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Statistical Computing on Riemannian manifolds

Applications in Medical Image Analysis
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3-D Medical Images
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Complementary Images
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Medical Image analysis

To improve diagnosis

� quantitative and objective measures
� Image fusion and comparaison

To improve therapy

� planification (before)
� control (during)

� evaluation (after)
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Medical Image Analysis

Measures are geometric and noisy
� Registration = determine a transformations 
� Diffusion tensor imaging
� Feature extracted from images

We need:
� Statistics
� A stable computing framework
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MR Image Initial USRegistered US

MR/US registration of per-operative images
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Variability of a registration algorithm

Registration algorithm

Recovered transformation

Hidden parameters

• Anatomy

• Pathologies

Quantify the statistical Variability of the transformation: 
� Mean value (bias)
� Covariance matrix, std dev. (accuracy, precision)

� On the transformation ( rotation σr [rad], translation σt [mm])
� Propagate on target points (TRE σx)

Image 1

• Distorsions

• Noise         

Image 2

• Distorsions

• Noise         

Geometric transformation

• Rigid

• Deformations
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Diffusion Tensor Imaging:

3D Fields of Symmetric positive definite matrices
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Tensor computing in DTI

Very noisy data      

Preprocessing steps
� Filtering
� Regularization
� Robust estimation

Can we generalize scalar methods?

� Linear convex combinations are stable (mean, interpolation)
� More complex methods are not (null or negative eigenvalues)

� Linear estimation of the tensor field from images

� Gradient descent
� Anisotropic filtering and diffusion

Processing steps
� Interpolation / extrapolation
� Statistical comparisons
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Example of geometrical objects

Transformations

• Affine, projective… rigid 3D

Geometric features

• Lines, oriented points, tensors

• Amino Acids: frames

• Extremal points: semi-oriented frames
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Basic probabilities and statistics

Measure:               random vector % of pdf

Approximation:

• Mean: 

• Covariance:

Propagation:

Noise model: additive, Gaussian...

Statistical distance: Mahalanobis and
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Some problems with geometric features

Mean of 3D rotations:               

Noise on 3D rotations:
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invariance w.r.t. the chart

invariance w.r.t. the transformation group
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Overview

�Statistics on Riemannian manifolds
�The Riemannian framework
� Choice of the metric and invariance properties

� Registration performances

� Tensor computing

� Conclusion
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Statistics on Riemannian Manifolds

Riemannian metric :
� Dot product on tangent space 
� Speed, length of a curve
� Distance and geodesics

(angle, great circles)

Exponential chart (Normal coord. syst.) :
� Development in tangent space along geodesics 
� Geodesics = straight lines
� Distance = Euclidean
� Star shape domain limited by the cut-locus
� Covers all the manifold if geodesically complete
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Probabilities

Volume form

Probility density functions

Expectation of an observable

Variance w.r.t. a fixed primitive
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Probabilities

Metric -> Volume forme (measure) 

Probility density functions

Expectation of a function φφφφ from M into R :

� Definition :

� Variance :

� Information :
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Fréchet expectation (1944)

Minimizing the variance

� Existence and uniqueness : Karcher and Kendall

Characterization as an exponential barycenter (P(C)=0)

The case of points: classical expectation

Other central primitives
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A gradient descent (Gauss-Newton) algorithm

Vector space

Manifold
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Covariance matrix
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Uniform and Gaussian pdf

Practical approximation

Information of a pdf

Uniform distribution

Gaussian distribution
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Some distributions

Uniform density:
� maximal entropy knowing �

Gaussian density: 
� maximal entropy knowing the mean and the covariance

Mahalanobis distance:

� Any distribution:

� Gaussian:
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Gaussian on the circle

Exponential chart:

Gaussian: truncated standard Gaussian
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Metric choice on Transformation (Lie) Group

Metric choice: left invariant

� The principal chart (exp. chart at the origin) can be
translated at any point : only one chart.

Practical computations

� Atomic operations and their Jacobian
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Metric choice on Homogeneous manifolds

Metric choice: invariant

� Isotropy group of the origin: 

� Existance condition: 

� Placement function:

Practical computations

� Atomic operations and their Jacobian
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A few properties of the pdfs

Invariant measure (Haar):

Action on a random feature
� The mean is equivariant
� The pdf is translated by

Composition of random transformations
� The mean is left-equivariant (but generally not right-equivarient)
� The pdf is an (asymetric) convolution product

$%�!$%��! �� =∗

$��!$�! )$!

$�! ∗= −
∗ �� ��

$�7!&$��!$&�!$�!
7

)$!

$! ����� �
−= �

� ���� ����

( )[ ]�����$&!$!$!$!����� $! � −=⊗=+ ������������� ������

[ ]������$�!$�!������ $! +=+  ��� � ��



February 10 2005 Application of Singularities 28

Example with 3D rotations

Principal chart: 

Distance:

Frechet mean:
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Overview

� Statistics on Riemannian manifolds 

� Registration performances
� Error prediction for landmark-based registration
� Performance evaluation for iconic and surface and 

intensity-based methods

� Tensor computing

� Conclusion
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Registration of Images

Goal = finding correspondences between homologous 
points (duality matches / transformation)

Feature space
� 0D: points, landmarks, frames
� 1D: curves
� 2D: surfaces
� 3D: volumes (i.e. intensity-based methods)

Transformation space
� Rigid, affine, locally affine, deformable
� Dimensionality reduction (e.g. 3D/2D)

Similarity metric (criterion), optimization scheme
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Least square registration

� Propagation of the errors from the data to the optimal 
transformation at the first order (implicit function theorem):

Uncertainty of feature-based registration
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Matches estimation
� Alignment
� Geometric hashing
� ICP
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Registration of CT images of a dry skull

550 matched frames among 2000

Typical object accuracy: 0.04 mm

Typical corner accuracy: 0.10 mm
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Registration of MR T1 images of the head

860 matched frames among 3600

Typical object accuracy: 0.06 mm

Typical corner accuracy: 0.125 mm
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Validation of the accuracy evaluation
Brigham and Women’s Multiple Sclerosis database

� 24 acquisitions 3D per patient on 1 year
� T2 weighted MR, 2 echo times, voxels 1 x 1 x 3 mm
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Predicted object accuracy: 0.06 mm.

Validation of the accuracy evaluation
Brigham and Women’s Multiple Sclerosis database

� 24 acquisitions 3D per patient on 1 year
� T2 weighted MR, 2 echo times, voxels 1 x 1 x 3 mm
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Without registration After registration

and intensity correction

Validation of the accuracy evaluation
Brigham and Women’s Multiple Sclerosis database

� 24 acquisitions 3D per patient on 1 year
� T2 weighted MR, 2 echo times, voxels 1 x 1 x 3 mm

Visualization of the signal evolution: one image line across time
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Validation of the accuracy with double echoes

[ X. Pennec et al., Int. J. Comp. Vis. 25(3) 1997, MICCAI 1998 ]

Comparing two transformations 
and their Covariance matrix :

Mean: 6, Var: 12

KS test

(

8()

( $'! χµ ≈��

Bias esimation: (chemical shift, susceptibility effects)

� (not significantly different from the identity)

� (significantly different from the identity)

Inter-echo with bias corrected:             , KS test OK8( ≈µ

Intra-echo:            , KS test OK8( ≈µ
Inter-echo:             , KS test failed, Bias !9*( >µ
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Overview

� Statistics on Riemannian manifolds 

� Registration performances
�Error prediction for landmark-based registration
�A posteriori consistency evaluation

� Tensor computing

� Conclusion
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� Rigid matching tools for MR

� MR / US registration

� US tracking of brain    
deformations

Robot / patient 
coordinate system

TRob / MR

MR 0 with surgical plan

Virtual MR n

MR coordinate system

MR 1

Virtual MR 2

TMR/US
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US coordinate system

US 1

US 2

US n

TMR0 / MR1

MR coordinate system

MR 1

TMR/US

US coordinate system

US 1

� Rigid matching tools for MR

�� MR / US registrationMR / US registration

� US tracking of brain    
deformations

Roboscope: per-operative MR/US registration
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US image, manual init.Registered US imageMR image Registered US image

Registration of MR/US images
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Multiple a posteriori registration

Best explanation of the observations (ML) :
� LSQ criterion 

� Robust Fréchet mean 

� Robust initialisation and Newton gradient descent

Result
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Data (varying balloons volumes)
� 8 MR (0.9 x 0.9 x 1.0 mm)
� 8 US (0.4 x 0.4 x 0.4 mm)
� 54 loops

Robustness and repeatability

Consistency of BCR

Results on the phantom dataset

var rot (deg) var trans (mm) var test (mm)
Multiple MR 0.06 0.1 0.13
Multiple US 0.60 0.4 0.71

Loop 1.62 1.43 2.07
MR/US 1.06 0.97 1.37

Success var rot (deg) var trans (mm)
MI 39% 0.40 0.27
CR 52% 0.43 0.25

BCR 76% 0.14 0.09
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Data (per-operative US)
� 2 pre-op MR (0.9 x 0.9 x 1.1 mm)
� 3 per-op US (0.63 and 0.95 mm)
� 3 loops

Robustness and precision

Consistency of BCR

Results on per-operative patient images

Success var rot (deg) var trans (mm)
MI 29% 0.53 0.25
CR 90% 0.45 0.17

BCR 85% 0.39 0.11

var rot (deg) var trans (mm) var test (mm)
Multiple MR 0.06 0.06 0.10

Loop 2.22 0.82 2.33
MR/US 1.57 0.58 1.65
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Overview

� Statistics on Riemannian manifolds

� Registration performance

� Tensor computing
�Interpolation, filtering, diffusion
� Morphometry of sulcal lines on the brain

� Conclusion
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Tensor computing in DTI

Very noisy data

Preprocessing steps

� Filtering
� Regularization
� Robust estimation

Processing steps

� Interpolation / extrapolation
� Statistical comparisons

Can we generalize scalar methods?
���������	����� �!���������
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Affine Invariant Metric on Tensors
Action of the Linear Group GLn on Symmetric Matrices 

Affine Invariant Distance (positive component)


�
�
	 �	� ��� �����
��
� /

( )()() - ((��(( �
�)�

��
=

*�(( ��∈()'
��

�)�

(((( (

(0)

)

(0)

() '- ∗Σ∗Σ= −−
Σ


+�,�	&�,,�	&� ∈∀ΣΣ=Σ∗Σ∗ $''!$'! ()()

�


 ,,,+�, Σ=Σ∗∈∀ '

��������'�&����
	 ';&��
���/����
���
� �����	����������'����9(99'��;���'�<����(**=

�� � ��/Σ



February 10 2005 Application of Singularities 49

Exponential and Logarithmic Maps

Geodesics $�%�!$!' �(�(�� =Γ
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Linear vs. Riemannian Interpolation:
walking along geodesics

Interpolation of the coefficients: Interpolation achieved with 
the Riemannian metric:
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General interpolation
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Bilinear interpolation: weighted mean with bi-linear weights
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General interpolation
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Trilinear interpolation: weighted mean with tri-linear 
weights
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Gaussian filtering: Gaussian weighted mean
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Harmonic and Anisotropic filtering

Harmonic regularization

Anisotropic regularization
� Penalize diffusion in the directions where the direction 

derivative is strong
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Harmonic and Anisotropic filtering

Classical gradient descent

� Unstable

Intrinsic gradient descent

� Ensures strict positivity
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Anisotropic filtering

Initial

Noisy

Recovered
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Anisotropic filtering

Raw Riemann Gaussian Riemann anisotropic
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Extrapolation by Diffusion

sources = tensors at given positions
smooth extrapolation
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Extrapolation by Diffusion

DiffusionWithout
data attachement

Original Tensor 
Data

Diffusion with 
data 

attachement
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Overview

� Statistics on Riemannian manifolds

� Registration performance

� Tensor computing
�Motivation for an invariant metric
� Interpolation, filtering, diffusion
�Morphometry of sulcal lines on the brain

� Conclusion
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Morphometry of Sucal Lines

Goal: 

� Learn local brain variability from sulci

� Better constrain inter-subject registration

� Correlate this variability with age, pathologies
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Fillard-Arsigny-Pennec-Ayache-Thompson, submitted to IPMI’05
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Computation of Average Sulci

	� �/���
����	#��
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Alternate minimization of global variance
� Dynamic programming to match the mean to instances
� Gradient descent to compute the mean curve position
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Anatomical variability

Variance along the mean sulci
� Red (low) to blue (high)



February 10 2005 Application of Singularities 65

Extraction of Covariance Tensors
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Currently:

80 instances of 72 sulci

About 1250 tensors
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Compressed Tensor Representation
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Variability Tensors
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Quantitative comparison: Asymmetry Measure
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Full Brain 
extrapolation of the 

variability
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Overview

� Statistics on Riemannian manifolds

� Registration performance

� Tensor computing

� Conclusion
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Conclusion : geometry and statistics

A Statistical computing framework on “ simple” manifolds 
� Mean, Covariance, statistical tests…
� Interpolation, diffusion, filtering…
� How to choose the metric?

Extend to more complex groups and manifolds
� Deformations (Trouvé, Younes, Miller)
� Shapes (Kendall, Olsen) 

Spatially extended features (curves, surfaces, volumes…)
� Homology assumption (mixtures ?)
� Spatial correlation between neighbors 
� Probability density for curves and surfaces
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Applications of Riemannian Computing

Registration
� Performance evaluation 
� Introducing a-priori distributions
� Statistical deformations

Diffusion tensor imaging
� Regularization for fiber tracts estimation
� Registration (atlases)

Variability of the brain
� Learn Variability from Large Group Studies
� Statistical Comparisons between Groups
� Improve Inter-Subject Registration
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