Statistical Computing on Riemannian manifolds

Applications in Medical Image Analysis

X. Pennec

EPIDAURE Project 2004, route des Lucioles B.P. 93 06902 Sophia Antipolis Cedex (France)

3-D Medical Images

MRI

Nuclear images

X-Scan

Echography

Complementary Images

Anatomic

Echography

Functional

Medical Image analysis

To improve diagnosis

- quantitative and objective measures
- Image fusion and comparaison

To improve therapy

- □ planification (before)
- □ control (during)
- □ evaluation (after)

Medical Image Analysis

Measures are geometric and noisy

- □ Registration = determine a transformations
- Diffusion tensor imaging
- Feature extracted from images

We need:

- Statistics
- □ A stable computing framework

MR/US registration of per-operative images

Variability of a registration algorithm

Quantify the statistical Variability of the transformation:

- Mean value (bias)
- □ Covariance matrix, std dev. (accuracy, precision)
 - On the transformation (rotation σ_r [rad], translation σ_t [mm])
 - Propagate on target points (TRE σ_x)

Diffusion Tensor Imaging: 3D Fields of Symmetric positive definite matrices

DTI Tensor field (slice of a 3D volume)

Tensor computing in DTI

Very noisy data

Preprocessing steps

- Filtering
- Regularization
- Robust estimation

Processing steps

- Interpolation / extrapolation
- Statistical comparisons

Can we generalize scalar methods?

- □ Linear convex combinations are stable (mean, interpolation)
- More complex methods are not (null or negative eigenvalues)
 - Linear estimation of the tensor field from images
 - Gradient descent
 - Anisotropic filtering and diffusion

Example of geometrical objects

Geometric features

- Lines, oriented points, tensors
- Amino Acids: frames
- Extremal points: semi-oriented frames

Transformations

• Affine, projective... rigid 3D

Basic probabilities and statistics

Measure: random vector x of pdf $p_{x}(z)$

Approximation: $\mathbf{x} \sim (\overline{\mathbf{x}}, \, \mathbf{\Sigma}_{\mathbf{x}\mathbf{x}})$

• Mean: $\overline{\mathbf{x}} = \mathbf{E}(\mathbf{x}) = \int z.p_{\mathbf{x}}(z).dz$

• Covariance: $\Sigma_{\mathbf{x}\mathbf{x}} = \mathbf{E}[(\mathbf{x} - \overline{\mathbf{x}}).(\mathbf{x} - \overline{\mathbf{x}})^T]$

Propagation:

 $\mathbf{y} = h(\mathbf{x}) \sim \left(h(\overline{\mathbf{x}}), \frac{\partial h}{\partial \mathbf{x}} \cdot \boldsymbol{\Sigma}_{\mathbf{x}\mathbf{x}} \cdot \frac{\partial h}{\partial \mathbf{x}}^{\mathrm{T}} \right)$

Noise model: additive, Gaussian...

Statistical distance: Mahalanobis and χ^2

Some problems with geometric features

Mean of 3D rotations:

invariance w.r.t. the chart

$$\underline{\mathbf{R}} = \frac{1}{n} \sum_{i} \mathbf{R}_{i}$$

$$\underline{q} = \frac{1}{n} \sum_{i} q_{i}$$

$$\underline{r} = \frac{1}{n} \sum_{i} r_{i}$$

Noise on 3D rotations:

invariance w.r.t. the transformation group

$$\mathbf{\Sigma} = \boldsymbol{\sigma}^2 \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Overview

- → Statistics on Riemannian manifolds
 - ⇒ The Riemannian framework
 - Choice of the metric and invariance properties
- Registration performances
- Tensor computing
- Conclusion

Statistics on Riemannian Manifolds

Riemannian metric:

- Dot product on tangent space
- □ Speed, length of a curve
- □ Distance and geodesics (angle, great circles)

Exponential chart (Normal coord. syst.):

- Development in tangent space along geodesics
- □ Geodesics = straight lines
- Distance = Euclidean
- Star shape domain limited by the cut-locus
- Covers all the manifold if geodesically complete

Probabilities

Volume form

$$\langle w, v \rangle_{x} = w^{T}.Q(x).v \implies d\mathbf{M}(x) = \sqrt{|Q(x)|}.dx$$

Probility density functions

$$\forall X, P(x \in X) = \int_X p_x(y).d M(y)$$
 with $P(M) = 1$

Expectation of an observable $\phi: M \to R$

$$E[\phi(x)] = \int_{M} \phi(y) . p_{x}(y) . dM(y)$$

Variance w.r.t. a fixed primitive

$$\sigma_{\mathbf{x}}^{2}(y) = \mathbf{E}\left[\operatorname{dist}(y,\underline{\mathbf{x}})^{2}\right] = \int_{\mathbf{M}} \operatorname{dist}(y,z)^{2}.p_{\mathbf{x}}(z).d\mathbf{M}(z)$$

Probabilities

Metric -> Volume forme (measure) dM(x)

Probility density functions
$$\forall X, P(x \in X) = \int_X p_x(y).d M(y)$$

Expectation of a function ϕ from M into R:

□ Definition :
$$E[\phi(x)] = \int_{M} \phi(y) . p_x(y) . dM(y)$$

□ Variance:
$$\sigma_{\mathbf{x}}^2(y) = E[\operatorname{dist}(y,\underline{\mathbf{x}})^2] = \int_{M} \operatorname{dist}(y,z)^2 . p_{\mathbf{x}}(z) . d\mathbf{M}(z)$$

□ Information :
$$I[x] = E[log(p_x(x))]$$

Fréchet expectation (1944)

Minimizing the variance

$$\mathsf{E}[\mathbf{x}] = \underset{y \in \mathbf{M}}{\operatorname{argmin}} \left(\mathsf{E} \left[\operatorname{dist}(y, \mathbf{x})^2 \right] \right)$$

Existence and uniqueness : Karcher and Kendall

Characterization as an exponential barycenter (P(C)=0)

$$\operatorname{grad}(\sigma_{\mathbf{x}}^{2}(y)) = 0 \implies \operatorname{E}\left[\overrightarrow{\overline{\mathbf{x}}}\overrightarrow{\mathbf{x}}\right] = \int_{\mathbf{M}} \overrightarrow{\overline{\mathbf{x}}} \mathbf{x}.p_{\mathbf{x}}(z).d\mathbf{M}(z) = 0$$

The case of points: classical expectation $\bar{x} \in E[x] \Rightarrow E[-\bar{x}+x]=0$

Other central primitives

$$\mathsf{E}^{\alpha}[\mathbf{x}] = \underset{v \in \mathsf{M}}{\operatorname{argmin}} \left(\mathsf{E} \left[\mathsf{dist}(y, \mathbf{x})^{\alpha} \right] \right)^{1/\alpha}$$

[Pennec, INRIA Research Report RR-5093]

A gradient descent (Gauss-Newton) algorithm

Vector space

$$f(x+v) = f(x) + \nabla f^{T} \cdot v + \frac{1}{2} v^{T} \cdot H_{f} \cdot v$$

$$x_{t+1} = x_t + v$$
 with $v = -H_f^{(-1)} \cdot \nabla f$

Manifold

$$f(\exp_x(v)) = f(x) + \nabla f(v) + \frac{1}{2}H_f(v, v)$$

$$\nabla (\sigma_{\mathbf{x}}^{2}(\mathbf{y})) = -2 \operatorname{E} \left[\overrightarrow{\mathbf{y}} \mathbf{x}\right] = \frac{-2}{n} \sum_{i} \overrightarrow{\mathbf{y}} \mathbf{x}_{i}$$

$$H_{\sigma_{\mathbf{x}}^{2}} \approx 2Id$$

Geodesic marching

$$\overline{\mathbf{x}}_{t+1} = \exp_{\overline{\mathbf{x}}_t}(v) \quad \text{with} \quad v = \mathbf{E} \left[\overrightarrow{\mathbf{y}} \mathbf{x} \right]$$

Covariance matrix

$$\Sigma_{\mathbf{x}\mathbf{x}} = \mathbf{E} \left[\left(\overrightarrow{\overline{\mathbf{x}}} \mathbf{x} \right) \left(\overrightarrow{\overline{\mathbf{x}}} \mathbf{x} \right)^{\mathsf{T}} \right] = \int_{\mathbf{M}} \left(\overrightarrow{\overline{\mathbf{x}}} z \right) \left(\overrightarrow{\overline{\mathbf{x}}} z \right) \left(\overrightarrow{\overline{\mathbf{x}}} z \right)^{\mathsf{T}} . p_{\mathbf{x}}(z) . d\mathbf{M}(z) = 0$$

Uniform and Gaussian pdf

Practical approximation

$$\mathbf{x} \sim (\overline{\mathbf{x}}, \, \mathbf{\Sigma}_{\mathbf{x}\mathbf{x}})$$

Information of a pdf

$$I[\mathbf{x}] = E[\log(p_{\mathbf{x}}(\mathbf{x}))]$$

Uniform distribution

$$\min_{\mathbf{x}} \left(\mathbf{I}[\mathbf{x}] \mid \mathbf{x} \in X \right)$$

$$p_{\mathbf{x}}(z) = \operatorname{Ind}_{X}(z) / \operatorname{Vol}(X)$$

Gaussian distribution

$$\min_{\mathbf{x}} (\mathbf{I}[\mathbf{x}] \mid \mathbf{E}[\mathbf{x}] = \overline{\mathbf{x}}, \ \Sigma_{\mathbf{x}\mathbf{x}} = \Sigma)$$

$$N(y) = k \cdot \exp\left((\overline{\overline{\mathbf{x}}}\mathbf{x})^{\mathrm{T}} \cdot \Gamma \cdot (\overline{\overline{\mathbf{x}}}\mathbf{x})/2\right)$$

$$\Gamma = \Sigma^{(-1)} - \frac{1}{3}\operatorname{Ric} + O(\sigma) + \varepsilon(\sigma/r)$$

$$k = (2\pi)^{-n/2} \cdot \det(\Sigma)^{-1/2} \cdot (1 + O(\sigma^3) + \varepsilon(\sigma/r))$$

Some distributions

Uniform density:

 \Box maximal entropy knowing X

$$p_{\mathbf{x}}(z) = \operatorname{Ind}_{X}(z) / \operatorname{Vol}(X)$$

Gaussian density:

maximal entropy knowing the mean and the covariance

$$N(y) = k \cdot \exp\left(\left(\frac{\overrightarrow{x}}{x}\right)^{T} \cdot \Gamma \cdot \left(\frac{\overrightarrow{x}}{x}\right)/2\right)$$

$$F = \Sigma^{(-1)} - \frac{1}{3}\operatorname{Ric} + O(\sigma) + \varepsilon(\sigma/r)$$

$$k = (2\pi)^{-n/2} \cdot \det(\Sigma)^{-1/2} \cdot (1 + O(\sigma^{3}) + \varepsilon(\sigma/r))$$

Mahalanobis distance:

Any distribution:

Gaussian:

$$\mu_{\mathbf{x}}^{2}(\mathbf{y}) = \overrightarrow{\overline{\mathbf{x}}} \overrightarrow{\mathbf{y}}^{t} . \Sigma_{\mathbf{x}\mathbf{x}}^{(-1)} . \overrightarrow{\overline{\mathbf{x}}} \mathbf{y}$$

$$\mathrm{E}\big[\mu_{\mathbf{x}}^2(\mathbf{x})\big] = n$$

$$E[\mu_{\mathbf{x}}^{2}(\mathbf{x})] = \chi_{n}^{2} + O(\sigma^{3}) + \varepsilon \left(\frac{\sigma}{r}\right)$$

Gaussian on the circle

Exponential chart: $x = r\theta \in]-\pi .r; \pi .r[$

Gaussian: truncated standard Gaussian

 $r \rightarrow \infty$: standard Gaussian

 $\gamma \rightarrow 0$: uniform pdf with

$$\sigma^2 = (\pi r)^2 / 3$$

 $\gamma \rightarrow \infty$: Dirac

Metric choice on Transformation (Lie) Group

Metric choice: left invariant $dist(g, h) = dist(f \circ g, f \circ h)$

□ The principal chart (exp. chart at the origin) can be translated at any point : only one chart.

$$\operatorname{dist}(g,h) = \left\| \overrightarrow{f^{(-1)}} \circ \overrightarrow{g} \right\|$$

Practical computations
$$\overrightarrow{fg} = g - f$$
 \Leftrightarrow $\overrightarrow{fg} = f^{(-1)} \circ g$

$$f + \overrightarrow{\delta f} \iff \exp_{\vec{f}} \left(\overrightarrow{\delta f} \right) = f \circ \overrightarrow{\delta f}$$

 $\ \square$ Atomic operations $\left[\overrightarrow{f}\circ\overrightarrow{g}\right],\ \left[\overrightarrow{f^{(-1)}}\right]$ and their Jacobian

Metric choice on Homogeneous manifolds

Metric choice: invariant

$$dist(x, y) = dist(g * x, g * y)$$

□ Isotropy group of the origin: $H = \{h * o = o\}$

Existance condition:

$$dist(x, o) = dist(h * x, o)$$

□ Placement function:

$$f_x * o = x$$

Practical computations
$$\overrightarrow{xy} = y - x$$
 \Leftrightarrow $\overrightarrow{xy} = f_x^{(-1)} * \overrightarrow{y}$ $x + \overrightarrow{\delta x}$ \Leftrightarrow $\exp_x(\overrightarrow{\delta x}) = f_x * \overrightarrow{\delta x}$

$$\Box$$
 Atomic operations $[f*\vec{x}]$, $[f_x]$ and their Jacobian

A few properties of the pdfs

Invariant measure (Haar):

$$d M(f * x) = d M(x)$$

Action on a random feature

- The mean is equivariant
- □ The pdf is translated by

$$p_{(f*x)}(y) = p_{x}(f^{(-1)} * y)$$

$$p_{(z+x)}(y) = p_{x}(-z+y)$$

Composition of random transformations

- □ The mean is left-equivariant (but generally not right-equivarient)
- □ The pdf is an (asymetric) convolution product

$$p_{(\mathbf{f_1} \circ \mathbf{f_2})}(\mathbf{f}) = \int_{\mathbf{G}} p_{\mathbf{f_1}}(\mathbf{g}) . p_{\mathbf{f_2}}(\mathbf{g}^{(-1)} \circ \mathbf{f}) . d_L \mathbf{G}(\mathbf{g})$$

$$[p_{(\mathbf{x}+\mathbf{y})}(z) = (p_{\mathbf{x}} \otimes p_{\mathbf{y}})(z) = \int p_{\mathbf{x}}(t) . p_{\mathbf{y}}(z-t) . dt]$$

Example with 3D rotations

Principal chart: rotation vector: $r = \theta.n$

Distance: $dist(R_1, R_2) = ||r_1^{(-1)} \circ r_2||$

Frechet mean:

$$\overline{R} = \arg\min_{R \in SO_3} \left(\sum_{i} \operatorname{dist}(R, R_i) \right)$$

Centered chart:

mean = barycenter

Overview

✓ Statistics on Riemannian manifolds

⇒ Registration performances

- Error prediction for landmark-based registration
- Performance evaluation for iconic and surface and intensity-based methods
- Tensor computing
- Conclusion

Registration of Images

Goal = finding correspondences between homologous points (duality matches / transformation)

Feature space

- □ 0D: points, landmarks, frames
- □ 1D: curves
- □ 2D: surfaces
- □ 3D: volumes (i.e. intensity-based methods)

Transformation space

- □ Rigid, affine, locally affine, deformable
- □ Dimensionality reduction (e.g. 3D/2D)

Similarity metric (criterion), optimization scheme

Uncertainty of feature-based registration

Matches estimation

- Alignment
- Geometric hashing

Least square registration

$$C(T, \chi) = \sum_{i} ||y_{i} - T * x_{i}||^{2}$$

 Propagation of the errors from the data to the optimal transformation at the first order (implicit function theorem):

$$\Sigma_{\chi\chi} = \sigma^2 . Id \implies \Sigma_{TT} = \sigma^2 . H^{-1} \quad \text{with} \quad H = \frac{\partial^2 C(T, \chi)}{\partial T^2}$$

Registration of CT images of a dry skull

Typical object accuracy: 0.04 mm

Typical corner accuracy: 0.10 mm

550 matched frames among 2000

Registration of MR T1 images of the head

Typical object accuracy: 0.06 mm

860 matched frames among 3600

Typical corner accuracy: 0.125 mm

Validation of the accuracy evaluation

Brigham and Women's Multiple Sclerosis database

- □ 24 acquisitions 3D per patient on 1 year
- □ T2 weighted MR, 2 echo times, voxels 1 x 1 x 3 mm

Slice 38 of patient 1 accross time

Validation of the accuracy evaluation

Brigham and Women's Multiple Sclerosis database

- □ 24 acquisitions 3D per patient on 1 year
- □ T2 weighted MR, 2 echo times, voxels 1 x 1 x 3 mm

Predicted object accuracy: 0.06 mm.

Validation of the accuracy evaluation

Brigham and Women's Multiple Sclerosis database

- 24 acquisitions 3D per patient on 1 year
- □ T2 weighted MR, 2 echo times, voxels 1 x 1 x 3 mm

Visualization of the signal evolution: one image line across time

Without registration

After registration and intensity correction

Validation of the accuracy with double echoes

Comparing two transformations and their Covariance matrix :

$$\mu^2(T_1, T_2) \approx \chi_6^2$$

Mean: 6, Var: 12 KS test

Intra-echo: $\mu^2 \approx 6$, KS test OK

Inter-echo: $\mu^2 > 50$, KS test failed, Bias!

Bias esimation: (chemical shift, susceptibility effects)

- $\sigma_{rot} = 0.06 \, \deg$ (not significantly different from the identity)
- $\sigma_{trans} = 0.2 \text{ mm}$ (significantly different from the identity)

Inter-echo with bias corrected: $\mu^2 \approx 6$, KS test OK

[X. Pennec et al., Int. J. Comp. Vis. 25(3) 1997, MICCAI 1998]

Overview

- ✓ Statistics on Riemannian manifolds
- **⇒** Registration performances
 - ✓ Error prediction for landmark-based registration
 - ⇒ A posteriori consistency evaluation
- Tensor computing
- o Conclusion

Roboscope: per-operative MR/US registration

Registration of MR/US images

Multiple a posteriori registration

Best explanation of the observations (ML):

$$C = \sum_{ij} d^2(T_{ij}, \hat{T}_{ij})$$

- LSQ criterion
- □ Robust Fréchet mean

$$d^{2}(T_{1}, T_{2}) = \min(\mu^{2}(T_{1}, T_{2}), \chi^{2})$$

Robust initialisation and Newton gradient descent

Result

$$T_{i,j}, \sigma_{rot}, \sigma_{trans}$$

Results on the phantom dataset

Data (varying balloons volumes)

- □ 8 MR (0.9 x 0.9 x 1.0 mm)
- □ 8 US (0.4 x 0.4 x 0.4 mm)
- □ 54 loops

Robustness and repeatability

	Success	var rot (deg)	var trans (mm)
MI	39%	0.40	0.27
CR	52%	0.43	0.25
BCR	76%	0.14	0.09

Consistency of BCR

	var rot (deg)	var trans (mm)	var test (mm)
Multiple MR	0.06	0.1	0.13
Multiple US	0.60	0.4	0.71
Loop	1.62	1.43	2.07
MR/US	1.06	0.97	1.37

Results on per-operative patient images

Data (per-operative US)

- □ 2 pre-op MR (0.9 x 0.9 x 1.1 mm)
- □ 3 per-op US (0.63 and 0.95 mm)
- □ 3 loops

Robustness and precision

	Success	var rot (deg)	var trans (mm)
MI	29%	0.53	0.25
CR	90%	0.45	0.17
BCR	85%	0.39	0.11

Consistency of BCR

	var rot (deg)	var trans (mm)	var test (mm)
Multiple MR	0.06	0.06	0.10
Loop	2.22	0.82	2.33
MR/US	1.57	0.58	1.65

Overview

- ✓ Statistics on Riemannian manifolds
- √ Registration performance
- **⇒** Tensor computing
 - ⇒ Interpolation, filtering, diffusion
 - Morphometry of sulcal lines on the brain
- Conclusion

Tensor computing in DTI

Very noisy data

Preprocessing steps

- Filtering
- Regularization
- Robust estimation

Processing steps

- Interpolation / extrapolation
- Statistical comparisons

DTI Tensor field (slice of a 3D volume)

Affine Invariant Metric on Tensors

Action of the Linear Group GL, on Symmetric Matrices

$$\forall A \in GL_n, A * \Sigma = A\Sigma A^T$$

Affine Invariant Distance (positive component)

$$dist(A * \Sigma_1, A * \Sigma_2) = dist(\Sigma_1, \Sigma_2), \forall A \in GL_n$$

Scalar product on $T_{Id}M$:

calar product on
$$T_{Id}M$$
: on $T_{\Sigma}M$:
$$\langle W_1 | W_2 \rangle_{Id} \stackrel{def}{=} Tr(W_1^T W_2) \qquad \langle W_1 | W_2 \rangle_{\Sigma} \stackrel{def}{=} \langle \Sigma^{-1/2} * W_1, \Sigma^{-1/2} * W_2 \rangle_{Ld}$$

$$W_1, W_2 \in T_{Id}M$$

X Pennec, P. Fillard, N. Ayache: Riemannian Tensor Computing, RR-5255, INRIA, July 2004

Exponential and Logarithmic Maps

Geodesics

$$\Gamma_{Id,W}(t) = \exp(tW)$$

□ Exponential Map :

$$\exp_{\Sigma}(\overrightarrow{\Sigma\Psi}) = \Sigma^{1/2} \exp(\Sigma^{-1/2}.\overrightarrow{\Sigma\Psi}.\Sigma^{-1/2})\Sigma^{1/2}$$

Logarithmic Map :

$$\overrightarrow{\Sigma \Psi} = \log_{\Sigma}(\Psi) = \Sigma^{1/2} \log(\Sigma^{-1/2}.\Psi.\Sigma^{-1/2})\Sigma^{1/2}$$

$$dist(\Sigma, \Psi)^{2} = \left\langle \overrightarrow{\Sigma \Psi} | \overrightarrow{\Sigma \Psi} \right\rangle_{\Sigma} = \left\| \log(\Sigma^{-1/2}.\Psi.\Sigma^{-1/2}) \right\|_{L_{2}}^{2}$$

Linear vs. Riemannian Interpolation: walking along geodesics

General interpolation

$$\Sigma(x) = \min \sum_{i=1}^{n} w_i(x) \ dist(\Sigma, \Sigma_i)^2$$

Bilinear interpolation: weighted mean with bi-linear weights

General interpolation

$$\Sigma(x) = \min \sum_{i=1}^{n} w_i(x) \ dist(\Sigma, \Sigma_i)^2$$

Trilinear interpolation: weighted mean with tri-linear

Riemannian metric

Coefficients

Gaussian filtering: Gaussian weighted mean

$$\Sigma(x) = \min \sum_{i=1}^{n} G_{\sigma}(x - x_{i}) \ dist \ (\Sigma, \Sigma_{i})^{2}$$

Harmonic and Anisotropic filtering

Harmonic regularization

$$C(\Sigma) = \int_{\Omega} \|\nabla \Sigma(x)\|^2 dx$$

$$\nabla C(x) = -2\Delta \Sigma(x) = -2\sum_{u} \frac{\Sigma(x)\Sigma(x+u)}{\|u\|^2}$$

Anisotropic regularization

□ Penalize diffusion in the directions where the direction derivative is strong $g(x) = \exp(-x^2 / \kappa^2)$

$$\Delta_{g}\Sigma(x) = \sum_{u} \frac{g(\partial_{u}\Sigma(x))}{\|u\|^{2}} \frac{\partial_{u}^{2}\Sigma(x)}{\|u\|} = \sum_{u} g\left(\frac{\|\overline{\Sigma(x)\Sigma(x+u)}\|_{\Sigma(x)}}{\|u\|}\right) \frac{\overline{\Sigma(x)\Sigma(x+u)}}{\|u\|^{2}}$$

Harmonic and Anisotropic filtering

Classical gradient descent

$$\Sigma(x, t + dt) = \Sigma(x, t) - dt \nabla C(\Sigma) = \Sigma(x, t) + dt \Delta \Sigma(x, t)$$

Unstable

Intrinsic gradient descent

$$\Sigma(x, t + dt) = \exp_{\Sigma(x,t)}(-dt \cdot \nabla C(\Sigma)) = \exp_{\Sigma(x,t)}(dt \cdot \Delta_g \Sigma(x,t))$$

Ensures strict positivity

Anisotropic filtering

Anisotropic filtering

Extrapolation by Diffusion

sources = tensors at given positions smooth extrapolation

Extrapolation by Diffusion

$$C(\Sigma) = \frac{1}{2} \int_{\Omega} \sum_{i=1}^{n} G_{\sigma}(x - x_{i}) dist(\Sigma(x), \Sigma_{i})^{2} dx + \frac{\lambda}{2} \int_{\Omega} \|\nabla \Sigma\|^{2}$$

Original Tensor Data

DiffusionWithout data attachement

Diffusion with data attachement

Overview

- ✓ Statistics on Riemannian manifolds
- √ Registration performance
- ⇒ Tensor computing
 - ✓ Motivation for an invariant metric
 - ✓ Interpolation, filtering, diffusion
 - **⇒ Morphometry of sulcal lines on the brain**
- Conclusion

Morphometry of Sucal Lines

Goal:

- Learn local brain variability from sulci
- Better constrain inter-subject registration
- Correlate this variability with age, pathologies

Collaborative work between Epidaure (INRIA) and LONI (UCLA) V. Arsigny, N. Ayache, P. Fillard, X. Pennec and P. Thompson

Fillard-Arsigny-Pennec-Ayache-Thompson, submitted to IPMI'05

Computation of Average Sulci

Alternate minimization of global variance

- Dynamic programming to match the mean to instances
- Gradient descent to compute the mean curve position

Anatomical variability

Variance along the mean sulci

□ Red (low) to blue (high)

Extraction of Covariance Tensors

Color codes Trace

Currently:

80 instances of 72 sulci

Covariance Tensors along Sylvius Fissure

Compressed Tensor Representation

Representative Tensors (250)

Reconstguented Ensusons (1250)
(Riemannian Interpolation)

Variability Tensors

Color codes tensor trace

Quantitative comparison: Asymmetry Measure

Color Codes Distance between "symmetric" tensors

$$\left| \operatorname{dist}(\Sigma, \Sigma')^{2} = \left\langle \overrightarrow{\Sigma \Sigma'} \mid \overrightarrow{\Sigma \Sigma'} \right\rangle_{\Sigma} = \left\| \log(\Sigma^{-1/2}.\Sigma'.\Sigma^{-1/2}) \right\|_{L_{2}}^{2}$$

Full Brain extrapolation of the variability

Overview

- √ Statistics on Riemannian manifolds
- **✓** Registration performance
- ✓ Tensor computing
- **⇒** Conclusion

Conclusion: geometry and statistics

A Statistical computing framework on "simple" manifolds

- Mean, Covariance, statistical tests...
- □ Interpolation, diffusion, filtering...
- How to choose the metric?

Extend to more complex groups and manifolds

- □ Deformations (Trouvé, Younes, Miller)
- Shapes (Kendall, Olsen)

Spatially extended features (curves, surfaces, volumes...)

- Homology assumption (mixtures ?)
- Spatial correlation between neighbors
- Probability density for curves and surfaces

Applications of Riemannian Computing

Registration

- Performance evaluation
- Introducing a-priori distributions
- Statistical deformations

Diffusion tensor imaging

- Regularization for fiber tracts estimation
- □ Registration (atlases)

Variability of the brain

- Learn Variability from Large Group Studies
- Statistical Comparisons between Groups
- Improve Inter-Subject Registration

References

. Statistics on Manifolds

- X. Pennec. Probabilities and Statistics on Riemannian Manifolds: A
 Geometric approach. Research Report 5093, INRIA, January 2004. Submitted to Int. Journal of Mathematical Imaging and Vision. http://www.inria.fr/rrrt/rr-5093.html
- □ X. Pennec and N. Ayache. **Uniform distribution, distance and expectation problems for geometric features processing.** Journal of Mathematical Imaging and Vision, 9(1):49-67, July 1998.

. Registration of medical images

- X. Pennec, N. Ayache, and J.-P. Thirion. Landmark-based registration using features identified through differential geometry. In I. Bankman, editor, Handbook of Medical Imaging, chapter 31, pages 499-513. Academic Press, September 2000.
- X. Pennec and J.-P. Thirion. A Framework for Uncertainty and Validation of 3D Registration Methods based on Points and Frames. Int. Journal of Computer Vision, 25(3):203-229, 1997.

. Tensor Computing

- X. Pennec, P. Fillard, and Nicholas Ayache. A Riemannian Framework for Tensor Computing. Research Report 5255, INRIA, July 2004. Submitted to the Int. Journal of Computer Vision. http://www.inria.fr/rrrt/rr-5255.html
- P. Fillard, V. Arsigny, X. Pennec, P. Thompson, and N. Ayache. Modeling of the Brain Variability. Submitted to IPMI'05, 2005.