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Anatomy

Gall (1758-1828) : Phrenologie
Talairach (1911-2007) 

Antiquity 
• Animal models 
• Philossphical physiology

Renaissance:
• Dissection, surgery
• Descriptive anatomy

Vésale (1514-1564)
Paré (1509-1590)

1990-2000:
• Explosion of imaging 
• Computer atlases
• Brain decade

2007

Science that studies the structure and the relationship in 
space of different organs and tissues in living systems 

[Hachette Dictionary]

Revolution of observation means (1988-2007) :
� From dissection to in-vivo in-situ imaging

Galien (131-201)

1er cerebral atlas, Vesale, 1543

17-20e century:
• Anatomo-physiology
• Microscopy, histology

Visible Human Project, NLM, 1996-2000
Voxel-Man, U. Hambourg, 2001

Talairach & Tournoux, 1988

Sylvius (1614-1672)
Willis (1621-1675)

Paré, 1585
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The revolution of medical imaging

In vivo observation of living systems
� A large number of modalities to image 

anatomy and function
� Growing spatial resolution (molecules to whole body) 

� Multiple temporal scales

Non invasive observations 
� Emergence of large databases

� From  representative individual to population

Extract and structure information 
� 50 to 150 MB for a clinical MRI

� Computer analysis is necessary 

� From descriptive atlases to interactive and 
generative models (simulation)

� MNI 305 (1993), ICBM 152 (2001), Brain web (1999)
� Bone Morphing® (Fleute et al, 2001)

200  µm

Mouse colonMicro-vaissels

brain

850  µm
heart
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Algorithms to Model and Analyze the Anatomy
� Estimate representative organ anatomies across species, populations, diseases, aging, ages…
� Model organ development across time
� Establish normal variability

To understand and to model how life is functioning
� Classify pathologies from structural deviations (taxonomy)
� Integrate individual measures at the population level to relate anatomy and function

To detect, understand and correct dysfunctions
� From generic (atlas-based) to patients-specific models  
� Quantitative and objective measures for diagnosis
� Help therapy planning (before), control (during) and follow-up (after)

Computational Anatomy
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Modeling and image analysis: a virtuous loop

Normalization,
Interpretation,

Modeling

Identification
Personalization

AnatomyAnatomyAnatomyAnatomy
PhysicsPhysicsPhysicsPhysics
PhysiologyPhysiologyPhysiologyPhysiology

Images,
Signals,
Clinics,
Genetics,
etc.

Individual

Computational 
models of the 
human body

Population
Prevention

Diagnosis

Therapy

Computer 
assisted 
medicine

Generative 
models

Statistical 
analysis

Knowledge 
inference

Integrative models
for biology and 
neurosciences
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Methods of computational anatomy

Hierarchy of anatomical manifolds (structural model s) 
� Landmarks [0D]: AC, PC [Talairach et Tournoux, Bookstein], functional landmarks
� Curves [1D]: crest lines, sulcal lines [Mangin, Barillot, Fillard…]
� Surfaces [2D]: cortex, sulcal ribbons [Thompson, Mangin, Miller…], 
� Images [3D functions]: VBM, Diffusion imaging
� Transformations: rigid, multi-affine, local deformations (TBM), diffeomorphisms

[Asburner, Arsigny, Miller, Trouve, Younes…]

Groupwise correspondances in the population 

Model observations and its structural variability 

���� Statistical computing on Riemannian manifolds

Structural variability of the cortex
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Outline

Goals and methods of Computational anatomy

Statistical computing on manifolds
� The geometrical and statistical framework
� Examples with rigid body transformations and tensors

Morphometry of the Brain
� Statistics on curves to model the cortex variability 
� Local statistics on local deformations 
� Towards global statistics on (some) diffeomorphisms

Challenges of Computational Anatomy
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Exponential chart (Normal coord. syst.) :
� Development in tangent space along geodesics 

� Geodesics = straight lines

The geometric framework: Riemannian Manifolds
Riemannian metric :

� Dot product on tangent space 
� Speed, length of a curve

� Distance and geodesics
� Closed form for simple metrics/manifolds
� Optimization for more complex 

Gradient descent

Distance

Addition

Subtraction

Riemannian manifoldEuclidean spaceOperator
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Statistical computing on manifolds

First statistical tools
� Fréchet / Karcher mean: minimize variance

� Covariance Higher order moments in the exponential chart  

� Intrinsic vs. extrinsic [Oller & Corcuera 95, Battacharya & Patrangenaru 2002 ]

Distributions and tests : practical approximations

� Gaussian maximizes entropy knowing mean and covariance

� Mahalanobis distance follows a chi2 law

Intrinsic Riemannian computing
� Interpolation (bi- tri-linear), filtering (e.g. Gaussian): weighted means

� Harmonic / anisotropic regularization: Laplace-Beltrami 

� Trivial numerical scheme in the exponential chart

[ Pennec, NSIP’99, JMIV 25(1) 2006, Pennec et al, IJCV 66(1) 2006]
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Statistical Analysis of the Scoliotic Spine

Database
� 307 Scoliotic patients from the Montreal’s 

Sainte-Justine Hospital.
� 3D Geometry from multi-planar X-rays

Mean
� Main translation variability is axial (growth?)
� Main rotation var. around anterior-posterior axis 

PCA of the Covariance
� 4 first variation modes have clinical meaning

[ J. Boisvert et al., ISBI’06, to appear in IEEE TMI , 2007]
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Statistical Analysis of the Scoliotic Spine

• Mode 1: King’s class I or III

• Mode 2: King’s class I, II, III 

• Mode 3: King’s class IV + V

• Mode 4: King’s class V (+II)

[ J. Boisvert et al., ISBI’06, to appear in IEEE TMI , 2007]

X. Pennec Computational Anatomy 12

Liver puncture guidance using augmented reality
3D (CT) / 2D (Video) registration

� 2D-3D EM-ICP on fiducial markers

� Certified accuracy in real time

Validation
� Bronze standard (no gold-standard)

� Phantom in the operating room (2 mm)
� 10 Patient (passive mode): < 5mm (apnea)

[ S. Nicolau, PhD’04 MICCAI05, Comp. Anim. & Virtua l World 2005, MICCAI’07 ]

S. Nicolau, IRCAD / INRIAS. Nicolau, IRCAD / INRIA
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� Affine invariant metric (curved space – Hadamard)

� Geodesics

� Distance

� Log-Euclidean metric (vector space)

� Geodesics

� Distance

Metrics for Tensor computing

[ Arsigny, Pennec, Fillard, Ayache: Fast and Simple Calculus on Tensors in the 
Log-Euclidean Framework, MICCAI’05, SIMAX 29(1) 2007, MRM 52(6) 2006 ]
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[ Pennec, Fillard, Ayache: A Riemannian Framework for Tensor 
Computing, IJCV 66(1), 2006. ]

[Fletcher 2004, Moakher SIAM-X 2005, Lenglet, JMIV 2006]
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Filtering and anisotropic regularization of DTI
Raw Coefficients σσσσ=2

Riemann Gaussian σσσσ=2 Riemann anisotropic
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DTI-based Anatomical models

Diffusion tensor IRM
Covariance of the water Brownian motion

� Estimation, filtering, interpolation 

[ J.M. Peyrat et al, MICCAI’06,
To appear in TMI, 2008]

Atlas of the heart fibers
� 7 DTI of dogs hearts

� Fibers and sheets structure

� Fiber extraction: architecture of  
axons tracts

[Pennec et al, IJCV 66(1) 2006, 
Fillard et al, ISBI’06 and IEEE TMI, in press]
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MedINRIA
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Outline

Goals and methods of Computational anatomy

Statistical computing on manifolds
� The geometrical and statistical framework
� Examples with rigid body transformations and tensors

Morphometry of the Brain
� Statistics on curves to model the cortex variability 
� Local statistics on local deformations 
� Towards global statistics on (some) diffeomorphisms

Challenges of Computational Anatomy
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Morphometry of the Cortex from Sucal Lines

[ Fillard et al., IPMI 2005, Neuroimage 34(2), 2007, Extension later today!]

2/ Computation of the covariance 
tensor at each point of the mean

80 instances of 72 sulci
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1/ Mean curve: Alternated minimization of 
the variance on matches / position

3/ Extrapolation to the whole volume :
harmonic diffusion of tensors

Silvian fissure
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Comparison with a diffeomorphic approach

Difference between 
� Matching, then extrapolation

[Fillard, NeuroImage 34(2) 2007]

� Extrapolation of speed vectors 
and trajectory integration

Method
� Global space diffeomorphism 

parameterized by a finite number of point

� Distance between lines using currents
[J. Glaunès, M. Vaillant: IPMI 2005]

Advantages
� Generative model of deformations

� Retrieve the tangential 
deformation component.

[ S, Durrleman, X. Pennec, A. Trouvé, N. Ayache, MICC AI 2007 ]

Variability at each point

Global variability (2 PGA modes)
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Variability for what?

Several methods with different assumptions:
� Similar results at some locations, different results at other places
� Vary assumptions and discover truth by consensus

Learning / modeling phase (anatomy / neurosciences)
� Goal: analyze and understand the population variability
� Identify anatomical differences between populations

� Can be computationally intensive, 
� Relies on good quality observations and “mild pathologies”

Use in a clinical / medical workflow : Personalization of atlases
� Anatomical prior to compensate for incomplete /  noisy / abnormal 

(pathological) observations.
� How to use statistics as a regularizer in registration?
� Need robust methods, should be very fast (at least efficient)
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One example use of variability information:  
better constrain the atlas to subject registration

� Deform the atlas anatomy (without tumor) towards the patient one
� Segment the structures of interest in the patient image
� Minimize irradiation in areas at risk.

[ Commowick, et al, MICCAI 2005]
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Introducing local variability and pathologies  
in non-linear registration

� Non stationary regularization: anatomical prior on the deformability
� Non stationary image similarity / regularization tradeoff:

takes pathologies into account

[ Runa. Stefanescu et al, PPL 14(2), 2004 & Med. Im age Analysis 8(3), 2003]

Patient Stiffness field Atlas to patient With pathology

)(.))(,()( TETJIETE regsim λ+=
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Regularization in dense non-linear registration

Physically based regularizations

� Elastic [Bajcsy 89] 
� Fluid [Christensen TMI 97]

� Right-invariant distance [LDDMM, Beg IJCV 05]

Efficient regularization methods

� Gaussian filtering [Thirion Media 98, Modersitzki 2004]

� Isotropic but non stationary [Lester IPMI’99]

� Towards anisotropic non stationary regularization [Stefanescu MedIA 2004]

Observation: 

� No regularization model is more justified than others 

� Learning statistically the variability from a population
[Thompson 2000, Rueckert TMI 2003, Fillard IPMI 2005]
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Statistics on the deformation field
• Objective: planning of conformal brain radiotherapy (O. Commowick, Dosisoft)

• 30 patients, 2 to 5 time points (P-Y Bondiau, MD, CAL, Nice)

[ Commowick, et al, MICCAI 2005, T2, p. 927-931]

Robust
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Introducing deformation statistics into RUNA

Scalar statistical stiffness Tensor stat. stiffness (FA)Heuristic RUNA stiffness

[ Commowick, et al, MICCAI 2005, T2, p. 927-931]
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Riemannian elasticity : a well posed framework to introduce 
statistics in non-linear elastic regularization

Gradient descent

Including statistics in Regularization

� St Venant Kirchoff elastic energy
� Elasticity is not symmetric
� Statistics are not easy to include

� Idea: Replace the Euclidean by 
the Log-Euclidean metric

� Statistics on strain tensors: Mean, covariance, Mahalanobis computed in Log-space

Using Riemannian Elasticity as a metric (TBM)
� The mean provides an unbiased atlas

� Better constraining the deformation should give better results in TBM
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[ Pennec, et al, MICCAI 2005, LNCS 3750:943-950, MF CA’06]
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[ Natsha Lepore + Caroline Brun + Paul Thompson, Equipe Associee Brain Atlas with UCLA]
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Statistics on which deformations feature?
Local statistics on local deformation (mechanical p roperties)

� Gradient of transformation, strain tensor

� [Riemannian elasticity, TBM, N. Lepore + C. Brun]

Global statistics on displacement field or B-spline  parameters
� [Rueckert et al., TMI, 03], [Charpiat et al., ICCV’05],
� [P. Fillard, stats on sulcal lines] 

� Simple vector statistics, but inconsistency with group properties

Space of “initial momentum” [Quantity of motion inste ad of speed]
� [Vaillant et al., NeuroImage, 04]
� [Durrleman et al, MICCAI’07]

� Based on left-invariant metrics on diffeos [Trouvé, Younes et al.]

� Needs theoretically a finite number of point measures

� Computationally intensive

An alternative: log-Euclidean statistics on diffeom orphisms?

� [Bossa, MICCAI’07, Vercauteren MICCAI’07, Ashburner NeuroImage 2007]

� Mathematical problems but efficient numerical methods!
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Statistics on geometrical objects

A consistent statistical computing framework on Riemannian manif olds 
with important applications in

� Medical Image Analysis (registration evaluation, DTI)
� Building models of living systems (spine, brain, heart…)

Is the Riemannian metric the minimal structure?

� No bi-invariant metric but bi-invariant means on Lie groups [V. Arsigny] 
Change the Riemannian metric for the symmetric Cartan connection?

Infinite dimensional manifolds
� Curves and surfaces 
� Space of diffeomorphisms

How to chose or estimate the metric? 
� Invariance, reacheability of boundaries, learning the metric
� Families of anatomical deformation metrics (models of the Green’s function)

� Spatial correlation between neighbors… and distant points
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Challenges of Computational Anatomy

Build models from multiple sources
� Curves, surfaces [cortex, sulcal ribbons]

� Volume variability [Voxel/Tensor Based Morphometry, Riemannian elasticity]

� Diffusion tensor imaging [fibers, tracts, atlas] 

� Topological changes

� Evolution: growth, pathologies

Compare and combine statistics on anatomical manifolds
� Each method is biased by its assumptions (fewer data than unknowns) 

� Validate methods and models by consensus
� Integrative model (transformations ?)

Couple modeling and statistical learning
� Variability estimation / structure inference / model validation and refinement

� Use models as a prior for inter-subject registration / segmentation:
Validation by better statistics on populations (e.g. functional)

� Need large database and distributed processing/algorithms
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