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Standard Medical Image Analysis

Methodological / algorithmically axes
Registration 
Segmentation
Image Analysis/Quantification

Measures are geometric and noisy
Feature extracted from images
Registration = determine a transformations 
Diffusion tensor imaging

We need:
Statistiques
A stable computing framework 
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Historical examples of geometrical features

Transformations

• Rigid, Affine, locally affine, families of deformations

Geometric features

• Lines, oriented points…
• Extremal points: semi-oriented frames

How to deal with noise consistently on these features?
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MR Image Initial USRegistered US

Per-operative registration of MR/US images

Performance Evaluation: statistics on transformations
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Interpolation, filtering of tensor images

Raw Anisotropic smoothing

Computing on Manifold-valued images
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Modeling and Analysis of the Human Anatomy
Estimate representative / average organ anatomies
Model organ development across time
Establish normal variability
To detect and classify of pathologies from structural deviations
To adapt generic (atlas-based) to patients-specific models

Statistical analysis on (and of) manifolds

Computational Anatomy

Computational Anatomy, an emerging discipline, P. Thompson, M. Miller, NeuroImage special issue 2004
Mathematical Foundations of Computational Anatomy, X. Pennec and S. Joshi, MICCAI workshop, 2006



September 18, 2006 Mathematics and Image Analysis 2006 7

Overview

The geometric computational framework
(Geodesically complete) Riemannian manifolds

Statistical tools on pointwise features
Mean, Covariance, Parametric distributions / tests  
Application examples on rigid body transformations 

Manifold-valued images: Tensor Computing
Interpolation, filtering, diffusion PDEs
Diffusion tensor imaging

Metric choices for Computational Neuroanatomy
Morphometry of sulcal lines on the brain
Statistics of deformations for non-linear registration
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Riemannian Manifolds: geometrical tools

Riemannian metric :
Dot product on tangent space 
Speed, length of a curve
Distance and geodesics

Closed form for simple metrics/manifolds
Optimization for more complex 

Exponential chart (Normal coord. syst.) :
Development in tangent space along geodesics 
Geodesics = straight lines
Distance = Euclidean
Star shape domain limited by the cut-locus
Covers all the manifold if geodesically complete
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Computing on Riemannian manifolds

Riemannian manifoldEuclidean spaceOperation
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Statistical tools on Riemannian manifolds

Metric -> Volume form (measure) 

Probability density functions

Expectation of a function φ from M into R :

Definition :

Variance :

Information (neg. entropy):
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Statistical tools: Moments

Frechet / Karcher mean minimize the variance

Geodesic marching

Covariance et higher moments
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[ Pennec, JMIV06, RR-5093, NSIP’99 ]
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Distributions for parametric tests
Uniform density:

maximal entropy knowing X

Generalization of the Gaussian density:
Stochastic heat kernel p(x,y,t) [complex time dependency] 
Wrapped Gaussian [Infinite series difficult to compute]
Maximal entropy knowing the mean and the covariance

Mahalanobis D2 distance / test:

Any distribution:

Gaussian:
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September 18, 2006 Mathematics and Image Analysis 2006 16

Gaussian on the circle

Exponential chart:

Gaussian: truncated standard Gaussian

[. ; .]    rrrx ππθ −∈=

standard Gaussian
(Ricci curvature → 0)

uniform pdf with

(compact manifolds)

Dirac
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Validation of the error prediction

[ X. Pennec et al., Int. J. Comp. Vis. 25(3) 1997, MICCAI 1998 ]

Comparing two transformations 
and their Covariance matrix :

Mean: 6, Var: 12
KS test

2
621

2 ),( χμ ≈TT

Bias estimation: (chemical shift, susceptibility effects)
(not significantly different from the identity)
(significantly different from the identity)

Inter-echo with bias corrected:             , KS test OK62 ≈μ

Intra-echo:            , KS test OK62 ≈μ
Inter-echo:             , KS test failed, Bias !502 >μ

deg  06.0=rotσ
mm  2.0=transσ
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Liver puncture guidance using augmented reality
3D (CT) / 2D (Video) registration

2D-3D EM-ICP on fiducial markers
Certified accuracy in real time

Validation
Bronze standard (no gold-standard)
Phantom in the operating room (2 mm)
10 Patient (passive mode): < 5mm (apnea)

PhD S. Nicolau, MICCAI05, ECCV04, ISMAR04, IS4TM03, Comp. Anim. & Virtual World 2005, IEEE TMI (soumis) 

S. Nicolau, IRCAD / INRIAS. Nicolau, IRCAD / INRIA



September 18, 2006 Mathematics and Image Analysis 2006 24

Statistical Analysis of the Scoliotic Spine

Database
307 Scoliotic patients from the Montreal’s 
Sainte-Justine Hospital.
3D Geometry from multi-planar X-rays

Mean
Main translation variability is axial (growth?)
Main rotation var. around anterior-posterior axis 

PCA of the Covariance
4 first variation modes have clinical meaning

[ J. Boisvert, X. Pennec, N. Ayache, H. Labelle, F. Cheriet,, ISBI’06 ]
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Statistical Analysis of the Scoliotic Spine

• Mode 1: King’s class I or III

• Mode 2: King’s class I, II, III 

• Mode 3: King’s class IV + V

• Mode 4: King’s class V (+II)
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Diffusion tensor imaging

Very noisy data

Preprocessing steps
Filtering
Regularization
Robust estimation

Processing steps
Interpolation / extrapolation
Statistical comparisons

Can we generalize scalar methods?
DTI Tensor field (slice of a 3D volume)
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Tensor computing

Tensors = space of positive definite matrices
Linear convex combinations are stable (mean, interpolation)
More complex methods are not (null or negative eigenvalues)
(gradient descent, anisotropic filtering and diffusion)

Current methods for DTI regularization
Principle direction + eigenvalues [Poupon MICCAI 98, Coulon Media 04]
Iso-spectral + eigenvalues [Tschumperlé PhD 02, Chef d’Hotel JMIV04]
Choleski decomposition [Wang&Vemuri IPMI03, TMI04]
Still an active field…

Riemannian geometric approaches
Statistics [Pennec PhD96, JMIV98, NSIP99, IJCV04, Fletcher CVMIA04]
Space of Gaussian laws [Skovgaard84, Forstner99,Lenglet04]
Geometric means [Moakher SIAM JMAP04, Batchelor MRM05]
Several papers at ISBI’06
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Affine Invariant Metric on Tensors
Action of the Linear Group GLn

Invariant distance

Invariant metric

Usual scalar product at identity

Geodesics

Distance
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[ X Pennec, P.Fillard, N.Ayache, IJCV 66(1), Jan. 2006 / RR-5255, INRIA, 2004 ]
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Exponential and Logarithmic Maps
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Tensor interpolation

Coefficients Riemannian metric

Geodesic walking in 1D

∑ ΣΣ=Σ
Σ

2),(  )(min)( ii distxwxWeighted mean in general

)(exp)( 211
ΣΣ=Σ Σ tt
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Gaussian filtering: Gaussian weighted mean
∑
=

ΣΣ−=Σ
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ii distxxGx
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Raw Coefficients σ=2 Riemann σ=2
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PDE for filtering and diffusion

Harmonic regularization

Gradient = manifold Laplacian

Integration scheme = geodesic marching 

Anisotropic regularization
Perona-Malik 90 / Gerig 92 
Phi functions formalism
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Anisotropic filtering

Initial

Noisy
Recovered
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Anisotropic filtering

Raw Riemann Gaussian Riemann anisotropic

( ) )/exp()(   with   )(  )()( 22 κttwxxwx
u
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Log Euclidean Metric on Tensors

Exp/Log: global diffeomorphism Tensors/sym. matrices
Vector space structure carried from the tangent space to 
the manifold

Log. product

Log scalar product

Bi-invariant metric

Properties

Invariance by the action of similarity transformations only

Very simple algorithmic framework

( ) ( )( )2121 loglogexp Σ+Σ≡Σ⊗Σ

( )( ) ααα Σ=Σ≡Σ• logexp

( ) ( ) ( ) 2
21

2
21 loglog, Σ−Σ≡ΣΣdist

[ Arsigny, Fillard, Pennec, Ayache, MICCAI 2005, T1, p.115-122 ]
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Log Euclidean vs Affine invariant

Means are geometric (vs arithmetic for Euclidean)
Log Euclidean slightly more anisotropic
Speedup ratio: 7 (aniso. filtering) to >50 (interp.)

Euclidean Affine invariantLog-Euclidean
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Log Euclidean vs Affine invariant
Real DTI images: anisotropic filtering

Difference is not significant
Speedup of a factor 7 for Log-Euclidean 

Original Euclidean Log-Euclidean Diff. LE/affine (x100)
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Overview

The geometric computational framework

Statistical tools on pointwise features

Manifold-valued images: Tensor Computing
Interpolation, filtering, diffusion PDEs
Diffusion tensor imaging

Metric choices for Computational Neuroanatomy
Morphometry of sulcal lines on the brain
Statistics of deformations for non-linear registration
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Joint Estimation and regularization from DWI

ML Rician MAP RicianStandard

Estimated

tensors

FA

Clinical DTI of the spinal cord

[ Fillard, Arsigny, Pennec, Ayache, RR-5607, June 2005 ]
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Joint Estimation and regularization from DWI

Clinical DTI of the spinal cord: fiber tracking

MAP RicianStandard
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Impact on fibers tracking

Euclidean interpolation Riemannian interpolation + anisotropic filtering

From images to anatomy 
Classify fibers into tracts (anatomo-functional architecture)?
Compare fiber tracts between subjects? 
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Towards a Statistical Atlas of Cardiac Fiber Structure

Database
7 canine hearts from JHU
Anatomical MRI and DTI

Method
Normalization based on aMRIs
Log-Euclidean statistics of Tensors

Norm 
covariance

Eigenvalues
covariance 
(1st, 2nd, 3rd)

Eigenvectors 
orientation 
covariance 
(around 1st, 
2nd, 3rd)

[ J.M. Peyrat, M. Sermesant, H. Delingette, X. Pennec, C. Xu, E. McVeigh, 
N. Ayache, INRIA RR       , 2006, submitted to MICCAI’06 ]
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Computing on manifolds: a summary

The Riemannian metric easily gives
Intrinsic measure and probability density functions
Expectation of a function from M into R (variance, entropy)

Integral or sum in M: minimize an intrinsic functional
Fréchet / Karcher mean: minimize the variance
Filtering, convolution: weighted means
Gaussian distribution: maximize the conditional entropy

The exponential chart corrects for the curvature at the reference point
Gradient descent: geodesic walking
Covariance and higher order moments
Laplace Beltrami for free

Which metric for which problem?

[ Pennec, NSIP’99, JMIV 2006, Pennec et al, IJCV 66(1) 2006]
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Overview

The geometric computational framework

Statistical tools on pointwise features

Manifold-valued images: Tensor Computing

Metric choices for Computational Neuroanatomy
Morphometry of sulcal lines on the brain
Statistics of deformations for non-linear registration
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Hierarchy of anatomical manifolds
Landmarks [0D]: AC, PC (Talairach)
Curves [1D]: crest lines, sulcal lines
Surfaces [2D]: cortex, sulcal ribbons
Images [3D functions]: VBM
Transformations: rigid, multi-affine, diffeomorphisms [TBM]

Structural variability of the Cortex
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Morphometry of the Cortex from Sucal Lines

Covariance Tensors along Sylvius Fissure 

Currently:

80 instances of 72 sulci

About 1250 tensors

Computation of the mean sulci: Alternate minimization of global variance
Dynamic programming to match the mean to instances
Gradient descent to compute the mean curve position

Extraction of the covariance tensors

Collaborative work between Asclepios (INRIA) V. Arsigny, N. Ayache, P. Fillard, X. 
Pennec and LONI (UCLA) P. Thompson [Fillard et al IPMI05, LNCS 3565:27-38]
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Compressed Tensor Representation

Representative Tensors (250) Original Tensors (~ 1250)Reconstructed Tensors (1250) 
(Riemannian Interpolation)
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Extrapolation by Diffusion

Diffusion λ=0.01Original tensors Diffusion λ=∞
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Full Brain 
extrapolation of the 

variability
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Comparison with cortical surface variability

Consistent low variability in phylogenetical older areas 
(a) superior frontal gyrus

Consistent high variability in highly specialized and lateralized areas
(b) temporo-parietal cortex 

P. Thompson at al, HMIP, 2000
Average of 15 normal controls by non-

linear registration of surfaces

P. Fillard et al, IPMI 05
Extrapolation of our model estimated

from 98 subjects with 72 sulci.
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Quantitative Evaluation: Leave One Sulcus Out

Original tensors Leave one out  reconstructions

Sylvian Fissure

Superior Temporal

Inferior Temporal

• Remove data from one sulcus

• Reconstruct from extrapolation of 
others          
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Asymmetry Measures

w.r.t the mid-sagittal plane. w.r.t opposite (left-right) sulci

Primary sensorimotor areasBroca’s speech area and 
Wernicke’s language 
comprehension area

Lowest asymmetryGreatest asymmetry

22/1'2/1''2'

2
)..log(|),(

L
dist −−
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Metric choices for Computational Neuroanatomy
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Statistics of deformations for non-linear registration
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Statistics on the deformation field
• Objective: planning of conformal brain radiotherapy
• 30 patients, 2 to 5 time points (P-Y Bondiau, MD, CAL, Nice)

[ Commowick, et al, MICCAI 2005, T2, p. 927-931]

Robust

∑ Φ∇=
i iN xxDef )))((log(abs)( 1

∑ Σ=∑
i iN xx )))((log(abs)( 1
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Introducing deformation statistics into RUNA

1))(()( −∑+= xIdxD λ

Scalar statistical stiffness Tensor stat. stiffness (FA)Heuristic RUNA stiffness

RUNA [R. Stefanescu et al, Med. Image Analysis 8(3), 2004]
non linear-registration with non-stationary regularization
Scalar or tensor stiffness map
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Riemannian elasticity for Non-linear elastic regularization

Gradient descent

Regularization
Local deformation measure: Cauchy Green strain tensor
Id for local rotations, small for local contractions, Large for local expansions

St Venant Kirchoff elastic energy

)(Reg),Images(Sim)( Φ+Φ=ΦC )( 1 ttt C Φ∇−Φ=Φ + κ

Φ∇Φ∇=Σ .t

( ) ( ) ( )22 Tr
2

)(Tr Reg II −Σ+−Σ=Φ ∫
λμ

[ Pennec, et al, MICCAI 2005, LNCS 3750:943-950]

Problems
Elasticity is not symmetric
Statistics are not easy to include

Idea: Replace the Euclidean by 
the Log-Euclidean metric

Statistics on strain tensors
Mean, covariance, Mahalanobis computed in Log-space

Isotropic Riemannian Elasticity

( ) 222 )log(),(dist       )(Tr Σ=Σ→−Σ II LE

( ) ( )ΣΣ=Σ ,2d0,d

( ) ( ) ( )∫ −Σ−Σ=Φ − WWg T )log(Vect.Cov.)log(VectRe 1

( ) ( ) ( )22
2

iso )log(Tr)log(Tr gRe Σ+Σ=Φ ∫ λμ
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Conclusion : geometry and statistics
A Statistical computing framework on Riemannian manifolds 

Mean, Covariance, statistical tests…
Interpolation, diffusion, filtering…
Which metric for which problem?

Important applications in Medical Imaging
Medical Image Analysis

Evaluation of registration performances
Diffusion tensor imaging

Building models of living systems (spine, brain, heart…)

Noise models for real anatomical data
Physically grounded noise models for measurements
Anatomically acceptable families of deformation metrics
Spatial correlation between neighbors… and distant points
… and statistics to measure and validate that!
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Challenges of Computational Anatomy
Computing on manifolds

Parametric families of metrics (models of the Green’s function)
Topological changes
Evolution: growth, pathologies

Build models from multiple sources
Curves, surfaces [cortex, sulcal ribbons]
Volume variability [Voxel Based Morphometry, Riemannian elasticity]
Diffusion tensor imaging [fibers, tracts, atlas]

Compare and combine statistics on anatomical manifolds
Compare information from landmarks, courves, surfaces 
Validate methods and models by consensus
Integrative model (transformations ?)

Couple modeling and statistical learning
Statistical estimation of model’s parameters (anatomical + physiological)
Use models as a prior for inter-subject registration / segmentation  
Need large database and distributed processing/algorithms (GRIDS)
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MFCA-2006: International Workshop on Mathematical 
Foundations  of Computational Anatomy

Geometrical and Statistical Methods for Modelling Biological Shape Variability

October 1st, Copenhagen, in conjunction with MICCAI’06

Goal is to foster interactions between geometry and statistics in non-linear image 
and surface registration in the context of computational anatomy with a special 
emphasis on theoretical developments.

Chairs: Xavier Pennec (Asclepios, INRIA), Sarang Joshi (SCI, Univ Utah, USA)

Riemannian and group theoretical methods on non-linear transformation spaces
Advanced statistics on deformations and shapes
Metrics for computational anatomy
Geometry and statistics of surfaces

www.miccai2006.dk –> Workshops -> MFCA06

www-sop.inria.fr/asclepios/events/MFCA06/
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