)
T ar,tds .

(7)

with ar,t being the momentum for the part wr of w. In essence, we just integrate
the standard EPDiff equations over the parameter space IW to obtain the evo-
lution of the momentum at each scale. The system implies that the momentum
conservation property holds with the kernel bundle construction.

An important difference from the standard framework relates to the energy
along optimal paths. The relation to geodesics in standard LDDMM suggests
that the norm ‖vt‖V is constant in t when vt is optimal for E1(ϕ). This is in fact
the case for standard LDDMM. For LDDKBM, momentum is conserved along
optimal paths of EW

1 (ϕ) though ‖wt‖W is not constant. This occurs because the
new energy is not directly related to a metric in the Riemannian sense.

3.2 Scale Decoupling and Relation to other Approaches

The energy EW
1 measures the contribution of each scale independently, and the

total energy is the sum of the energy at each scale. Because of this, the momen-
tum components can vary over scale, and the method may use any combination
of small and large scale features at each spatial location to obtain the best match
with least energy at each scale.

In contrast to this, the simultaneous coarse and fine method developed by
Risser et al. in [12] builds a kernel by summing Gaussians of different scale. This
effectively changes only the shape of the kernel and does not allow different mo-
mentum at different scales. Therefore, the method works simultaneously in the
sense that no decoupling between scales is present, whereas the method proposed
here exactly aims at decoupling the scales. The decoupling will be clear in the
experiments and we believe it is desirable for several reasons. We expect better
matches because movement at one scale does not imply undesired movement at
all other scales. This will also allow sparsity to enter the representation: since
movement is represented only at the right scale, the momentum components at
all unrelated scales can be zero. Though we currently do not directly enforce
sparsity, we will see this effect visually in the experiments. Last, doing statistics
on the momentum as proposed in [15] will result in information at each scale
because of the decoupling. With the simultaneous coarse and fine method, no
scale-specific momentum is available.
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3.3 Implementation

As for standard LDDMM, the choice of algorithm for optimizing (6) depends
very much on the objects to be matched. For the experiments in this paper,
we will match landmarks to which the shooting method of [15] applies. The
algorithm does a second order optimization while integrating along critical paths
specified by the system (3). We implement a much similar algorithm for the
finite dimensional landmark version of the system (7). Because the energy along
optimal paths is not constant, the energy must be integrated over the point
and velocity trajectories and this rules out the most simple 2nd-order schemes.
Therefore, at this point, we use a gradient descent algorithm but we are in the
process of developing both 2nd-order and fast 1st-order algorithms.

4 Experiments

We perform experiments on the publicly available DIR [3] dataset of lung CT
images and manually annotated landmarks. The dataset consists of five cases of
CT images for different stages of the inhale and exhale phases and annotated
landmarks for the maximum inhale and exhale phases, respectively. The images
and landmarks are available on grids with voxel size varying slightly between the
cases but close to 1× 1× 2.5mm. Further details can be found in the reference.

For each case, the 300 publicly available landmarks, xI
1, . . . , x

I
300 for the max-

imum inhale phases and xE
1 , . . . , x

E
300 for the maximum exhale phase, correspond

pairwise. We will drive the registration using these landmarks and not incorpo-
rate image information at this point. We measure the fiducial registration error
(FRE) of each computed registration. Since a small FRE indicates a good match
on the registered landmarks only, we need an additional way of comparing the
quality of the diffeomorphism. We do this by computing the match on random
subsets of the landmarks and compute the target registration error (TRE) on
the landmarks not included in the match. Choosing kernel scale based on this
evaluation is akin to performing cross-validation tuning in machine learning.

4.1 Setup and results

We choose random subsets of 75 landmarks to drive the registration. For each
such choice of subset S and each of the five patient cases, we compute the FRE
(
∑

j∈S ‖ϕ(xI
j ) − xE

j ‖
2)1/2 and the TRE (

∑

j 6∈S ‖ϕ(xI
j ) − xE

j ‖
2)1/2. We find the

relative size of these measures against the respective values before the match, and
average over the patients and different choices of subsets. This setup is performed
for standard LDDMM with Gaussian kernels with scale ranging between 10 and
170 voxels and with LDDKBM with five scales in the same range. For both
methods, we let λ = 8 for the energy weight in (1) and (6), and, for the kernel
bundle, we let each scale contribute with equal weight. The theoretical influence
of these weights remains to be explored, though, from a practical point of view,
we have tried different values without significant effects on the results.
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Fig. 3. (a) Average relative FRE and TRE for different kernel scales (standard LD-
DMM) and LDDKBM (horizontal line and rightmost). Values of 0 indicate perfect
matches and 1 indicates no reduction in error compared to before the match. Labels on
the horizontal axis are kernel scale in voxels (9 different scales for standard LDDMM
and the interval [10 170] discretized in five scales for LDDKBM).
(b) FRE and TRE for standard LDDMM (scale in voxels on horizontal axis) subtracted
the respective errors for LDDKBM with interval the [10 170] discretized in five scales.
Positive values indicate superior performance of the proposed method. Error bars show
standard deviation of the results.

As the results in Figure 3(a) shows, the FRE increases with scale for stan-
dard LDDMM. The LDDKBM method produces an FRE of around half the
FRE for the smallest scale for standard LDDMM. Similarly, we see that the
TRE decreases with increasing scale up to a scale of 50 units after which it
starts increasing. This indicates that a kernel scale of 50 units will be appropri-
ate for standard LDDMM. As displayed in Figure 3(b), the LDDKBM method
attains an error well within one standard deviation of the best standard LD-
DMM result. Performing t-tests on the 5% significance level of the hypotheses
that the methods have equal mean results in a failure to reject the hypotheses for
the best standard LDDMM results, and thus we can only conclude a difference
between the methods for the scales where LDDKBM clearly outperform stan-
dard LDDMM. The LDDKBM method therefore automatically adapts to the
right scales. Furthermore, the results indicate that the same quality of match
can be reached with less data since we potentially could use the entire dataset to
drive the registration. Manual scale selection will allow only a part of the data
as input for the registration as the rest is needed to select the kernel scale.

To show the decoupling between scales, Figure 4 displays the L2-norm of
wt at t = 0 for three scales of LDDKBM and vt at t = 0 with the best scale
for standard LDDMM. The decoupling is apparent, and the expected sparsity is
visible in particular for the smallest scales were movement is very localised.
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(a) Slices of 3D lung image (b) LDDMM σ = 50

(c) LDDKBM σ = 10 (d) LDDKBM σ = 90 (e) LDDKBM σ = 170

Fig. 4. Slices of 3D lung image and initial vector fields generating registration. Upper
row, left to right: 3D image of lung to be registered, L2-norm of vector field vt generating
ϕ at t = 0 for scale 50 (LDDMM). Lower row, left to right: L2-norm of wt generating ϕ

at t = 0 for scales 10, 90, 170 (LDDKBM). Even for the best scale, standard LDDMM
is not localized with high energy to account for the warp across scales, while LDDKBM
use the appropriate scales localized and sparsely for the smallest scales.

5 Conclusion and Outlook

The multi-scale kernel bundle framework LDDKBM extends the LDDMM frame-
work by incorporating multiple kernels at multiple scales in the registration. The
method decouples scales and thereby allows the registration to act at the right
scales only. As shown in the experiments, the method removes the need for classi-
cal scale selection by automatically, without user intervention or cross-validation,
adapting to the right scales, and it thereby provides as good results as standard
LDDMM optimally tuned with respect to scale. The decoupling of scales and the
ability of the method to adapt at different scales are visualized and LDDKBM
promises to allow for sparse description of deformation and momentum based
statistics incorporating scale information.

The method opens up many directions for future work. Extending existing
LDDMM algorithms to LDDKBM with non-landmark data is clearly important,
and using the smoothness properties of different scales to speed up such algo-
rithms will be beneficial. We expect to make use of the improved representation
to compute sparse systems which will further improve computation efficiency and
statistical results. Enforcing sparsity through sparse priors will be an important
step for this.
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