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ABSTRACT

Measurements of geometric primitives, such as rotations or rigid
transformations, are often noisy and we need to use statistics either
to reduce the uncertainty or to compare measurements. Unfortu-
nately, geometric primitives often belong to manifolds and not vec-
tor spaces. We have already shown [9] that generalizing too quickly
even simple statistical notions could lead to paradoxes.

In this article, we develop some basic probabilistic tools to
work on Riemannian manifolds: the notion of mean value, covari-
ance matrix, normal law, Mahalanobis distance andχ2 test. We
also present an efficient algorithm to compute the mean value and
tractable approximations of the normal andχ2 laws for small vari-
ances.

1. INTRODUCTION

To represent the results of a random experiment, one usually con-
structs a probabilized space(Ω,A, Pr) and models the measure-
ments byrandom variablesor observables(mapsx = x(ω) from
Ω toR). This formalism allows to “forget” the original probabilized
space and work directly inR by associating to each random vari-
ablex ory different probability density functions (pdfs). However,
from a computational point of view, we have to restrict the mea-
surements to a few numeric characteristics of a random variable.
Thus, one usually approximates a unimodal pdf itsmean valueor
expectationand itsvariance. As the expectation is a linear opera-
tor, it is easy to generalize that to the expectation and covariance
matrix of arandom vector(several simultaneous measurements of
the same random experiment). To compare measurements, one can
use a probabilistic distance between distributions such as the Maha-
lanobis distance or simple statistical tests such as theχ2 test. This
is justified by the fact that the Gaussian minimizes the information
knowing the mean and the covariance.

The problem we investigate in this article is to generalize this
framework to measurements in Riemannian manifolds instead of
measurements in a vector space. We call themrandom primitives.
Examples of manifolds we routinely use are 3D rotations and 3D
rigid transformations as transformation groups and frames (a 3D
point and an orthonormal trihedron) semi- or non-oriented frames
(where 2 (resp. 3) of the trihedron unit vectors are given up to their
sign), oriented or directed points. We have already shown in [10, 9]
that this is not an easy problem and that some paradoxes can arise.

In particular, we cannot generalize the expectation to give a mean
value since it would be an integral with value in the manifold.

We review in the remainder of this section some basic notions
of differential and Riemannian geometry (see [8, 1]). In Section
2, we develop the notion of pdf, mean value and covariance matrix
of a random primitive. In Section 3, we investigate a generaliza-
tion of the Normal law and show how it can be approximated for
small variances. We finish in Section 4 by the generalization of the
Mahalanobis distance and theχ2 law.

1.1. Riemannian metric, distance and geodesics

In the geometric framework, one specifies the structure of a man-
ifold M by a Riemannian metric. This is a continuous collection
of dot products on the tangent spaceTxM at each point of the
manifold. A local coordinate system induces a basis of the tangent
spaces. Thus, we can express the metric in this basis by a symmetric
positive definite matrixQ(x) = [〈 ∂i | ∂j 〉x] where each element
is given by the dot product of the tangent vector to the coordinate
curves.

Considering a curve on the manifold, we can compute at each
point its instantaneous speed vector and its norm, the instantaneous
speed. The length is obtained as usual by integrating this value
along the curve. To obtain a distance between two points of a
connected Riemannian manifold, we simply have to take the min-
imum length among the smooth curves joining these points. The
curves realizing this minimum for any two points of the manifold
are called geodesics. The manifold is said to begeodesically com-
pleteif the definition domain of all geodesics can be extended toR.
As an important consequence, the Hopf-Rinow-De Rham theorem
state that such a manifold is complete for the induced distance, and
that there always exist at least one minimizing geodesic between
any two points of the manifold (i.e. which length is the distance
between the two points). From now on, we will assume that the
manifold is geodesically complete.

1.2. Exponential map and cut locus

From the theory of second order differential equations, we know
that there exits one and only one geodesic starting at a given point
x with a given tangent vector. This allows to develop the man-
ifold in the tangent space along the geodesics (think of rolling a
sphere along its tangent plane at a given point). The geodesics go-
ing through this point are transformed into straight lines and the



distance along these geodesics are conserved (at least in a neigh-
borhood ofx). The function that maps to each vector the corre-
sponding point on the manifold is called theexponential map.

This map is defined in the whole tangent spaceTxM (since
the manifold is geodesically complete) but it is one-to-one only lo-
cally around the origin. We denote by−→xy its the inverse: this is the
smallest vector such thaty = expx(

−→xy). If we look for the max-
imal definition domain, we find out that it is a star-shaped domain
delimited by a continuous curveCx called thetangential cut-locus.
The image ofCx by the exponential map is the cut locusCx of point
x. This is closure of the set of points where several minimizing
geodesics starting fromx meet. On the sphereS2(1) for instance,
the cut locus of a pointx is its antipodal point and the tangential cut
locus is the circle of radiusπ.

The exponential map within this domain realizes a chart called
the exponential chart. It covers all the manifold except the cut locus
of the development point, which has a null measure. In this chart,
geodesics starting fromx are straight lines. and the distance from
the development point are conserved. This chart is somehow the
“most linear” chart of the manifold with respect to the primitivex.

1.3. Riemannian measure or volume form

The Riemannian metricQ(x) induces an infinitesimal volume ele-
ment on each tangent space, and thus a measure on the manifold:

dM(x) =
p
|Q(x)|.dx (1)

One can show that the cut locus has a null measure. This means
that we can integrate indifferently inM or in any exponential chart.

2. PROBABILITIES ON A RIEMANNIAN MANIFOLD

In this section, we do not consider measurements that are real vari-
ables or vectors depending on the outcome of a random experiment,
but rather random measurements of a manifold elements. We call
such a measurement arandom primitive.

Definition 1 (Random primitive) Let (Ω,B, Pr) be a probabi-
lized space. A random primitive in the Riemannian manifoldM
is a Borelian functionx = x(ω) fromΩ toM.

As in the real or vectorial case, we can now make abstraction of
the original spaceΩ and directly work with the induced probability
measure onM.

2.1. Probability density function

Definition 2 LetA be the Borelian tribe ofM. The random prim-
itive x has a probability density functionpx (real, positive and in-
tegrable function) if∀X ∈ A:

Pr(x ∈ X ) =

Z

X
p(y).dM(y) and Pr(M) = 1 (2)

A simple example of a pdf is theuniform pdfin a bounded setX :
pX (y) = 1X (y)/V(X ), whereV(X ) is the “volume” of the setX .

One must be careful that this pdf is uniform with respect to
the measuredM and is not uniform for another measure on the
manifold. This problem is the basis of the Bertrand paradox for ge-
ometrical probabilities [12, 6] and raise the problem of the measure
to choose on the manifold. In our case, the measure is induced by

the Riemannian metric but the problem is only lifted: which Rie-
mannian metric do we have to choose ? We addressed this question
in [9] for transformation groups and homogeneous manifolds by
showing that an invariant metric is a good geometric choice.

2.2. Expectation and Mean value

Here, we focus on the notion of central value of a random primi-
tive. We will preferably use the denominationmean value or mean
primitive thanexpected primitiveto stress the difference between
this notion and the expectation of a real function.

Expectation of an observable Let ϕ(x) be a Borelian real val-
ued function defined onM andx a random primitive of pdfpx.
Then,ϕ(x) is a real random variable and we can compute its ex-
pectation:

E [ ϕ(x) ] = Ex [ ϕ ] =

Z

M
ϕ(y).px(y).dM(y) (3)

This notion of expectation corresponds to the one we defined on
real random variables and vectors. However, we cannot directly
extend it to define the mean value of the distribution since we have
no way to generalize this integral inR into an integral with value in
the manifold.

Fréchet expectation or mean value Letx be a random vector of
Rn. Fréchet observed in [3, 4] observed that the varianceσ2

x(y) =
E
�

dist(x, y)2
�

is minimized for the mean vectorx = E [ x ].
The major point for the generalization is that the expectation of a
real valued function is well defined for our connected and geodesi-
cally complete Riemannian manifoldM.

Definition 3 (Variance of a random primitive) Let x be a ran-
dom primitive of pdfpx. The varianceσ2

x(y) is the expectation of
the squared distance between the random primitive and the fixed
primitivey:

σ2
x(y) = E

�
dist(y,x)2

�
=

Z

M
dist(y, z)2.px(z).dM(z) (4)

Definition 4 (Fr échet expectation of a random primitive)If the
varianceσ2

x(y) of a random primitivex is finite for all primitive
y ∈ M, every primitivex̄ minimizing this variance is called an
expected or mean primitive. Thus, the set of the mean primitives is:

E [ x ] = arg min
y∈M

�
E
�

dist(y,x)2
��

(5)

One can define other types of central values based on themean
deviation at orderα: α

p
E [ dist(y,x)α ]. For instance, themodes

are obtained forα = 0. Exactly like in a vector space, they are
the primitives where the density is maximal on the manifold. The
median primitiveis obtained forα = 1. Forα →∞, we obtain the
“barycenter” of the distribution support (which has to be compact).

Existence and uniqueness: Karcher expectation As our mean
primitive is the result of a minimization, its existence is not ensured
and the result is a set and no longer a single element. This is to be
compared with some central values in vector spaces, such as the
modes. However, the Fréchet expectation does not define all the
modes even in vector spaces: one only keeps the modes of maximal
intensity.

To get rid of this constraint, [5] proposed to consider the local
minima of the varianceσ2

x(y) instead of the global ones. Thus, the



Fréchet mean primitives are a subset of the Karcher ones. Using
this extended definition, [5] and [7] established that, for localized
enough distributions, there exists one and only one Karcher mean.

The Karcher mean is perfectly adapted for our purpose, thanks
to the good properties it has for optimization (see below). How-
ever, there are other works proposing different ways to generalize
the notion of mean value or barycenter of a distribution in a mani-
fold. We review them in [11] but they do not seem to be practically
applicable.

2.3. Characterizing a Karcher mean

Local minima are entirely characterized by a null gradient and a
positive definite Hessian matrix. Letfz(y) = dist(y, z)2 = ‖−→yz‖2.
For a fixedz, the gradient offz(y) is defined everywhere on the
manifold except on the cut locusC(z). On can show that gradfz =
2.−→zy = −2.−→yz.

Since the integration domainM− C(y) depends on the vari-
abley, the conditions to differentiate under the sum are not fulfilled.
However, when the manifold is compact (and of course when there
is not cut locus), we were able to establish that:

grad
�
σ2
x(y)

�
=

Z

M−C(y)

−2−→yz.px(z).dM(z) = −2.E
�−→yx �

We believe that this is still true for more general manifolds, with
perhaps a few conditions on the density.

Going one step further is even more difficult: we do not have a
general formula to compute the Hessian matrix, except when there
is no cut-locus. In this case, we can differentiate once again under
the sum: Hess

�
σ2
x(y)

�
= 2. Id

Theorem 1 (Characterization of Karcher means)Letx be a ran-
dom primitive in either a compact manifold or a manifold without
cut-locus. A necessary (but not sufficient) condition for a pointx̄
to be a Karcher mean of the random primitivex is that the random
vector

−→̄
xx has a null expectation.

x̄ ∈ E [ x ] =⇒ E
h−→̄

xx
i

= Ex [ expx̄ ] = 0 (6)

If the manifold has no cut locus, the Hessian is constant and posi-
tive definite. Hence the condition is sufficient.

2.4. A gradient descent algorithm to obtain the mean

Let y be an estimation of the mean of the random primitivex and
f(y) = σ2

x(y) the variance. The intrinsic second order Taylor ex-
pansion off andy is:

f(expy(v)) = f(y) + gradf(v) +
1

2
Hessf(v, v)

This is a function of the vectorv ∈ TyM. Using the approxima-
tion Hessf ' 2. Id, this function is concave and thus has a mini-
mum. LetHf (v) denote the linear form verifying〈Hf (v) | w 〉 =
Hessf(v, w) for all w andH (-1)

f denote the inverse map. The mini-
mum is characterized by

gradf + Hf (v) = 0 ⇔ v = −H (-1)
f (gradf)

Since gradf = −2.E
�−→yx �, we obtain the following evolution

equations: yt+1 = expyt

�
E
�−→ytx

��
(7)

In the case of a vector space, these formula converge in a single step
to the mean value and the barycenter:yt+1 = E [ x ]. In the case
of the discrete or empirical mean, which is much more interesting
from a statistical point of view, we have exactly the same algorithm,
but with the empirical expectationyt+1 = expyt

�
1
n

P
i
−−→ytxi

�
.

An important point for this algorithm is to determine a good
starting point. In the case on a set of measurements{xi}, on can
choose at random one of the measurements as the starting point.
Another solution is to map to each pointxi is mean distance with
respect to other points (or the median distance to be robust) and
choose as the starting point the minimizing point.

2.5. Covariance matrix

With the mean value, we have a dispersion value: the variance. To
go one step further, we observe that the covariance matrix of a ran-
dom vectorx with respect to a pointy is thedirectionaldispersion
of the “difference” vector−→yx = x− y:

Covy(x) = E
�−→yx.−→yxT

�
=

Z

Rn

(−→yx).(−→yx)T.px(x).dx

This definition is easily extendible to a complete Riemannian
manifold using the random vector−→yx in TyM and the Riemannian
measure. As in the vector case, the covariance is related to the vari-
ance by Tr(Covy(x)) = σ2

x(y). In fact, we are usually interested
in the covariance relative to the mean value:

Definition 5 (Covariance) Let x̄ ∈ E [ x ] be the unique mean
value of the random primitivex. We noteΣxx and we call co-
variance the expression:

Σxx = Cov̄x(x) = E
h−→̄

xx.
−→̄
xxT

i
(8)

The covariance depends on the basis used for the exponential
chart if we see it as a matrix, but it does not depend on it if we
consider it as a bilinear form over the tangent plane. In fact, as
soon as we have found the mean value, everything appears to be
similar to the case of a centered random vector by developing the
manifold onto the tangent space at the mean value. Indeed,

−→̄
xx

is a random vector inTx̄M whose expectation is null and whose

covariance matrix isE
h−→̄

xx.
−→̄
xxT

i
. Thus, we could define higher

order moments of the distribution by tensors on this tangent space,
just as we have done for the covariance.

3. GENERALIZING THE NORMAL LAW

We now present an approach based on the the information mini-
mization to generalize the Normal distribution to a manifold. In
this section the symbolslog andexp denote the standard logarith-
mic and exponential functions inR.

3.1. Information and uniform law

As we can integrate a real valued function, the extension of the
entropyH [ x ] (or its opposite, theinformationI [ x ]) of a random
primitive is straightforward:

I [ x ] = −H [ x ] = E [ log(px(x)) ] (9)

This definition is consistent since the pdfpU that minimize the in-
formation when we only know that the measure is in a compact set
U is the uniform density in this set.



3.2. Constrained information minimization

Now assume that we know the mean (that we suppose to be unique)
and the covariance of a random primitive: we denote it byx ∼
(x̄, Σ). The least informative pdf minimizes the conditional infor-
mation:

I [ x | x̄ ∈ E [ x ] , Σxx = Σ ]

Expressing the normalization, fixed mean value and fixed co-
variance constraints in the exponential chart at the mean value and
neglecting any continuity or differentiability constraint on the cut
locus, we can write the Lagrangian in the vector spaceTxM and
we obtain:

Theorem 2 (Normal law) We call Normal law on the manifold
M the pdf minimizing the information with a fixed mean value and
covariance. Assuming no continuity nor differentiability constraint
on the cut locusC(x̄) and a symmetric domainD(x̄), the Normal
law of mean̄x and concentration matrixΓ is given by:

N(x̄,Γ)(y) = k. exp

 
−
−→̄
xyT.Γ.

−→̄
xy

2

!
(10)

where the normalization constant is

k(-1) =

Z

M
exp

 
−
−→̄
xyT.Γ.

−→̄
xy

2

!
.dM(y) (11)

The covarianceΣ and concentrationΓ are related by:

Σ = k.

Z

M

−→̄
xy.
−→̄
xyT. exp

 
−
−→̄
xyT.Γ.

−→̄
xy

2

!
.dM(y) (12)

From the concentration matrix, we can compute the covariance
of the random primitive, at least numerically, but the reverse is more
difficult. Of course, in a vector space, the integrals can be entirely
computed, and we find the usual Gaussian density.

3.3. Example on a simple manifold: the circle

The exponential chart for the circle of radius 1 with the canonical
metric is the angle with respect to the development pointθ ∈ D =
] − π; π[, and the measure is simplydθ. For a circle of radius
r, the exponential chart becomesx = r.θ. The domain isD =
] − a; a[ (with a = π.r) and the measure isdx = r.dθ. Thus, the
normalization factor of the Normal density is:

k(-1) =

Z a

−a

exp

�
−γ.x2

2

�
.dx =

r
2π

γ
.erf

�r
γ

2
.a

�

The density is the truncated GaussianN(0,γ)(x) for x ∈]−a; a[. It
is continuous but not differentiable on the cut locusπ ≡ −π. The
truncation introduces a bias in the relation between the variance and
the concentration parameter:

σ2 =
1

γ

�
1− 2.a.k. exp

�
−γ.a2

2

��

As the circle is compact, the variance cannot becomes infinite
as in the real case whenγ goes to zero: a Taylor expansion give
σ2 = a2/3 + O(γ). Thus, the maximal variance on the circle
is a2/3 with the densityN(0,0)(x) = 1/(2a). As expected, the
Normal density of concentration 0 is the uniform density. On the
other hand, ifγ goes to infinity, the variance goes to zero and the
density tends to a Dirac (see figure 1).
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Dirac

γ

σ 2

= 3.3
3
π 2

Variance on the circle

Variance on the real line

Uniform distribution

Figure 1: Varianceσ2 with respect to the concentration parameter
γ on the circle of radius 1 and the real line.

3.4. Approximated Normal law

If the pdf is sufficiently concentrated (a high concentration matrixΓ
or a small covariance matrixΣ), then we can use the Taylor expan-
sion of the metric in the exponential chart at the mean value given
in [2, p84]. We easily deduce the Taylor expansion of the measure
around the origin (Ric is the Ricci (or scalar) curvature matrix in
the considered normal coordinate system):

dM(y) =
p

det(Q(y)) = 1− yT.Ric .y

6
+ O(‖y‖3)

Reporting this Taylor expansion in the integrals and manipulating
the formulas leads to the following theorem.

Theorem 3 (Approximate normal density)Letr be the injection
radius at the mean point. The normalization constant and the con-
centration matrices are approximated by the following expressions
for a small varianceσ2 = Tr(Σ):

k =
1 + O(σ3) + ε

�
σ
r

�
p

(2π)n det(Σ)
Γ = Σ(-1) − Ric

3
+ O(σ) + ε

�σ

r

�

Here,ε(x) is a function that is aO(xk) for any positivek, i.e. such
that∀k ∈ R+, lim0+ x−kε(x) = 0.

4. MAHALANOBIS DISTANCE AND χ2 LAW

The problem we are now confronted with is to determine if a mea-
sureŷ was drawn from a random primitivex ∼ (x̄, Σxx). In the
vectorial case and assuming a Gaussian distribution, theχ2 test is
well adapted to do that. This test measures the probability of the
Mahalanobis distanceχ2 = (x̂ − x̄)T.Σ(-1)

xx.(x̂ − x̄) assuming that
x̂ is drawn fromx. If the probability is too small (i.e.χ2 is too
large), the hypothesis is rejected.

Definition 6 (Mahalanobis distance)We call Mahalanobis dis-
tance between a random primitivex ∼ (x̄, Σxx) and a (determin-
istic) pointy on the manifold the value

µ2
x(y) =

−→̄
xyT.Σ(-1)

xx.
−→̄
xy (13)

In fact, the Mahalanobis distance measures the distance betweeny
and the mean valuēx according to the “metric”Σ(-1)

xx.



4.1. Properties

Sinceµ2
x is a function fromM to R, µ2

x(y) is a real random vari-
able. The expectation of this random variable is well defined and
turns out to be quite simple:

E
�
µ2
x(y)

�
= Tr

�
Σ(-1)

xx.Cov̄x(y)
�

The expectation of the Mahalanobis distance of a random primitive
with itself is even simpler:

Theorem 4 (Mean Mahalanobis distance)The expected Maha-
lanobis distance of a random primitive with itself is independent
of the distribution and does only depend on the dimension of the
manifold:E

�
µ2
x(x)

�
= n

This identity can be used to verify with a posteriori measure-
ments that the covariance matrix has been correctly estimated. It
can be compared with the expectation of the “normalized” squared
distance, which is by definition:E

�
dist(x, x̄)2/σ2

x

�
= 1.

4.2. A generalizedχ2 law

Assuming that the random primitivex ∼ (x̄, Σxx) is normal, we
can go one step further and compute the probability thatχ2 =
µ2
x < α2. This generalization of theχ2 law turns out to be still

independent of the mean value and the covariance matrix of the
random primitive (at least up to the orderO(σ3)):

Theorem 5 (Approximate χ2 law) With the same hypotheses as
for the approximate normal law, theχ2 density probability function
is

pχ2(u) =
1 + O(σ3) + ε

�
σ
r

�

2.Γ
�

n
2

�
�u

2

�n
2−1

exp
�
−u

2

�
(14)

Thus, up to the third order, theχ2 law on a Riemannian manifold
can be approximated by the standardχ2 law.

5. DISCUSSION

We presented in this article the bases of a probability and statistical
theory on geodesically complete Riemannian manifolds. Basically,
we show that almost everything could be done almost as usual by
using the the exponential chart at the mean point. This chart can be
considered as the development of the manifold along the geodesics
on the tangent space at a given point. It is the “most linear” repre-
sentation of the manifold with respect to this development point.

From a theoretical point of view, we were able to obtain a very
simple necessary conditions to characterize the Karcher mean value
in the case of a manifold with no cut locus or compact manifolds
(e.g. rotations). We believe that the same result could be obtain
for other manifolds (such as rigid transformations), but the proof is
still to be done. The information minimization approach to gener-
alize the normal distribution to Riemannian manifolds is interesting
since we obtain a whole family of densities going from the Dirac to
the uniform distribution (or the uniform measure if the manifold in
only locally compact). Unfortunately, this distribution is generally
not differentiable at the cut locus, and often even not continuous.
However, if the relation between the parameters and the moments
of the distribution are not as elegant as in the vector case (but can we
expect something simpler in the general case of Riemannian man-
ifolds ?), the approximation for small covariances turns out to be

rather simple. Thus, this approximate distribution can be handled
quite easily for statistical purposes.

From a practical point of view, we were able to implement this
framework for several kind of geometric primitives including ro-
tations and rigid transformations by providing the manifolds with
an invariant metric [11]. Thanks to the invariance properties, we
could use only one exponential chart (at a point called the origin)
and “translate” it at any other point of the manifold using the action
of a well chosen transformation. The gradient descent algorithm
to obtain the mean primitive is very efficient as it usually require
between 5 and 10 iterations to converge at numerical precision of
the machine.

The application field is wide. We have developed applications
in computer vision, medical imaging and molecular biology [11].
Other important applications could take place in robotics, artificial
intelligence, etc.
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