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Computational Anatomy

Science that studies the structure and the relationship in

A n at O | I | y space of different organs and tissues in living systems

[Hachette Dictionary]

Human Project, NLM, 1996-2000
Voxel-Man, U. Hambour 1

1er cerebral atlas, Vesale, 1543 Talairach & Tournoux, 1988

Paré, 1585

N 1990-2000:
Antiquity Renaissance: 17-20e century: « Explosion of imaging
* Animal models - Dissection, surgery * Anatomo-physiology « Computer atlases

« Philossphical physiology « Microscopy, histology « Brain decade

« Descriptive anatomy

Vésale (1514-1564)  Sylvius (1614-1672)  Gall (1758-1828) : Phrenologie
Paré (1509-1590) Willis (1621-1675)  Talairach (1911-2007)

Galien (131-201)

Revolution of observation means (1988-2007) :
o From dissection to in-vivo in-situ imaging
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The revolution of medical imaging

In vivo observation of living systems

o A large number of modalities to image

anatomy and function
« Growing spatial resolution (molecules to whole bodj
o Multiple temporal scales

Non invasive observations
o Emergence of large databases
o From representative individual to population

Extract and structure information
o 50 to 150 MB for a clinical MRI
o Computer analysis is necessary

o From descriptive atlases to interactive and

generative models (simulation)
o MNI 305 (1993), ICBM 152 (2001), Brain web (1999)
+ Bone Morphing® (Fleute et al, 2001)

Micro-vaissels

N
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Computational Anatomy

Algorithms to Model and Analyze the Anatomy
o Estimate representative organ anatomies across species, populations, diseases, aging, ages...
o Model organ development across time
o Establish normal variability

To understand and to model how life is functioning
o Classify pathologies from structural deviations (taxonomy)
o Integrate individual measures at the population level to relate anatomy and function

To detect, understand and correct dysfunctions
o From generic (atlas-based) to patients-specific models
o Quantitative and objective measures for diagnosis
o Help therapy planning (before), control (during) and follow-up (after)

I
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Modeling and image analysis: a virtuous loop

Integrative models Normalization,

for biology and Interpretation, Computer
neurosciences Modeling assisted
Statistical . .
analysis .\ Population Individual E
Computational | ... Images, | 7L Treventon
natomy Signals
Knowledge || models of the | Prysics CI?nics' —,| Diagnosis
inference ; ;
human body | Physiology Genetics: E—
Generative / etc.
models ‘ ’
Identification
Personalization
N e ———
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Methods of computational anatomy

Structural variability of the cortex

Hierarchy of anatomical manifolds (structural model s)

o Landmarks [0D]: AC, PC [Talairach et Tournoux, Bookstein], functional landmarks
Curves [1D]: crest lines, sulcal lines [Mangin, Barillot, Fillard...]
Surfaces [2D]: cortex, sulcal ribbons [Thompson, Mangin, Miller...],
Images [3D functions]: VBM, Diffusion imaging
Transformations: rigid, multi-affine, local deformations (TBM), diffeomorphisms
[Asburner, Arsigny, Miller, Trouve, Younes...]

o o o o

Groupwise correspondances in the population

Model observations and its structural variability

-> Statistical computing on Riemannian manifolds
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Outline

Goals and methods of Computational anatomy

Statistical computing on manifolds
o The geometrical and statistical framework
o Examples with rigid body transformations and tensors

Morphometry of the Brain
o Statistics on curves to model the cortex variability
o Local statistics on local deformations
o Towards global statistics on (some) diffeomorphisms

Challenges of Computational Anatomy

N B ]
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The geometric framework: Riemannian Manifolds

Riemannian metric :
o Dot product on tangent space
o Speed, length of a curve
o Distance and geodesics

o Closed form for simple metrics/manifolds
« Optimization for more complex

Exponential chart (Normal coord. syst.) :
o Development in tangent space along geodesics

o Geodesics = straight lines K
M

Unfolding (log ,), folding (exp ,) y
Operator Euclidean space Riemannian manifold
Subtraction g; =y—-x ;y =log (»)
Addition y=x+xy Y =exp, (xp)
Distance dist (x, ) = Hy - xH dist(x, y) = nyHx
Gradient descent X, =x,—410x) X, =exp, (-€0C(x))
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Statistical computing on manifolds

First statistical tools
o Fréchet / Karcher mean: minimize variance

o Covariance Higher order moments in the exponential chart
Intrinsic vs. extrinsic [Oller & Corcuera 95, Battacharya & Patrangenaru 2002 ]

a
Distributions and tests : practical approximations

o Gaussian maximizes entropy knowing mean and covariance
T)T‘F.(i_}‘/)/ 2) avee =X -IRic+0(0)+e(o/r)

N(y)=k. exp((xy

o Mahalanobis distance follows a chi2 law
)= I ~ i +0@)+e(olr)

Intrinsic Riemannian computing
o Interpolation (bi- tri-linear), filtering (e.g. Gaussian): weighted means

o Harmonic / anisotropic regularization: Laplace-Beltrami
-> Trivial numerical scheme in the exponential chart

[ Pennec, NSIP'99, IMIV 25(1) 2006, Pennec et al, IJCV 66(1) 2006]
e ———

N
Computational Anatomy

X. Pennec

Statistical Analysis of the Scoliotic Spine
[J. Boisvert et al., ISBI'06, to appear in IEEE TMI , 2007]
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Statistical Analysis of the Scoliotic Spine
[J. Boisvert et al., ISBI'06, to appear in IEEE TMI , 2007]

* Mode 1: King's class | or llI * Mode 3: King's class IV + V
* Mode 2: King's class |, II, Ill * Mode 4: King’s class V (+II)
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Liver puncture guidance using augmented reality

3D (CT) / 2D (Video) registration I
o 2D-3D EM-ICP on fiducial markers
o Certified accuracy in real time
Validation
o Bronze standard (no gold-standard)
o Phantom in the operating room (2 mm)
o 10 Patient (passive mode): < 5mm (apnea)

[ S. Nicolau, PhD’04 MICCAIO5, Comp. Anim. & Virtua | World 2005, MICCAI'07 ]
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Metrics for Tensor computing

o Affine invariant metric (curved space — Hadamard)
o Geodesics  exp, (ZW)=3"2expE 2 TPz )5

‘2
Ly

» Distance |disi(z, W)’ =(3W|3W) =[log W)
b3

[ Pennec, Fillard, Ayache: A Riemannian Framework for Tensor
Computing, IJCV 66(1), 2006. ]
[Fletcher 2004, Moakher SIAM-X 2005, Lenglet, JIMIV 2006]

o Log-Euclidean metric (vector space)
« Geodesics expz(ﬁj) =expﬁ’)

. Distance dist(=,.%, ) = log(z, ) - log(=. )]

[ Arsigny, Pennec, Fillard, Ayache: Fast and Simple Calculus on Tensors in the
Log-Euclidean Framework, MICCAI'05, SIMAX 29(1) 2007, MRM 52(6) 2006 ]
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Filtering and anisotropic regularization of DTI

Raw Coefficients g=2

Riemann Gaussian 0=2 Riemann anisotropic
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DTI-based Anatomical models

Atlas of the heart fibers
o 7 DTI of dogs hearts
o Fibers and sheets structure

Diffusion tensor IRM
Covariance of the water Brownian motion

o Estimation, filtering, interpolation

o Fiber extraction: architecture of
axons tracts

[Pennec et al, IJCV 66(1) 2006, [ J.M. Peyrat et al, MICCAI'06,
Fillard et al, ISBI'06 and IEEE TMI, in press] To appear in TMI 2008]
N
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Outline

Morphometry of the Brain
o Statistics on curves to model the cortex variability
o Local statistics on local deformations
o Towards global statistics on (some) diffeomorphisms
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Morphometry of the Cortex from Sucal Lines

1/ Mean curve: Alternated minimization of 3/ Extrapolation to the whole volume :
the variance on matches / position harmonic diffusion of tensors
: 1 . A 2
" cE) :EigGg(x—x‘)dzst(Z(x),Zl)zdx+5lHDZ -

80 instances of 72 sulci

Silvian fissure
#9000088005conimgm,

2/ Computation of the covariance
tensor at each point of the mean

[ Fillard et al., IPMI 2005, Neuroimage 34(2), 2007, Extension later today!]
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Comparison with a diffeomorphic approach

[ S, Durrleman, X. Pennec, A. Trouvé, N. Ayache, MICC Al 2007 ]

Difference between

« Matching, then extrapolation {”?%yﬂ
[Fillard, Neurolmage 34(2) 2007] f;m

« Extrapolation of speed vectors }\f&
and trajectory integration £
o

Method

o Global space diffeomorphism -
parameterized by a finite number of point

o Distance between lines using currents

[J. Glaunés, M. Vaillant: IPMI 2005] il
Advantages

o Generative model of deformations

o Retrieve the tangential

.23.0

17.2

1L

5.75

deformation component. Iu.ao

Global variability (2 PGA modes}
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Variability for what?

Several methods with different assumptions:
o Similar results at some locations, different results at other places
o Vary assumptions and discover truth by consensus

Learning / modeling phase (anatomy / neurosciences)
o Goal: analyze and understand the population variability
o ldentify anatomical differences between populations
« Can be computationally intensive,
« Relies on good quality observations and “mild pathologies”

Use in a clinical / medical workflow : Personalization of atlases
o Anatomical prior to compensate for incomplete / noisy / abnormal
(pathological) observations.
« How to use statistics as a regularizer in registration?
« Need robust methods, should be very fast (at least efficient)
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10



One example use of variability information:
better constrain the atlas to subject registration

o Deform the atlas anatomy (without tumor) towards the patient one
o Segment the structures of interest in the patient image
o Minimize irradiation in areas at risk.

[ Commowick, et al, MICCAI 2005]

N B
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Introducing local variability and pathologies
in non-linear registration

ET) = E,(LJD) + AE D)

o Non stationary regularization: anatomical prior on the deformability

o Non stationary image similarity / regularization tradeoff:
takes pathologies into account

Patient Stiffness field Atlas to patient ~ With pathology
[ Runa. Stefanescu et al, PPL 14(2), 2004 & Med. Im age Analysis 8(3), 2003]
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Regularization in dense non-linear registration

Physically based regularizations
o Elastic [Bajcsy 89]
o Fluid [Christensen TMI 97]
o Right-invariant distance [LDDMM, Beg 1JCV 05]

Efficient regularization methods

o Gaussian filtering [Thirion Media 98, Modersitzki 2004]
o Isotropic but non stationary [Lester IPMI'99]
o Towards anisotropic non stationary regularization [Stefanescu MedIA 2004]

Observation:

o No regularization model is more justified than others

o Learning statistically the variability from a population
[Thompson 2000, Rueckert TMI 2003, Fillard IPMI 2005]

X. Pennec

B ]
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Statistics on the deformation field

« Objective: planning of conformal brain radiotherapy (O. Commowick, Dosisoft)
« 30 patients, 2 to 5 time points (P-Y Bondiau, MD, CAL, Nice)

Deformations
(one field / database image)
D(x) = (Id +AX(x))"
il Y Def1 Robust
a se . .
Affine and elastic = Statistics Stiffness
3~ . T
registrations - Map
Image 1 i
Def N (Scalar or tensorial)

Image N Def (x) = 4. abs (log( [O®,(x)))

Y(x) =4 . abs(log(Z,(x)))

[ Commowick, et al, MICCAI 2005, T2, p. 927-931]

X. Pennec
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Introducing deformation statistics into RUNA

Heuristic RUNA stiffness ~ Scalar statistical stiffness Tensor stat. stiffness (FA)

[ Commowick, et al, MICCAI 2005, T2, p. 927-931]

EEENN——— EEE ———
X. Pennec Computational Anatomy 25
EEE ———

Riemannian elasticity : a well posed framework to introduce
statistics in non-linear elastic regularization

[ Pennec, et al, MICCAI 2005, LNCS 3750:943-950, MF CA'06]

Gradient descent C(®) =Sim(Images, @) + Reg(P)

Including statistics in Regularization

- % >
o StVenant Kirchoff elastic energy Reg(®) = I:UTT((Z - [)2)+§Tr(z ~1)
« Elasticity is not symmetric

« Statistics are not easy to include

o ldea: Replace the Euclidean by
the Log-Euclidean metric

>=00"0¢

Tr{(E-1y) ~  dist (5 1) =[log®)

o Statistics on strain tensors: Mean, covariance, Mahalanobis computed in Log-space

Reg(®)= I Vect(log(Z) - W)T Cov" .Vect(log(Z) - W)

Using Riemannian Elasticity as a metric (TBM)
o The mean provides an unbiased atlas
o Better constraining the deformation should give better results in TBM

[ Natsha Lepore + Caroline Brun + Paul Thompson, Equipe Associee Brain Atlas with UCLA]

——
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Statistics on which deformations feature?

Local statistics on local deformation (mechanical p roperties)
o Gradient of transformation, strain tensor
o [Riemannian elasticity, TBM, N. Lepore + C. Brun]

Global statistics on displacement field or B-spline parameters
o [Rueckert et al., TMI, 03], [Charpiat et al., ICCV’'05],
o [P. Fillard, stats on sulcal lines]
o Simple vector statistics, but inconsistency with group properties

Space of “initial momentum” [Quantity of motion inste ad of speed]
[Vaillant et al., Neurolmage, 04]

[Durrleman et al, MICCAI'07]

Based on left-invariant metrics on diffeos [Trouvé, Younes et al.]

Needs theoretically a finite number of point measures

Computationally intensive

O o o o o

An alternative: log-Euclidean statistics on diffeom orphisms?

o [Bossa, MICCAI'07, Vercauteren MICCAI'07, Ashburner Neurolmage 2007]
o Mathematical problems but efficient numerical methods!

EEENN——— EEE ———
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Statistics on geometrical objects

A consistent statistical computing framework on Riemannian manif olds
with important applications in

o Medical Image Analysis (registration evaluation, DTI)

o Building models of living systems (spine, brain, heart...)

Is the Riemannian metric the minimal structure?

o No bi-invariant metric but bi-invariant means on Lie groups [V. Arsigny]
Change the Riemannian metric for the symmetric Cartan connection?

Infinite dimensional manifolds
o Curves and surfaces
o Space of diffeomorphisms

How to chose or estimate the metric?
o Invariance, reacheability of boundaries, learning the metric
o Families of anatomical deformation metrics (models of the Green’s function)
o Spatial correlation between neighbors... and distant points
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Challenges of Computational Anatomy

Build models from multiple sources

Curves, surfaces [cortex, sulcal ribbons]

Volume variability [Voxel/Tensor Based Morphometry, Riemannian elasticity]
Diffusion tensor imaging [fibers, tracts, atlas]

Topological changes

Evolution: growth, pathologies

O o o o o

Compare and combine statistics on anatomical manifolds
o Each method is biased by its assumptions (fewer data than unknowns)
o Validate methods and models by consensus
o Integrative model (transformations ?)

Couple modeling and statistical learning

o Variability estimation / structure inference / model validation and refinement

o Use models as a prior for inter-subject registration / segmentation:
Validation by better statistics on populations (e.g. functional)

o Need large database and distributed processing/algorithms

EEENN——— EEE ———
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