Xavier Pennec

Asclepios team, INRIA Sophia-Antipolis – Mediterranee, France

With indebting contributions from: Pierre Fillard, Vincent Arsigny, Jean-Marc Peyrat, Thomas Yeo, Tom Vercauteren and others...

Diffusion analysis using a Riemannian Framework

MICCAI Diffusion MRI Tutorial New York, Sept. 6th 2008

Diffusion Tensor Imaging

Covariance of the Brownian motion of water -> Architecture of axonal fibers

Very noisy data

- Tensor image processing
 - Robust estimation
 - Filtering, regularization
 - Interpolation / extrapolation
- □ Information extraction (fibers)

Symmetric positive definite matrices

- Convex operations are stable
 - mean, interpolation
- □ More complex operations are not
 - PDEs, gradient descent...

Diffusion Tensor Filed (slice of a 3D volume)

The Tensor Space is not a Vector Space

Tensors = Space of positive definite matrices:

Matrices with null eigenvalues are reachable in a finite time

Null and negatives eigenvalues are not physical

Intrinsic computing on Manifold-valued images?

Riemannian geometric approaches

Shape spaces & directional statistics

□ [Kendall StatSci 89, Small 96, Dryden & Mardia 98]

Numerical integration of dynamical systems

□ [Helmke & Moore 1994, Hairer et al 2002]

□ Matrix Lie groups [Owren BIT 2000, Mahony JGO 2002]

Information Geometry (statistical manifolds)

- □ [Amari 1990 & 2000, Kass & Vos 1997]
- □ [Oller Annals Stat. 1995, Battacharya Annals Stat. 2003 & 2005]

Statistics for Computer vision

- Rigid body transformations [Pennec PhD96]
- □ General Riemannian manifolds [Pennec JMIV98, NSIP99, JMIV06]
- □ PGA for M-Reps [Fletcher IPMI03, TMI04]
- Planar curves [Klassen & Srivastava PAMI 2003]

Content

Introduction

An affine invariant Riemannian metric on tensors

Interpolating, filtering and smoothing tensor images

Log Euclidean and other metrics

A MAP estimate of tensor images with Rician noise

Non-linear Registration of DTI Images

Conclusion

The geometric framework: Riemannian Manifolds

Riemannian metric :

- Dot product on tangent space
- □ Speed, length of a curve
- Distance and geodesics
 - Closed form for simple metrics/manifolds
 - Optimization for more complex

Exponential map (Normal coord. syst.) :

- □ Geodesic shooting: $Exp_x(v) = \gamma_{(x,v)}(1)$
- □ Log: find vector to shoot right

Unfolding (Log_x), folding (Exp_x)

Operator	Euclidean space	Riemannian manifold
Subtraction	$\overrightarrow{xy} = y - x$	$\overrightarrow{xy} = Log_x(y)$
Addition	$y = x + \overrightarrow{xy}$	$y = Exp_x(\overrightarrow{xy})$
Distance	$\operatorname{dist}\left(x,y\right) = \left\ y-x\right\ $	$\operatorname{dist}(x, y) = \left\ \overrightarrow{xy} \right\ _{x}$
Gradient descent	$x_{t+\varepsilon} = x_t - \varepsilon \nabla C(x_t)$	$x_{t+\varepsilon} = Exp_{x_t}(-\varepsilon \nabla C(x_t))$

Affine Invariant Metrics on TensorsAction of the Linear Group GL
$$A * \Sigma = A.\Sigma.A^T$$
Invariant distance $dist(A * \Sigma_1, A * \Sigma_2) = dist(\Sigma_1, \Sigma_2)$ Invariant metric $\langle W_1 | W_2 \rangle_{\Sigma} \stackrel{def}{=} \langle \Sigma^{-1/2} * W_1, \Sigma^{-1/2} * W_2 \rangle_{Id}$ \Box All rotationally invariant scalar products at identity: $\langle W_1 | W_2 \rangle_{Id} \stackrel{def}{=} \operatorname{Tr}(W_1^T W_2) + \beta \operatorname{Tr}(W_1).\operatorname{Tr}(W_2) \quad (\beta > -1/n)$ \Box Geodesics $\exp_{\Sigma}(\widetilde{\Sigma \Psi}) = \Sigma^{1/2} \exp(\Sigma^{-1/2}.\widetilde{\Sigma \Psi}.\Sigma^{-1/2})\Sigma^{1/2}$ \Box Distance $dist(\Sigma, \Psi)^2 = \langle \widetilde{\Sigma \Psi} | \widetilde{\Sigma \Psi} \rangle_{\Sigma} = \left\| \log(\Sigma^{-1/2}.\Psi.\Sigma^{-1/2}) \right\|_{L_2}^2$

Linear vs. Riemannian Interpolation: walking along geodesics

X Pennec, P.Fillard, N.Ayache: Riemannian Tensor Computing, IJCV 66(1), Jan 2006 ⁸

Affine Invariant Metrics on Tensors

 $\left\|W\right\|_{\Sigma}^{2} = \operatorname{Tr}\left(W.\Sigma^{-1}W\Sigma^{-1}\right) + \beta \operatorname{Tr}\left(W\Sigma^{-1}\right)^{2} \quad (\beta > -1/n)$

Statistics on Riemannian spaces

- □ [Pennec, Fillard, Ayache, IJCV 66(1), Jan 2006 / INRIA RR-5255, 2004]
- D PGA on tensors [Fletcher & Joshi CVMIA04, SigPro 87(2) 2007]

Space of Gaussian distributions

- Fisher information metric [Burbea & Rao J. Multivar Anal 12 1982, Skovgaard Scand J. Stat 11 1984, Calvo & Oller Stat & Dec. 9 1991]
- DTI segmentation [Lenglet RR04 & JMIV 25(3) 2006]

Geometric means

- □ Covariance matrices in computer vision [Forstner TechReport 1999]
- □ Math. properties [Moakher SIAM J. Matrix Anal App 26(3) 2004]
- □ Geodesic Anisotropy [Batchelor MRM 53 2005]

Homogeneous Embedding

 \square β =-1/(n+1) [Lovric & Min-Oo, J. Multivar Anal 74(1), 2000]

First statistical tools: moments

Fréchet / Karcher mean:

□ Minimize the variance $\sigma^2(y) = E[\operatorname{dist}(y, \mathbf{x})^2] = \frac{1}{n} \sum_i \operatorname{dist}(y, x_i)^2$ □ Optimum: $E[\overrightarrow{\mathbf{x}\mathbf{x}}] = \frac{1}{n} \sum_i \overrightarrow{\mathbf{x}x_i} = 0$ [P(C) = 0]

Algorithm: Geodesic marching

$$\overline{\mathbf{x}}_{t+1} = \exp_{\overline{\mathbf{x}}_t}(v) \quad \text{avec} \quad v = \mathrm{E}\left[\overrightarrow{\mathbf{y}\mathbf{x}}\right] = \frac{1}{n} \sum_i \overrightarrow{\overline{\mathbf{x}}x_i}$$

Covariance and higher orders

$$\Sigma_{\mathbf{x}\mathbf{x}} = \mathbf{E}\left[\left(\overrightarrow{\overline{\mathbf{x}}\mathbf{x}}\right)\left(\left(\overrightarrow{\overline{\mathbf{x}}\mathbf{x}}\right)^{\mathrm{T}}\right)\right] = \frac{1}{n}\sum_{i}\overrightarrow{\overline{\mathbf{x}}z}.\overrightarrow{\overline{\mathbf{x}}x_{i}}^{\mathrm{T}}$$

[Pennec, NSIP'99, JMIV06]

[Oller et Corcuera, AnnIs Stat 1995]

A Statistical Atlas of the Cardiac Fiber Structure

[J.M. Peyrat, et al., MICCAI'06, TMI 26(11), 2007]

Database

- □ 7 canine hearts from JHU
- Anatomical MRI and DTI

Method

- Normalization based on aMRIs
- Log-Euclidean statistics of Tensors

Norm covariance

Eigenvalues covariance (1st, 2nd, 3rd)

Eigenvectors orientation covariance (around 1st, 2nd, 3rd)

Content

Introduction

An affine invariant Riemannian metric on tensors

Interpolating, filtering and smoothing tensor images

Log Euclidean and other metrics

A MAP estimate of tensor images with Rician noise

Non-linear Registration of DTI Images

Conclusion

Tensor interpolation

 $\Sigma(t) = \exp_{\Sigma_1}(t \overrightarrow{\Sigma_1 \Sigma_2})$

 $\Sigma(x) = \min_{\Sigma} \sum w_i(x) \, dist(\Sigma, \Sigma_i)^2$

Geodesic walking in 1D

Weighted mean in general

Gaussian filtering: Gaussian weighted mean $\Sigma(x) = \arg\min_{\Sigma} \sum_{i=1}^{n} G_{\sigma}(x - x_{i}) \ dist(\Sigma, \Sigma_{i})^{2}$

16

PDE for filtering and diffusion

Harmonic regularization

$$C(\Sigma) = \int_{\Omega} \left\| \nabla \Sigma(x) \right\|_{\Sigma(x)}^2 dx$$

Gradient: manifold Laplacian

$$\Delta \Sigma(x) = \sum_{i} \partial_{i}^{2} \Sigma - \sum_{i} (\partial_{i} \Sigma) \Sigma^{(-1)} (\partial_{i} \Sigma)$$

 Intrinsic numerical scheme thanks to exponential chart

$$\Delta \Sigma(x) = \sum_{u} \frac{\overline{\Sigma(x)\Sigma(x+u)}}{\|u\|^2} + O(\|u\|^2)$$

□ Integration with geodesic marching $\Sigma_{t+1}(x) = \exp_{\Sigma_t(x)} \left(-\varepsilon \nabla C(\Sigma)(x)\right)$

Anisotropic regularization

- □ [Perona-Malik 90 / Gerig 92]
- □ Phi functions formalism [Deriche / Faugeras 1996]

Isotropic vs. Anisotropic Diffusion

$$C(\Sigma) = \int \left\| \nabla \Sigma(x) \right\|_{\Sigma}^2 dx$$

$$C(\Sigma) = \int \phi \left(\left\| \nabla \Sigma(x) \right\|_{\Sigma} \right) dx$$
$$\phi(x) = \exp(-x^2 / \kappa^2)$$

Isotropic

Anisotropic

Anisotropic Diffusion Euclidean vs Riemannian

Extrapolation by Diffusion (Restoration)

$$C(\Sigma) = \frac{1}{2} \int_{\Omega} \sum_{i=1}^{n} G_{\sigma}(x - x_{i}) dist(\Sigma(x), \Sigma_{i})^{2} dx + \frac{\lambda}{2} \int_{\Omega} \left\| \nabla \Sigma(x) \right\|_{\Sigma(x)}^{2}$$

$$\nabla C(\Sigma)(x) = -\sum_{i=1}^{n} G_{\sigma}(x - x_{i}) \overline{\Sigma(x)\Sigma_{i}} - \lambda(\Delta \Sigma)(x)$$

Content

Introduction

An affine invariant Riemannian metric on tensors

Interpolating, filtering and smoothing tensor images

Log Euclidean and other metrics

A MAP estimate of tensor images with Rician noise

Non-linear Registration of DTI Images

Conclusion

Log Euclidean Metric on Tensors

Exp/Log: global diffeomorphism Tensors/sym. matrices

- Vector space structure carried from the tangent space to the manifold
 - Log. product
 - Log scalar product
 - Bi-invariant metric

Properties

- $\Sigma_1 \otimes \Sigma_2 \equiv \exp(\log(\Sigma_1) + \log(\Sigma_2))$ $\alpha \bullet \Sigma \equiv \exp(\alpha \log(\Sigma)) = \Sigma^{\alpha}$
- $dist(\Sigma_1, \Sigma_2)^2 \equiv \left\| \log(\Sigma_1) \log(\Sigma_2) \right\|^2$
- Invariance by the action of similarity transformations only
- Very simple algorithmic framework

Log Euclidean vs Affine invariant

- □ Both means are geometric (vs arithmetic for Euclidean)
- □ Log Euclidean slightly more anisotropic
- □ Speedup ratio: 7 (aniso. filtering) to >50 (interp.)

Euclidean Af**tig**eEiuovlædiæemt [Arsigny, Fillard, Pennec, Ayache, MICCAI 2005, MRM'06]

Log Euclidean vs Affine invariant

Real DTI images: anisotropic filtering

- □ Both means are geometric (vs arithmetic for Euclidean)
- Log Euclidean slightly more anisotropic but the difference is not significant
- □ Speedup ratio: 7 (aniso. filtering) to >50 (interp.)

Original Euclidean Log-Euclidean Diff. LE/affine (x100) [Arsigny, Fillard, Pennec, Ayache, MICCAI 2005, MRM'06]

Comparison of Metrics

	Euclidean	Affine Invariant	Log- Euclidean
Null/Negative eigenvalues	Reachable	Unreachable!	Unreachable!
Invariance	Rotation	Affine transforms	Similarity
Swelling effect	Yes	No	No
Computation al burden	Low	Important	Low

A metric for all applications? Structure tensor (guide for diffusion) $\Sigma_{\sigma}(x) = G_{\sigma} * (\nabla I \nabla I^{t})$

A null eigenvalue is physically OK (perfect straight edge) **Need to change the metric?**

[Fillard, Arsigny, Ayache, Pennec, DSSCV'05]

Geodesic shooting in tensors spaces

Some references on other metrics

Log-Euclidean

□ [Arsigny, MICCAI 2005 & MRM 56(2), 2006]

Square root metrics

- □ Cholesky [Wang Vemuri et al, IPMI'03, TMI 23(8) 2004.]
- □ Size and shape space [Dryden, Koloydenko & Zhou, 2008]

Non Riemannian distances

- □ J-Divergence [Wang & Vemuri, TMI 24(10), 2005]
- □ Geodesic Loxodromes [Kindlmann et al. MICCAI 2007]

4th order tensors

□ [Gosh, Descoteau & Deriche MICCAI'08]

Content

Introduction

An affine invariant Riemannian metric on tensors

Interpolating, filtering and smoothing tensor images

Log Euclidean and other metrics

A MAP estimate of tensor images with Rician noise

Non-linear Registration of DTI Images

Conclusion

DTI Estimation from DWI

 $S_i = S_0 \exp\left(-bg_i^T Dg_i\right)$

Stejskal & Tanner diffusion equation

Diffusion Tensor Field

Baseline + at least 6 DWI

DTI Estimation from DWI

Maximum Likelihood Estimation

- □ ML with Log-Gaussian noise:
 - linear system on the log-Images
- ML with Gaussian noise on the MRIs:
 - non-linear optimization

Actual MRI Noise

- □ Gaussian on the complex signal
- □ Rician on the amplitude
- This leads to a bias for low SNRs [Sijbers, TMI 1998]

$$S_i = S_0 \exp\left(-b \mathbf{g}_i^T \Sigma \mathbf{g}_i\right) + Noise$$

$$\arg\min_{D}\sum_{i} \left(\log(S_{i}/S_{0}) + bg_{i}^{T}Dg_{i}\right)^{2}$$

$$\arg\min_{D}\sum_{i} \left(S_{i} - S_{0} \exp(-bg_{i}^{T}Dg_{i})\right)^{2}$$

$$\hat{S}_i = \sqrt{(S_i + N_1(0, \sigma))^2 + N_2(0, \sigma)^2}$$

$$E[\hat{S}_i] \approx E[S_i] + \frac{\sigma^2}{2S_i}$$

DTI Estimation: A Few References

Standard log-Gaussian estimation:

> [Westin et al., MedIA 2002]

Robust estimation on the log of the signal:

> [Tschumperlé et al., ISBI'04]

Robust estimation on the signal itself:

> [Chang et al., MRM'05]

Joint Estimation / Regularization from the complex DW signal:

> Anisotropic diffusion on Choleski factors [Wang & Vemuri, TMI'04]

Estimation with a Rician noise model:

- Smoothing DWI before estimation [Basu & Fletcher, MICCAI 2006]
- ML (MMSE) [Aja-Fernández, Alberola-López, Westin, TMI 2008]
- > MAP with log-Euclidean prior [Fillard et al., ISBI 2006, TMI 2007]

MAP Estimation with a Rician Noise Model

Minimize an energy functional:

$$E(L) = \underbrace{Sim(L)}_{+\lambda} \underbrace{Reg(L)}_{+\lambda}$$

Data fidelity Smoothing term term

Maximum Likelihood estimator for Rician noise:

$$Sim(L) = -\sum_{i=1}^{N} \log\left(p\left(\hat{S}_i / S_i\right)\right) \qquad p\left(\hat{S}_i / S_i\right) = \frac{\hat{S}_i}{\sigma^2} \exp\left(-\frac{\hat{S}_i^2 + S_i(L)^2}{2\sigma^2}\right) I_0\left(\frac{S_i(L)\hat{S}_i}{\sigma^2}\right)$$

Anisotropic Log-Euclidean spatial prior

 $Reg(L) = \int \Phi\left(\left\| \nabla \Sigma(x) \right\|_{\Sigma(x)}^2 \right) dx$

Gradient descent in Log-Euclidean space

[Fillard, Arsigny, Pennec, Ayache ISBI'06, TMI 26(11) 2007]

_ _ _

Standard estimation Standard + LE spatial Initial

Synthetic Data

Rician ML

Rician MAP

prior

Results on Clinical DTI of the Brain with 7 directions

[Fillard, Arsigny, Pennec, Ayache ISBI'06, TMI 26(11) 2007] ³⁷

Impact on Fiber Tracking

Clinical DTI of the spinal cord

FA Estimated tensors Standard ML Rician MAP Rician

[Fillard, Arsigny, Pennec, Ayache ISBI'06, TMI 26(11) 2007] ³⁹

Clinical DTI of the spinal cord: fiber tracking

Standard

MAP Rician

[Fillard, Arsigny, Pennec, Ayache ISBI'06, TMI 26(11) 2007]

Content

Introduction

An affine invariant Riemannian metric on tensors

Interpolating, filtering and smoothing tensor images

Log Euclidean and other metrics

A MAP estimate of tensor images with Rician noise

Non-linear Registration of DTI Images

Conclusion

DTI Registration Challenges

Similarity metric:

□ Tensor comparison (distance)

 $C(\phi) = \int dist^2 \left(\Sigma_1(x), (\phi * \Sigma_2)(x) \right)$

Deforming tensor images

- Tensor interpolation (resampling)
 - Local linear approximation using the Jacobian: $\phi(x+v) \approx \phi(x) + J(x).v$ with $J(x) = D\phi(x)$
 - Affine action: $J^*\Sigma = J.\Sigma.J^t$ does not preserve eigenvalues
- □ Tensor re-orientation [Alexander TMI 20(11) 2001]: $J^*\Sigma = R(J).\Sigma.R(J)^t$
 - Finite-Strain (FS): Clostest rotation $R(J) = (J. J^t)^{-\frac{1}{2}} J$
 - Preservation of Principal Directions (PPD)

References on Tensor registration

Image metric based on Transformation Invariant Features

□ No reorientation [Guimond 02, Leemans 05, Park 05, Ziyan'07]

Euclidean metric on the full tensor

Preservation of Principal Directions

- Elastic, PPD with approx grad (R(J) not differentiated) [Alexander and Gee CVIU 77(2), 2000]
- LDDMM with exact PPD differential [Cao et al MMBIA 2006]
- □ Finite-Strain
 - Parameters are locally affine transformation [Zhang et al. MedIA 10(5) 2006 & TMI 26(11) 2007]

DT-REFinD: Diffusion Tensor Registration with Exact Finite-Strain Differential

[Thomas Yeo, et al. DTI Registration with Exact Finite-Strain Differential. ISBI'08]

Tensor interpolation/metric

□ Euclidean and Log-Euclidean (Arsigny '06)

Tensor reorientation

□ Finite Strain with Exact Differential

Deformation model

- □ Iterated one parameter diffeomorphisms
- Diffeomorphic Demons [Vercauteren MICCAI'07]

Fast and accurate

- □ 15 minutes,128x128x60, Xeon 3.2GHz
- □ Better tensor alignment

Exact vs approximate FS gradient

* DTI data courtesy of Denis Ducreux, MD, Bicêtre Hospital, Paris, France

Some results

T1 + Activation map + fibers

Corpus callosum + cingulum

Corticospinal tract and thalamo cortical connections

Conclusion & Perspectives

The Riemannian computing framework

□ Integral or sum in M: minimize an intrinsic functional

- Fréchet / Karcher mean
- Filtering, convolution through weighted means
- □ The exponential chart is the basic tool
 - Gradient descent is geodesic walking
 - Intrinsic numerical scheme for Laplace Beltrami

Choice of the metric

- □ Log-Euclidean (faster than affine invariant) for tensors
- Cholesky or Procruste for rank deficient tensors?
- Design new metrics for HARDI and higher order tensors?

Conclusion & Perspectives

A consistent set of tools for

- Tensor Estimation
- Tensor Registration
- Statistical Atlas building

Computational anatomy challenges

Probing the information highways of the brain with DMRI
 From tensors / HARDI to fiber statistics?

Thank You!

Riemannian DT-MRI processing with MedINRIA: http://www.inria.fr/sophia/asclepios/software/MedINRIA.

Special thanks to Pierre Fillard for most of the illustrations!

Literature

- X. Pennec, P. Fillard, and Nicholas Ayache. A Riemannian Framework for Tensor Computing. Int. Journal of Computer Vision 66(1), January 2006. [Preprint as INRIA RR-5255, July 2004]
- V. Arsigny, P. Fillard, X. Pennec, and N. Ayache. Log-Euclidean Metrics for Fast and Simple Calculus on Diffusion Tensors. Magnetic Resonance in Medicine, 56(2):411-421, August 2006. PMID: 16788917.
- P. Fillard, V. Arsigny, X. Pennec, and N. Ayache. Clinical DT-MRI Estimation, Smoothing and Fiber Tracking with Log-Euclidean Metrics. IEEE Transactions on Medical Imaging, 26(11):1472-1482, November 2007. PMID: 18041263. [Preprint: INRIA Research Report RR-5607, June 2005 and ISBI 2006.]
- J.-M. Peyrat, M. Sermesant, X. Pennec, H. Delingette, C.Y. Xu, E. McVeigh, and N. Ayache. A Computational Framework for the Statistical Analysis of Cardiac Diffusion Tensors: Application to a Small Database of Canine Hearts. IEEE Transactions on Medical Imaging, 26(11):1500-1514, November 2007. PMID: 18041265.
- N. Toussaint, J.C. Souplet, and P. Fillard. MedINRIA: Medical Image Navigation and Research Tool by INRIA. In Proc. of MICCAI'07 Workshop on Interaction in medical image analysis and visualization, Brisbane, Australia, 2007.
- B.T. Th. Yeo, T. Vercauteren, P. Fillard, X. Pennec, P. Golland, N. Ayache, and O. Clatz.
 DTI Registration with Exact Finite-Strain Differential. In Proc. of the IEEE Int. Symp. on Biomed. Imaging (ISBI'08), Paris, France, May 2008. IEEE.