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Abstract. In inter-subject registration, one often lacks a good model
of the transformation variability to choose the optimal regularization.
Some works attempt to model the variability in a statistical way, but
the re-introduction in a registration algorithm is not easy. In [1], we
interpreted the elastic energy as the distance of the Green-St Venant
strain tensor to the identity. By changing the Euclidean metric for a more
suitable Riemannian one, we defined a consistent statistical framework
to quantify the amount of deformation. In particular, the mean and the
covariance matrix of the strain tensor could be efficiently computed from
a population of non-linear transformations and introduced as parameters
in a Mahalanobis distance to measure the statistical deviation from the
observed variability. This statistical Riemannian elasticity was able to
handle anisotropic deformations but its isotropic stationary version was
locally inverse-consistent. In this paper, we investigate how to modify the
Riemannian elasticity to make it globally inverse consistent. This allows
to define a left-invariant ”distance” between shape diffeomorphisms that
we call the left-invariant Riemannian elasticity. Such a closed form energy
on diffeomorphisms can optimize it directly without relying on a time and
memory consuming numerical optimization of the geodesic path.

1 Introduction

Most non-linear image registration algorithms optimize a criterion including an
image intensity similarity and a regularization term. Many image similarity cri-
teria are now available, ranging from the simple sum of squared intensity differ-
ences to robust information theory based measures. In inter-subject registration,
the main problem is not really the intensity similarity measure but rather the
regularization criterion. Some authors used physical models like elasticity or fluid
models [2, 3]. For efficiency reasons, other authors proposed to use non-physical
but efficient regularization methods like Gaussian filtering [4–6]. This type of
regularization was then extended to more general isotropic vectorial filters [7],
and to non-stationary regularization criteria in order to take into account some
anatomical information about the tissue types [8, 9].

However, since we do not have in general a model of the deformation of
organs across subjects, no regularization criterion is obviously more justified than



the others. We could think of of relating the anatomy of two different subjects
by building a model of the organ growth: inverting the model from the first
subject to a sufficiently early stage and growing toward the second subject image
would allow to relate the two anatomies. However, such a computational model
is out of reach now, and most of the existing work in the literature rather try to
capture the organ variability from a statistical point of view on a representative
population of subjects (see e.g. [10–12]). Although the image databases are now
large enough to be representative of the organ variability, the problem remains
of how to use this information to better guide inter-subject registration.

Ashburner at al observed in [13] that, as the structural variability is often
greater in certain directions [14], some form of a tensor field describing nor-
mal variability in each direction may be appropriate. A data representation of
this form, together with a canonical brain template and associated error variance
image, would allow anatomical comparisons to be made against the normal pop-
ulation. This is in essence what we proposed with the Statistical Riemannian
Elasticity [1]: an integrated framework to compute statistics on deformations
and reintroduce them in the registration procedure, based on the field of strain
tensors. The basic idea is to interpret the elastic energy as a distance in the
space of positive definite symmetric matrices (tensors). By changing the classi-
cal Euclidean metric for a more suitable one, namely a log-Euclidean one in [1],
we defined a natural framework for computing statistics on the strain tensor. A
related idea was already present in [13] with a regularization prior based on a
log-Gaussian distribution of the singular values of the Jacobian matrix of the
transformation. Our key contribution in [1] was to consider the strain tensor
instead of the Jacobian of the transformation. This allows to easily extend such
an isotropic and stationary prior to anisotropic and non stationary ones.

In this paper, the goal is to better understand the link between Rieman-
nian elasticity and invariant metrics on groups of diffeomorphisms, as used for
instance in [15, 16]. We also reformulate the derivation of the whole theory to
better stress the link with classical mechanics. We first detail how the standard
elastic regularization can be optimized in a gradient descent based registration
algorithm. Then, we introduce in Section 3 the Riemannian elasticity energy by
changing the Euclidean distance on the strain Tensor to the identity by a log-
Euclidean Riemannian distance. The simplest distances are the isotropic ones:
the energy expression turns out to be very similar to the classical elastic energy
while being locally inverse-consistent. One can also include non-stationary and
anisotropic statistics on the strain tensors observed in a population by taking the
Mahalanobis distance on the logarithmic strain tensor (statistical Riemannian
elasticity). The gradients of these Riemannian elastic criteria needed to imple-
ment a practical registration algorithm are detailed in Section 4. In Section 5, we
modify the spatial integration of the isotropic Riemannian elasticity in order to
make it globally inverse-consistent. This leads to a left- (or right-) invariant en-
ergy on shape diffeomorphisms that can be optimized directly without having to
find the geodesics through an optimization process as in standard diffeomorphic
matching algorithm.



2 Standard elastic regularization

Let I(x) and J(x) the intensity functions of two images and Φ(x) be a non-linear
space transformation assumed to be diffeomorphic with a positive Jacobian ev-
erywhere. We denote by {eα} a set of orthonormal vectors (a basis) of the three-
dimensional space, and by ∂αΦ the directional derivatives of the transformation
along the spaces axis α. The general registration method is to optimize an energy
of the type: C(Φ) = Sim(Images, Φ) + Reg(Φ). Starting from an initial trans-
formation Φ0, a first order gradient descent methods computes the gradient of
the energy ∇C(Φ), and update the transformation using: Φt+1 = Φt−η∇C(Φt).
From a computational points of view, this Lagrangian framework can be advanta-
geously changed into a Eulerian framework to better conserve the diffeomorphic
nature of the mappings [9]. In the following, we do not focus on the optimiza-
tion of the similarity criterion (see e.g. [5, 6]), but rather on the computation of
the gradient of the regularization. We assume Neumann boundary conditions on
transformations and an invariant integration domain (Φ(Ω) = Ω), so that we
can drop the integration domain to simplify notations.

2.1 Elastic deformations

In continuum mechanics [17], one characterizes the deformation of an infinitesi-
mal volume element in the Lagrangian framework using the Cauchy-Green tensor
Σ = ∇ΦT ∇Φ =

∑
α ∂αΦ ∂αΦT. This symmetric matrix is positive definite if the

transformation is diffeomorphic, and measures the local amount of non-rigidity.
Let ∇Φ = V S RT be a singular value decomposition of the transformation Ja-
cobian (R and V are two rotation matrices and S is the diagonal matrix of the
positive singular values). The Cauchy-Green tensor Σ = R S2 RT is equal to
the identity if and only if the transformation is locally a rigid transformation.
Eigenvalues between 0 and 1 indicate a local compression of the material along
the associated eigenvector, while a value above 1 indicates an expansion.

To quantify the deformation, one usually prefers the related Green-St Venant
strain tensor E = 1

2 (Σ − Id), whose eigenvalues are null for no deformation.
This tensor is often expressed using the displacement field: E = 1

2 (∇U +∇UT +
∇UT∇U) (dropping the quadratic term leads to the linear elasticity). Assuming
an isotropic material and a linear Hooks law to relate strain and stress tensors,
one can show that the motion equations derive from the St Venant-Kirchoff
elasticity energy [17]:

RegSVKE(Φ) =
∫

µTr(E2) +
λ

2
Tr(E)2 =

∫
µ

4
Tr
(
(Σ − Id)2

)
+

λ

8
Tr(Σ − Id)2

2.2 Optimizing the elasticity

To minimize this energy in a registration algorithm, we need its gradient. Since
∂uΣ =

∑
α

(
∂αΦ ∂αuT + ∂αu ∂αΦT

)
, the derivative of the elastic energy in the



direction (i.e. displacement field) u is:

∂uRegSVKE(Φ) =
∫
µ
2 Tr((Σ − Id) ∂uΣ) + λ

4 Tr(Σ − Id) Tr(∂uΣ)

=
∑
α

∫
〈 µ (Σ − Id) ∂αΦ | ∂αu 〉+ λ

2 Tr(Σ − Id) 〈 ∂αΦ | ∂αu 〉

Using an integration by part with homogeneous Neumann boundary conditions
[6], we have

∫
〈 v | ∂αu 〉 = −

∫
〈 ∂αv | u 〉, so that the gradient is finally:

∇RegSVKE(Φ) = −
∑
α ∂α

(
Z ∂αΦ

)
with Z = µ(Σ − Id) + λ

2 Tr(Σ − Id) Id

Here, Z is the derivative of the density of energy at each point with respect to
the strain tensor Σ and is known as the 2nd Piola-Kirchoff tensor. The 3rd order
tensor Z∂αΦ is the first Piola-Kirchoff tensor and corresponds to the derivative
of the density of energy with respect to the Jacobian of the transformation.

3 Log-Euclidean Riemannian elasticity

In the standard elasticity theory, the deviation of the positive definite symmetric
matrix Σ (the strain tensor) from the identity (the rigidity) is measured using
the Euclidean matrix distance dist2Eucl(Σ, Id) = Tr((Σ − Id)2). However, it has
been argued in recent works that the Euclidean metric is not a good metric for
the tensor space because positive definite symmetric matrices only constitute a
cone in the Euclidean matrix space. Thus, the tensor space is not complete (null
or negative eigenvalues are at a finite distance). For instance, an expansion of
a factor

√
2 in each direction (leading to Σ = 2 Id) is at the same Euclidean

distance from the identity than the “black hole” transformation Φ(x) = 0 (which
has a non physical null strain tensor). In non-linear registration, this asymmetry
of the regularization leads to different results if we look for the forward or the
backward transformation: this is the inverse-consistency problem [18].

3.1 A Log-Euclidean metric on the strain tensor

To solve the problems of the Euclidean tensor computing, affine-invariant Rie-
mannian metrics were recently proposed [19–22]. Using these metrics, symmetric
matrices with null eigenvalues are basically at an infinite distance from any ten-
sor, and the notion of mean value corresponds to a geometric mean, even if it has
to be computed iteratively. More recently, [23] proposed Log-Euclidean metrics,
which exhibit the same properties while being much easier to compute. As these
metrics simply consist in taking a standard Euclidean metric after a (matrix)
logarithm, and since they correspond to the previous ones as long as the ref-
erence point is the identity, we relied on the later in the original definition of
the Riemannian elasticity [1]. However, the Riemannian Elasticity principle can
be generalized to any Riemannian metric on the tensor space without any re-
striction. We will see that the full linear invariance properties of affine-invariant
metrics will prove to be necessary in Section 5 to properly define a left-invariant
energy on shape diffeomorphisms.



In the log-Euclidean Riemannian framework, the deviation between the ten-
sor Σ and the identity is the tangent vector log(Σ) − log( Id) = log(Σ). In-
terestingly, this tensor is known in continuum mechanics as the logarithmic or
Hencky strain tensor [24], and is used for modeling very large deformations. [25].
It is considered as the natural strain tensor for many materials, but its use was
hampered for a long time because of its computational complexity [26].

For registration, the basic idea is to replace the elastic energy with a regular-
ization that measures the amount of logarithmic strain by taking a Riemannian
distance between Σ and Id. With a log-Euclidean metric, this give the log-
Euclidean Riemannian elasticity:

RegLERE(Φ) = 1
4

∫
dist2Log (Σ, Id) = 1

4

∫
dist2Eucl (log(Σ), log( Id))2 = 1

4

∫
‖log(Σ)‖2

3.2 Isotropic Log-Euclidean Riemannian elasticity

The simplest metric on a logarithmic strain tensor W = log(Σ) is ‖W‖2 =
Tr(W 2). More generally, any metric is given by a bilinear form G(W1,W2) on
the space of symmetric matrices, and is uniquely specified by the quadratic form
‖W‖2 = G(W,W ). A metric is isotropic if ‖W‖2 = ‖R W RT‖2 for any rotation
R. This means that it only depends on the eigenvalues of W , or equivalently
on the matrix invariants Tr(W ), Tr(W 2) and Tr(W 3). However, as the form is
quadratic in W , we are left only with Tr(W )2 and Tr(W 2) that can be weighted
arbitrarily, e.g. by µ and λ/2 (with n.λ > −2µ where n is the dimension of the
space to ensure the positive definiteness of the metric). Finally, the isotropic
log-Euclidean Riemannian elasticity (ILERE) energy has the form:

RegILERE(Φ) =
∫
µ
4 Tr

(
(log(Σ))2

)
+ λ

8 Tr(log(Σ))2

We retrieve the classical form of the isotropic elastic energy with Lamé coeffi-
cients, but with the logarithmic strain tensor. This form was expected as the St
Venant-Kirchoff energy was also derived for isotropic materials.

3.3 Incorporating deformation statistics

In the context of inter-subject or atlas-to-image registration, we do not know
a priori the deformability of the material. Moreover, we don’t expect it to be
isotropic nor stationary. An interesting idea is to learn the local deformability
characteristics from a population of typical transformations Φi(x).

Based on the statistical framework presented in [22], we considered in [1]
the strain tensor as a random variable in the Riemannian space of tensors. We
defined the a priori deformability Σ̄(x) as the Riemannian mean of deformation
tensors Σi(x) = ∇ΦT

i ∇Φi. A related idea was suggested directly on the Jacobian
matrix of the transformation ∇Φ in [27], but using a general matrix instead of a
symmetric one raises important computational and theoretical problems. With
the Log-Euclidean metric on strain tensors, the statistics are quite simple since
we have a closed form for the mean value:

Σ̄(x) = exp(W̄ (x)) with W̄ (x) = 1
N

∑
i log(Σi(x))



This mean deformability Σ̄ is not so easy to understand. If the reference
image is optimally centered with respect to the data, one could expect the mean
deformation to be null (W̄ = 0). However, this equation specifies n(n + 1)/2
scalar components while there are only n free scalar components at each point
of a displacement field. Thus, it seems at the first glance that n(n− 1)/2 scalar
components (e.g. off diagonal terms of W̄ ) could not be prescribed to zero. More
powerful tools from the singularity theory are probably necessary to definitely
conclude on that point.

Going one step further, we can compute the covariance matrix of the random
process Cov(Σi(x)) at each point. Let us decompose the symmetric tensor W =
log(Σ) into a vector Vect(W )T = (w11, w22, w33,

√
2w12,

√
2w13,

√
2w23) that

gathers all the tensor components in an orthonormal basis. In this coordinate sys-
tem, we define the covariance matrix Cov = 1

N

∑
Vect(Wi−W̄ )Vect(Wi−W̄ )T.

To adapt the metric on strain tensors to these first and second order mo-
ments of the random deformation process, a well known and simple tool is the
Mahalanobis distance, so that we finally define the statistical Log-Euclidean Rie-
mannian elasticity (SLERE) energy as:

RegSLERE(Φ) = 1
4

∫
µ2

(W̄ ,Cov)
(log(Σ(x))) = 1

4

∫
Vect(W−W̄ )Cov(-1)Vect(W−W̄ )T

As we are using a Mahalanobis distance, this least-squares criterion can be
seen as the log-likelihood of a Gaussian process on strain tensor fields: we are
implicitly modeling the a-priori probability of the deformation. In a registration
framework, this point of view is particularly interesting as it opens the way to
use Bayesian estimation methods for non-linear registration.

4 Optimizing the Riemannian elasticity

To use the logarithmic elasticity energies as regularization criteria in the registra-
tion framework, we have to compute their gradient. Let us consider the isotropic
Riemannian elasticity first. Thanks to the properties of the differential of the log
(see appendix A), we have Tr(∂V log(Σ)) = Tr(Σ(-1) V ) and 〈 ∂V log(Σ) |W 〉 =
〈 ∂W log(Σ) | V 〉. Thus, using V = ∂uΣ =

∑
α (∂αu ∂αΦT + ∂αΦ ∂αuT) and

W = log(Σ), we can write the directional derivative of the criterion:

∂uRegILERE(Φ) =
∫
µ
2 〈W | ∂V log(Σ) 〉+ λ

4 Tr(W ) Tr(∂V log(Σ))

=
∫
µ
2 〈 ∂W log(Σ) | V 〉+ λ

4 Tr(W ) Tr(Σ(-1) V )

=
∑
α

∫
µ 〈 ∂W log(Σ) ∂αΦ | ∂αu 〉+ λ

2 Tr(W ) 〈Σ(-1) ∂αΦ | ∂αu 〉

Integrating by part with homogeneous Neumann boundary conditions, we end
up with the gradient:

∇RegIRE(Φ) = −
∑
α ∂α(Z ∂αΦ) with Z = µ ∂Wlog(Σ) + λ

2 Tr(W ) Σ(-1) (1)

The same formula still holds for the general statistical Riemannian elasticity
with Z = ∂X log(Σ) where X is the symmetric matrix defined by Vect(X) =



Cov(-1) Vect(log(Σ) − W̄ ). Thus, we may write the gradient of all (St-Venant-
Kirchoff, Isotropic Riemannian and Statistical Riemannian) elastic energies as:

∇Reg(Φ) = −
∑
α ∂α(Z ∂αΦ) (2)

and only the 2nd Piola-Kirchoff tensor Z differs:

ZSVKE = µ(Σ − Id) + λ
2 Tr(Σ − Id) Id (3)

ZILERE = µ ∂W log(Σ) + λ
2 Tr(log(Σ)) Σ(-1) (4)

ZSLERE = ∂X log(Σ) with Vect(X) = Cov(-1) Vect(log(Σ)− W̄ ) (5)

4.1 Practical implementation

A simple and easily parallelisable implementation is the following. First, one
computes the image of the gradient of the transformation, or more particularly
the directional derivatives, for instance using finite differences. ∂αΦ(x) = (Φ(x+
τα eα) − Φ(x − τα eα))/2τα, where τα is the voxel size in the direction α. This
operation is not computationally expensive, but requires to access the value of
the transformation field at neighboring points, which can be time consuming due
to systematic memory page faults in large images.

Then, we process these 3 vectors completely locally to compute 3 new vectors
vα = Z(∂αΦ). This operation is computationally more expensive but is mem-
ory efficient as the resulting vectors can replace the old directional derivatives.
Finally, the gradient of the criterion ∇E =

∑
α ∂αvα may be computed using

finite differences on the resulting image. ∇E(x) =
∑
α(vα(x + τα eα) − vα(x −

τα eα))/2τα. Once again, this is not computationally expensive, but it requires
intensive memory accesses.

The only additional cost for the Riemannian Elasticity is the computation of
the logarithm W = log(Σ) and its directional derivative ∂W log(Σ). This would
probably be prohibitive if we had to rely on numerical approximation methods.
Fortunately, we were able to compute an explicit and very simple and efficient
closed-form expression that only requires the diagonalization of Σ (see appendix
A). Experiments performed in [1] showed that optimizing the isotropic Rieman-
nian elasticity was only 3 time longer than optimizing the standard elasticity.

5 Left Invariant Riemannian Elasticity

Let us now investigate the invariance properties in view of relating the Rie-
mannian elasticity to metrics on diffeomorphisms. Since ∇(Φ(-1)) ◦Φ = (∇Φ)(-1),
the isotropic logarithmic distance of a strain tensor to the identity is locally
inverse-consistent. We have indeed Tr

(
log(ΣΦ)2

)
= Tr

(
log(ΣΦ(-1) ◦ Φ)2

)
and

Tr (log(ΣΦ)) = Tr (log(ΣΦ(-1) ◦ Φ)). This means that, locally, a scaling of a fac-
tor 2 at the same distance from the identity than a scaling of 0.5. However, this
property does not hold globally due to the change of the volume element during



the change of variable y = Φ(x):

RegIRE(Φ(-1)) =
∫
µ
4 Tr

(
(log(ΣΦ(-1)(y)))2

)
+ λ

8 Tr(log(ΣΦ(-1)(y)))2.dy

=
∫
µ
4 Tr

(
(log(ΣΦ(x)))2

)
+ λ

8 Tr(log(ΣΦ(x)))2.
√
|ΣΦ(x)|.dx

5.1 Inverse Consistent Riemannian Elasticity

Following an idea suggested in [28], we can integrate with a volume element
which is the geometric mean between the one in the original space and the one
in the arrival space, i.e.:

√
|∇Φ(x)|.dx = |Σ(x)|1/4.dx. If f is a locally inverse

consistent functional (i.e. such that f(Φ(-1)) ◦ Φ = f(Φ)), then the integral value
F (Φ) =

∫
f(Φ).

√
|∇Φ| is also inverse consistent. Indeed, the change of variable

y = Φ(x) induces dy = |∇Φ(x)|.dx, but since |∇(Φ(-1)) ◦ Φ| = |∇Φ|(-1), we have:

F (Φ(-1)) =
∫

f(Φ(-1))(y).
√
|∇(Φ(-1))(y)|.dy =

∫
f(Φ)(x).

√
|∇(Φ)(x)|.dx = F (Φ)

As the log-Euclidean distance of a strain tensor to the identity is locally
inverse consistent, we thus obtain a globally inverse consistent (isotropic) Rie-
mannian elasticity with:

RegICRE(Φ) =
∫ {

µ

4
Tr
(
log(Σ)2

)
+

λ

8
Tr(log(Σ))2

}
.|Σ|1/4.dx

Another formulation may be obtained using the change of variable y = Φ(x)
and will turn out to be generalizable to a left-invariant energy:

RegICRE(Φ) =
∫

‖log(Σ ◦ Φ(-1))‖2
.|Σ ◦ Φ(-1)|−1/4 (6)

In this formula, the norm ‖.‖ refers to an isotropic norm on symmetric matrices.
The derivative of this new criterion can be deduced from ∂uRegIRE using:

∂u det(Σ)1/4 = 1
4Tr(Σ(-1).∂uΣ).det(Σ)1/4 = 1

2

∑
α 〈Σ(-1).∂αΦ | ∂αu 〉det(Σ)1/4

We have one again ∂uRegICRE(Φ) =
∑
α

∫
〈 Z.∂αΦ | ∂αu 〉, with

ZICRE =
(

ZIRE +
1
2
‖W‖2.Σ(-1)

)
det(Σ)1/4

Thus, we have obtained an inverse invariant energy on diffeomorphisms which
allows us to optimize directly their regularity in registration processes without
having to integrate numerically along the transformation trajectory for com-
puting the length of geodesics, as for the invariant metrics on diffeomorphisms
proposed in [15, 16].



5.2 Left-invariant Riemannian elasticity

This energy is positive and null only is the transformation is locally rigid every-
where. It can be turned into a left- (or right-) invariant “distance” by left- (resp.
right) translation. Let us investigate the left-invariant “distance” (The right-
invariant distance is automatically given by distR(Φ, Ψ) = distL(Φ(-1), Ψ (-1))):

dist2L(Φ, Ψ) = RegICRE(Φ(-1) ◦ Ψ) =
∫

‖log(ΣΦ(-1)◦Ψ )‖2
.|Φ(-1) ◦ Ψ |1/4

Thanks to the inverse invariance, the “distance” is symmetric. It is null if and
only if the two diffeomorphisms differ by a local rotation everywhere. However,
to show that this is really a left-invariant distance on diffeomorphisms of rigid
shapes, the triangular inequality remains to be established. Moreover, we suspect
that we obtain an extrinsic distance and not a Riemannian one.

The expression of the left-invariant distance can be worked out to see how
much it differs from the previously proposed statistical Riemannian elasticity.
We first notice that ∇(Φ(-1) ◦ Ψ) = ∇Ψ.∇(Φ(-1)) ◦ Ψ = ∇Ψ.(∇Φ)(-1) ◦ (Φ(-1) ◦ Ψ).
Using the singular value decomposition ∇Φ = U.S.V T, there exists a rotation
R = V.UT at each point such that R.∇Φ = Σ

1/2
Φ . Thus, we have:

ΣΦ(-1)◦Ψ = RT.
(
Σ
−1/2
Φ ◦ (Φ(-1) ◦ Ψ)

)
.ΣΨ .

(
Σ
−1/2
Φ ◦ (Φ(-1) ◦ Ψ)

)
.R

But thanks to log(RT.Σ.R) = RT. log(Σ).R and to the isotropy of the norm on
symmetric matrices, the rotation R disappear in the distance. Finally, using the
change of variable y = Ψ(x), we end up with

dist2L(Φ, Ψ) =
∫ ∥∥∥log

(
(Σ−1/2

Φ ◦ Φ(-1)).(ΣΨ ◦ Ψ (-1)).(Σ−1/2
Φ ◦ Φ(-1))

)∥∥∥2

.

det(ΣΨ ◦ Ψ (-1))−1/4.det(ΣΦ ◦ Φ(-1))−1/4

Besides symmetric corrections for the volume element, one recognize here
the affine-invariant distance on symmetric matrices instead of the log-Euclidean
one as we originally proposed for the statistical Riemannian elasticity. Using the
resampled tensor fields Σ̂φ = ΣΦ ◦ Φ(-1) and Σ̂ψ = ΣΨ ◦ Ψ (-1), we finally obtain:

dist2L(Φ, Ψ) =
∫

dist2Aff
(
Σ̂Φ , Σ̂Ψ

)
.det(Σ̂Ψ )−1/4.det(Σ̂Φ)−1/4 (7)

Other simple formulations of the left (and of the right) invariant “distance”
are possible, and we are currently analyzing them to find out the more intu-
itive ones. Following the statistical framework of [29], computing the derivatives
will allow determining the barycentric equation of the Fréchet “mean diffeomor-
phisms” according to these “metrics”, and a gradient descent algorithm to obtain
them. Then, we hope to be able to compute second order moment and to define
a kind of Mahalanobis distance (including local anisotropy and non-stationarity)
on shape diffeomorphisms.



6 Discussion

Riemannian elasticity is an integrated framework to compute the statistics on
deformations and re-introduce them as constraints in non-linear registration al-
gorithms. This framework is based on the interpretation of the elastic energy as a
Euclidean distance between the Cauchy-Green strain tensor and the identity (i.e.
the local rigidity). By providing the space of tensors with a more suitable Rie-
mannian metric, for instance a Log-Euclidean one, we can define proper statistics
on deformations, like the mean and the covariance matrix. Taking these mea-
surements into account in a statistical (i.e. a Mahalanobis) distance, we end-up
with the statistical Riemannian elasticity regularization criterion. This criterion
can also be viewed as the log-likelihood of the deformation probability, which
opens the way to Bayesian deformable image registration algorithms.

We investigated in this paper the theoretical properties of the isotropic and
stationary version and we showed that it was possible to obtain an inverse-
consistent criterion by modifying the spatial integration measure. It is remark-
able that this allows to define a left or right invariant energy between two dif-
feomorphisms without having to optimize for the geodesic path between them.
However, many questions are left open. For instance, it remains to be established
that our energy is a distance, and if it is Riemannian or extrinsic. Determining
the geodesics (if they exist) would also be very interesting to better understand
the properties of these energies. This would probably help also in generalizing
the statistical Riemannian elasticity in a consistent way, in order to measure and
take into account anisotropic and non-stationary behavior of the deformations.
On a more theoretical point of view, it would be interesting to make the link
between our approach and the Brownian warps of [28, 30].
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A Appendix: tensor derivatives

A.1 Exponential of a tensor

Let W = R S RT be a diagonalization of a symmetric matrix. We can write
any power of W in the same basis: W k = R Sk RT. Thus, the rotation matrices
can be factored out in the series defining the matrix exponential, so that the
exponential is applied directly to the eigenvalues:

exp(W ) =
+∞∑
k=0

W k

k!
= R DIAG(exp(si)) RT

This series converges for any symmetric matrix argument, and it is easy to
see that its inverse is well defined for any positive definite symmetric matrix
Σ = R DIAG(ai) RT. This is the function: log(Σ) = R (DIAG(log(ai)))RT. It is
important to notice that there is no series expansion which is converging for all
arguments, like for the exponential.

A.2 Differential of the exponential

The matrix exponential and logarithm realize a one-to-one mapping between the
space of symmetric matrices to the the space of tensors. Moreover, one can show
that this mapping is diffeomorphic, since the differential has no singularities. Us-
ing the Taylor expansion (W + εV )k = W k + ε

∑k−1
i=0 W i V W k−i−1 + O(ε2) for

k ≥ 1, we obtain by identification the directional derivative ∂V exp(W ) by gath-
ering the first order terms in ε in the series exp(W +εV ) =

∑+∞
k=0 (W + εV )k/k!:

∂V exp(W ) = (d exp(W ))(V ) =
+∞∑
k=1

1
k!

k−1∑
i=0

W i V W k−i−1 (8)

For simplifying the differential, we can see that using the diagonalization W =
RS RT in the series gives:

∂V exp(W ) = R ∂(RT V R) exp(S) RT



Thus, we are left with the computation of ∂V exp(S) for S diagonal. As [SlV Sk−l−1]ij =

sli vij sk−l−1
j , we have [∂V exp(S)]ij =

{∑+∞
k=1

1
k!

∑k−1
l=0 sli sk−l−1

j

}
vij = qij vij

with

qij =
+∞∑
k=1

1
k!

k−1∑
l=0

sli sk−l−1
j =

+∞∑
k=1

1
k!

ski − skj
si − sj

=
exp(si)− exp(sj)

si − sj

= exp(sj)
(

1 +
(si − sj)

2
+

(si − sj)2

6
+ O

(
(si − sj)3

))
The last Taylor expansion shows that this formula is computationally well posed.
Moreover, we have qij ≥ 1 > 0, so that we can conclude that d exp(S) is a diag-
onal linear form that is always invertible: the exponential is a diffeomorphism.

A.3 Differential of the logarithm

To compute the differential of the logarithm function, we do not have a series
that we could perturb like for the exponential, but we can simply inverse the
differential of the exponential as a linear form: as exp(log(Σ)) = Σ, we have
(d log(Σ)(V ) = (d exp(log(Σ))(-1)V . Using D = exp(S), the inverse is easily
expressed for a diagonal matrix: [(d exp(S))(-1) V ]ij = vij/qij . Thus we have:

[∂V log(D)]ij = vij
log(di)− log(dj)

di − dj

Notice that

q(-1)
ij =

log(di)− log(dj)
di − dj

=
1
dj

(
1− di − dj

2 dj
+

(di − dj)2

3 d2
j

+ O
(
(di − dj)3

))
so that the formula is numerically stable. Finally, using the identity log(Σ) =
RT log(R Σ RT) R for any rotation R, we have:

∂V log(R D RT) = R (∂RT V R log(D) ) RT

That way, we may compute the differential at any point Σ = R D RT.

A.4 Remarkable identities

∂log(Σ) log(Σ) = Σ(-1) log(Σ) = log(Σ) Σ(-1) (9)
〈 ∂V log(Σ) |W 〉 = 〈 ∂W log(Σ) | V 〉 (10)

∂log(Σ) log(Σ) = R
(
∂log(D) log(D)

)
RT = R Diag(log(di)/di) RT = Σ(-1) log(Σ)

〈 ∂V log(Σ) |R D RT 〉 = Tr ((∂RT V R log(D) ) RT W R)

= [RT V R]ij
log(di)− log(dj)

di − dj
[RT W R]ij

= Tr ((∂RT W R log(D) ) RT V R) = 〈 ∂W log(Σ) | V 〉


