Reconstructing a 3D Structure from Serial Histological Sections
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We consider the problem of aligning histological sections for 3D reconstruction and analysis. The method
we propose is based on a block matching strategy that allows us to compute local displacements between the
sections. We then collect these local measures to estimate a rigid transformation. Our emphasis is on the
necessity to use a robust approach for this estimation step. The process is integrated within a multi-scale
scheme to improve both accuracy and computation time. We prove experimentally that we can reach sub-pixel
accuracy and we show some results of aligning histological sections from a rat’s brain and a rhesus monkey’s brain.
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1. Introduction

1.1. Presentation of the problem

Histological sections provide useful information
for the diagnosis or the study of a pathology. To
obtain histological sections, the anatomical struc-
ture is first fixed using paraffin embedding or by
cryogenization. Then it is trimmed into thin sec-
tions with a constant inter-section gap. The mi-
croscopic images are then scanned using a digital
camera. Very often, the acquisition is performed
independently for each section and the alignment
is lost as we can see in Figure 1. Hence, in order
to perform a 3D reconstruction of the anatomi-
cal structure, we need to register the sections to
recover the original alignment.

The 3D reconstruction from serial sections may
lead to numerous applications both at the micro-
scopic and the macroscopic levels. At the micro-
scopic level, which corresponds to a magnification
greater than 100, the 3D reconstruction study al-
lows one to define new and more accurate his-
tological and cytological parameters such as the
tumoral angiogenis in oncology, the fibrosis de-
velopment in hepatitis, the cellular distortions in
prion diseases and, more generally, to quantify
many physiological and pathological phenomena.
At the macroscopic level, the 3D reconstruction
study allows one to study objects that are too
small to be accurately dissected and too large to

be analyzed based only on the 2D slices.

With average quality data which can be ob-
tained in current laboratories, different problems
can arise. When laying the sample on the cover-
glass, some spots can appear and the edges of
the cover-glass can be in the field of view of the
camera (as in the example of Figure 1). All this
can create many artifacts in the background. The
intensity contrast can be different from one slice
to another (e.g. due to staining), and changes in
the lighting can occur during the digitalization.
Moreover, during sectioning, the edges of the sec-
tions can be distorted or even torn and, more gen-
erally, the whole section can be deformed. Never-
theless, we will assume in the following that the
distortions remain small enough to consider the
transformation between two consecutive sections
as being rigid.

Different methods have been proposed in the
literature to align histological sections. The most
common one is the manual registration using in-
teractive operator alignment (6; 15; 26). It is
a non-reproducible method because it is user-
dependent and it could depend on the structure
the user wants to focus on. Moreover, it is a
tremendous task and it cannot be used when the
number of sections is large.

Other methods are based on fiducial markers.
Useful markers can be obtained by sticking nee-
dles in the structure before cutting (9). Never-



Figure 1. Three consecutive stained rat’s brain histological sections. We can see how they are misaligned.

theless the resulting tracks may be unreliable if
the cutting planes are not perfectly orthogonal to
the needles. Moreover, creating such tracks can
destroy a part of the structure and then impede
any post-mortem diagnosis.

Features automatically extracted from the im-
ages have also been used to drive registration.
A classical method consists of segmenting the
anatomical structure in two successive sections,
and then computing the principal-axes transfor-
mation (PAT) (1; 10). Schormann et al argue
in (28) that the precision of this method remains
very limited. Much improved results are obtained
by matching contours (34; 4), edges (13; 12), or
points (23).

Finally, intensity-based methods were also pro-
posed in the context of section registration. These
methods search for the transformation that max-
imizes a measure of the intensity similarity be-
tween corresponding pixels. Some authors have
used the correlation coefficient as a similarity
measure (10; 2) while others have used mutual
information (14).

To our knowledge there is no quantitative com-
parison between these approaches. This would be
an interesting future work, although this is far be-
yond the scope of this article, in which we concen-
trate on a new robust intensity based approach.

1.2. Motivation

A particular difficulty of section registration
is that the structures represented in two succes-
sive slices are not perfectly equivalent from an
anatomical point of view. Severe morphological

differences may be observed if the inter-slice gap
is large, as can be seen in Figure 2.

Our method does not make the assumption
that two consecutive sections are anatomically
equivalent. It only assumes local similarities
and tries to find the rigid transformation that
matches a maximum of similar regions. Local
displacements between two sections are first com-
puted using a block-matching strategy (11). The
rigid transformation is then estimated from these
matches as the solution of a robust regression
problem. Robustness is a key point because we
want the transformation to be governed by the
majority of matches instead of being averaged
over all the displacements. This process is it-
erated within a multi-scale scheme to deal with
large displacements and to obtain accurate re-
sults.

We detail the different steps of the algorithm
in section 2. In section 3, we analyze quantita-
tively its accuracy and robustness with respect
to the relative displacement of two sections. Sec-
tion 4 presents results of reconstructing a rat’s
brain and a Rhesus monkey’s brain. Finally, we
propose several research tracks for future work in
section 5.

2. Algorithm

The algorithm takes as input two section im-
ages: a reference image I; and a floating image
I, with the same dimensions X x Y. The out-
put will be the transformation 7" and the image
I = I, o T, which is aligned with I;. The



Figure 2. Three consecutive sections from a rat’s brain dataset as an illustration of morphological changes
from one section to another. The inter-slice gap is 0.4 millimeters.

whole process follows from a multi-scale iterative
scheme where, at each stage, two successive tasks
are performed. The first is computing a displace-
ment field between I; and the current floating
image I; this is done through a block matching
strategy. The second is gathering these displace-
ments to estimate a rigid transformation S. Up-
dating the current transformation according to
T + SoT, we get the new floating image I by
resampling only once the image I5 in terms of the
new 7. Then, the scheme parameters are modi-
fied and the process is iterated.

2.1. The Block Matching step

Block Matching techniques, which were previ-
ously developed for video compression (11), have
inspired several algorithms in image registration
(5; 8). The basic principle is to move a block
B’ of the floating image in its neighborhood and
to compare it to the blocks B that have similar
positions in the reference image. The best cor-
responding block B allows one to define a vector
between the centers of the blocks B and B'.

The block matching algorithm involves three
parameters: the size N of the blocks (each block
contains N x N pixels), the half width Q of the
neighborhood which is searched, and the spac-
ing A; between two consecutive blocks B’ to be
displaced. For each block B’, 4Q? neighboring
blocks have to be tested, which may be compu-
tationally expensive. Hence, we generally sub-
sample the authorized displacements of a block
according to a step A,. This results in the fol-

lowing algorithm, where the coordinates (Z,j) of
a block are taken as its left up corner :

For (i=0;i<X—-Nj;i=1i+A1)
For (j=0;j<Y—-N;j=j+A1)
Consider the block B;; in image I:

—For (k=1—Q;k<i+Q;k=k+A))
—For(I=7-Q;1<j+Q;1l=14+A)

— Compute the value Cij of a given simi-
larity measure between Bj; and the block
By in I.

Let By, = argmax C’”l be the block that max-
imizes the similarity measure. It defines the
displacement vector between (i + N/2, j + N/2)
and (m+ N/2,n+ N/2).

One important feature of the block matching
process is the choice of the similarity measure.
As discussed in (32; 24), it should depend on the
expected relationship between the intensities of
corresponding pixels of two successive sections.
In the case of histological sections, it is reasonable
to assume that this relationship is affine within a
block (locally affine). Hence, the similarity be-
tween two blocks can be measured using the cor-
relation coefficient (3; 22):
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where I(,; and or(a,b) (resp. Iy(,,) and
or, (u,v)) are the mean and standard deviation
of the block B,y (resp. Bl,).

In our block matching experience, the main
problem when using a similarity measure is that
the blocks are not always comparable. This may
occur due to morphological differences between
the sections, background artifacts, or simply be-
cause the displaced block is almost uniform. This
leads to a certain number of bad matches: in our
experiments, typically 20% of the displacement
vectors are due to outliers.

This problem can be partially alleviated by
constraining the authorized displacements to
privileged directions, as is classical in optical flow
formulations (8; 31). Doing so, however, we may
remove too much information on the actual mo-
tion we want to measure. We propose instead to
keep the displacement field as is and to estimate
the global rigid transformation using a robust ap-
proach.

2.2. Computing a robust estimate of the
rigid transformation

The block matching step provides a list of cor-
responding 2D points, 2} and yi. Assuming that
there exists a rigid transformation between the
sections, the problem is to estimate a two-by-
two rotation matrix R and a translation vec-
tor t = (t1,t2) that characterize the inter-section
displacement. A standard approach to solve such
a problem is to perform a least squares (LS) re-
gression on the matched points:

o _ ,
(R, %) = argmin ;”Tk” : (2)

where r;, = yr — Rxy — t are the residual errors
and ||.|| denotes the Euclidean norm.

The main advantages of the LS estimator are
that the solution is unique and fast to compute.
Several closed forms are discussed in (7). How-
ever, LS is known to have poor robustness proper-
ties (25), in the sense that its solution is sensitive
to outliers. In our experiments, the LS estimate
is generally inaccurate.

A number of robust estimation techniques have
been investigated in the literature of point match-
ing (33), among which M-estimators appear

as the most straightforward alternative to LS.
The M-estimators generalize LS by replacing the
squared residuals ||rg||? in equation (2) with an-
other function, yielding

(B,1) = argmin Y p(|Ire)), (3)
’ k

where p is a symmetric, positive valued, func-
tion with a unique minimum at zero. The ba-
sic principle is to reduce the influence of outliers
by choosing a slowly increasing p-function. One
usually distinguishes between two classes of M-
estimators depending on whether p is convex or
not. Although M-estimators from the latter class
tend to be less sensitive to large errors, the unic-
ity of the solution is guaranteed only for convex
p-functions (16).

In our particular case, we do not expect large
errors since the y; points as well as the z points
have bounded norms. We have thus chosen a con-
vex M-estimator, namely the L, estimator which
corresponds to the simple function p(z) = |z|.
Unlike in the LS estimation, only a numerical so-
lution can be performed. To do so, we use Pow-
ell’s method (19) which does not manipulate the
derivatives of the criterion to be minimized.

We note that other candidates such as the Hu-
ber or “Fair” estimators are theoretically more
efficient than L; (25). The main advantage of
L, over those M-estimators is that it does not
require estimating a scale parameter beforehand.
After computing the L; estimate, however, we
may compute such a scale parameter and refine
the solution using another M-estimator. In prac-
tice, we did not observe sensible improvements
from the L, solution and thus we decided to sup-
press the refinement step.

Another observation is that our results were of-
ten slightly better when replacing the Euclidean
norm of the residuals in equation (3) with their
l-norm (or Manhattan distance), i.e. |rx|l; =
|rk1| + |7k2|, where (re1,7k2) are the components
of 1, in the coordinate system of the reference sec-
tion. This might sound surprising since choosing
the 1-norm causes the solution to be dependent
upon the particular coordinate system in which
the points (zg, yx) are given. On the other hand,
the block matching algorithm itself is coordinate



dependent and, thus, there is no reason why the
estimated transformation should not.

The implementation of this coordinate-wise L;
estimator using Powell’s method yields the same
computation time as for the conventional L;.
This is actually the default estimation method
that is used in our implementation.

2.3. Multi-scale implementation

To obtain a precise displacement field, we
should choose low values for A; and As. On the
other hand, the complexity of the block matching
process is proportional to (N2 Q2)/(A2 A2) (20).
We propose a multi-resolution method to achieve
a good trade-off between accuracy and complex-
ity. We start at a coarse scale with large values for
N, Q, Ay, and A,. We then progressively refine
the scale by decreasing these parameters. In this
manner, we find large but inaccurate displace-
ments at the higher level, and smaller but more
accurate ones as the scale decreases. The param-
eters of the algorithm are initialized according to
the image size. Our usual choice is:

N=min(X’8Y),Q:N,A1=%,A2=4.

At each iteration, we compute a variation mea-
sure § between the new transformation SoT and
the previous one, T'. Let Py, Py, P53, P, be the four
corners of the floating image Io:

4
5=1 SIS o T(R) - T(RIP- (4)

The decision rule for changing the scale is to com-
pare § to a given threshold e. If § > €, we iterate
at the same scale; otherwise, we iterate with each
parameter halfed. Notice that the complexity is
then constant at each level. The whole process is
stopped when the block size becomes inferior to a
given limit (typically, N, = 4), after which the
information content of the blocks is considered no
longer sufficient to draw meaningful comparisons.

3. Robustness and accuracy analysis

To characterize the performance and the ro-
bustness of the algorithm, we used the data of
a rat brain from the UCLA rat brain atlas (29)

where the cryoplaned block-face was consistently
positioned during section acquisition. Thus, the
“ground truth” registration is the identity. Then,
we randomly resampled consecutive sections with
a known rigid transformation (see Figure 3) and
we studied the error 86 = |§ — | on the rotation
angle and the error §t = ||t — Ryt|| on transla-
tion component (21). In the following, the exper-
iments are performed on 3 couples of contiguous
sections from the middle of the brain. To speed-
up the statistics (we performed more than 1600
registrations), we extracted a sub-image of size
256 x 256 in the 1024 x 1024 images.
Sensitivity to rotation. A first experiment
with a translation smaller than 40 pixels shows
that the algorithm is almost completely insensi-
tive to this kind of translation. Thus, we can
focus in a first step on the parameter 6 alone.

In Figure 4, we show the translation error ¢

with respect to the rotation angle §. Each point
on the graph is the average value for 50 regis-
trations with random translations. On the large
scale graph, we clearly see that the algorithm al-
ways converge for rotations of an angle less than
0... = 28 deg. For higher values, the algorithm
occasionally diverges. On the small scale graph,
we see that the accuracy of the translation is sta-
tistically constant (RMS of 0.75 pixels) when the
algorithm converges. We observed exactly the
same type of graphs for the error on the rota-
tion angle, with the same cutting angle value and
a mean accuracy of 0.2 degrees.
Sensitivity to translation. We repeated the
same experiment as above, but keeping rotations
under 15 degrees with a translation range from 0
to 100 pixels. We obtain very similar results: a
statistically constant accuracy of the transforma-
tion for translations less than a cut off value of
t... = 52 pixels and sporadic to continual diver-
gence above this threshold.

This cut off value approximately corresponds
to 1.5 times the half width of the block neighbor-
hood at the higher level (2 = 32 pixels). Since
the block matching is optimized with a maximal
displacement of /2, this means that at least
50 % of the corresponding blocks need to be in
the search area, which is in accordance with what



Figure 3. Left and center: two consecutive slices shifted by a rotation of 20 degrees. Right: the second

slice is registered to the first one.
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Figure 4. Accuracy of the estimated translation with respect to the angle of rotation. The upper left

window shows a magnified view of the graph.

we expected. Hence, the size of the convergence
basin for translations is directly linked to the size
of the block neighborhood 2 and can be extended
by taking larger blocks.

4. Results

Rat’s brain. We realigned several datasets from
rat’s brains containing from 20 to 26 sections
with a resolution of 768 x 576 pixels (0.03mm X
0.03mm) and an inter-section gap of 0.4mm. This
was achieved without any preprocessing step.
The registration of two sections took around one



minute on a standard PC (OS Linux), 450 MHz,
256 MBytes of RAM. In Figure 5, we compare the
result of aligning the sections using the presented
method with the PAT method, and with the max-
imization of the correlation coefficient over the
whole images (using Powell’s method as an op-
timization scheme). This dataset corresponds to
the sections shown in Figure 2. We notice that
the inner structures are better observed in our
result image.

In Figure 6, we segmented the cortical sur-
face and an ischaemia area from another recon-
structed block using digital topology techniques.
This data corresponds to the sections shown in
Figure 1.

Figure 6. Reconstruction with segmentation of an
ischaemia area.

Rhesus Monkey’s brain. We have realigned
170 sections from a Rhesus Monkey’s brain (30).
These sections with a resolution of 636 x 512 pix-
els (0.085mm x 0.085mm) and an inter-section
gap of 0.1mm correspond to the posterior third
of the left hemisphere. The result is shown in
Figure 7 and compared to the original data. One
may notice that large displacements have been re-
covered. Using the reconstructed volume, we seg-
mented the cortical surface and the white matter

by combining 3D digital topology techniques and
deformable models (18) (see Figure 8).

Figure 8. 3D Reconstruction of the Rhesus Mon-
key’s brain with segmentation of the white matter.

5. Conclusion

We have presented a new method to align his-
tological sections. It alternates between comput-
ing local displacements using a block-matching
strategy and robustly estimating a rigid transfor-
mation from these matches. The whole process
is integrated in a multiscale scheme to improve
the computation time as well as the registration
accuracy. Our algorithm has been shown experi-
mentally to provide sub-pixel accuracy while be-
ing able to compensate for large displacements.

An extension of the method to non-rigid reg-
istration would be useful to compensate for geo-
metrical distortions that occur during sectioning.
This is a difficult problem because part of the
inter-section deformations are due to morpholog-
ical differences and must not be corrected. In-
stead of evaluating geometrical distortions slice
by slice, perhaps a better approach is to non-
rigidly register the 3D reconstructed structure
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Figure 5. Median perpendicular view of the section set. Left, initial data. Middle left, after registration
using the principal axes method. Middle right, after registration using global correlation. Right, after
registration using the presented method.

Il

Figure 7. Rhesus Monkey’s brain. Left: three orthogonal views of the initial section stack. Right: the
same views after realignment.



(after rigid realignment of the sections) with an-
other 3D modality such as MR (27) or PET (17).

Another current limitation of the method is
that the registrations are performed indepen-
dently for each pair of contiguous sections. As
a consequence, registration errors are integrated
from the beginning of the stack to the end of
the stack. When dealing with a large number
of sections, this might prevent any reliable 3D re-
construction. Such error propagation might be
reduced by putting spatial constraints to the re-
constructed structure.
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