

Statistics on geometrical objects			
A consistent s with important Medical I Building	tatistical computing framework on Riemannian applications in mage Analysis (registration evaluation, DTI) models of living systems (spine, brain, heart)	manifolds	
Is the Riemann Dobi-inv Change t	ian metric the minimal structure? ariant metric but bi-invariant means on Lie groups he Riemannian metric for the symmetric Cartan co	[V. Arsigny] onnection?	
Infinite dimens □ Curves a □ Space of	ional manifolds nd surfaces diffeomorphisms		
How to chose Invariance Families Spatial ce	or estimate the metric? e, reacheability of boundaries, learning the metric of anatomical deformation metrics (models of the Gree prrelation between neighbors and distant points	en's function)	
X. Pennec	Computational Anatomy	28	

1		
1		
1		
1		
1		
1		
1		
X B		0.4
X. Pennec	Computational Anatomy	31
1		