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Abstract. Our purpose is to provide an augmented reality system for
Radio-Frequency guidance that could superimpose a 3D model of the
liver, its vessels and tumors (reconstructed from CT images) on external
video images of the patient. In this paper, we point out that clinical us-
ability not only need the best affordable registration accuracy, but also
a certification that the required accuracy is met, since clinical condi-
tions change from one intervention to the other. Beginning by address-
ing accuracy performances, we show that a 3D/2D registration based
on radio-opaque fiducials is more adapted to our application constraints
than other methods. Then, we outline a lack in their statistical assump-
tions which leads us to the derivation of a new extended 3D/2D criterion.
Careful validation experiments on real data show that an accuracy of 2
mm can be achieved in clinically relevant conditions, and that our new
criterion is up to 9% more accurate, while keeping a computation time
compatible with real-time at 20 to 40 Hz.

After the fulfillment of our statistical hypotheses, we turn to safety issues.
Propagating the data noise through both our criterion and the classical
one, we obtain an explicit formulation of the registration error. As the
real conditions do not always fit the theory, it is critical to validate
our prediction with real data. Thus, we perform a rigorous incremental
validation of each assumption using successively: synthetic data, real
video images of a precisely known object, and finally real CT and video
images of a soft phantom. Results point out that our error prediction is
fully valid in our application range. Eventually, we provide an accurate
Augmented Reality guidance system that allows the automatic detection
of potentially inaccurate guidance.

1 Introduction

The treatment of liver tumors by Radio-Frequency (RF) ablation is a new tech-
nique which begins to be widely used [11]. However, the guidance procedure to
reach the tumors with the electrode is still made visually with per-operative 2D
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cross-sections of the patient using either Ultra-Sound (US) or Computed Tomog-
raphy (CT) images. Our purpose is to build an augmented reality system that
could superimpose reconstructions of the 3D liver and tumors onto video images
in order to improve the surgeon’s accuracy during the guidance step. According
to surgeons, the overall accuracy of such a system has to be less than 5 mm to
provide significant help.

In our setup, a CT-scan of the patient is acquired just before the interven-
tion (RF is a radiological act), and an automatic 3D-reconstructions of his skin,
his liver and the tumors is performed [2]. Two cameras (jointly calibrated) are
viewing the patient’s skin from two different points of view. The patient is intu-
bated during the intervention, so the volume of gas in his lungs can be controlled
and monitored. Then, it is possible to fix the volume at the same value during
a few seconds repetitively and to perform the electrode’s manipulation almost
in the same volume’s condition than the one obtained during the preliminary
CT-scan. Balter [1] and Wong [20] indicates that the mean tumor repositioning
at exhalation phase in a respiratory-gated radiotherapy context is under 1 mm.
Thus, it is reasonable to assume that a rigid registration is sufficient to register
accurately the 3D-model extracted from the CT with the 2D video images.

Critical issues for computer-guided therapy systems are accuracy and reliabil-
ity. Indeed, the surgeon has no other source of information than the augmented
reality system during the guidance step: he has to rely fully on it. As many
parameters can change from one intervention to the other (angle between the
cameras, cameras focal, curvature of the patient abdomen), the accuracy pro-
vided can sharply vary. For instance, in a point-based registration context, there
can be a factor two on the accuracy when the cameras angle goes from 20o to
60o [12]. In accordance with this fact, we cannot afford providing a system with-
out assessing its accuracy during any possible intervention. Consequently, we
need to tackle both the system accuracy and the capability to assess its value
before the intervention. Moreover, every gain in accuracy may be exploited to re-
lease some constraints in the system setup (position of the cameras, ergonomics,
computation time...).

To answer these requirements, we review in Section 2 the existing registration
techniques, and we focus more particularly on 3D/2D points based methods.
As their statistical assumptions are not fully satisfied in our application (our
3D point measurements cannot be considered as noise-free), we derive a new
criterion that extends the classical one. Experimental results on synthetic and
phantom data show that it provides a registration up to 20% more accurate. To
be able to quantify online this accuracy, we apply in Section 3 the general theory
of error propagation to our new criterion and its standard version. This gives us
an analytical formulation of the covariance matrix of the seeked transformation.
But this is only the first part of the job: we then need to validate this prediction
w.r.t. the statistical assumptions used to derive the theoretical formula (small
non-linearity of the criterion, perfect calibration, unbiased Gaussian noise on
points, etc.). Incremental tests with synthetic data, real cameras, and finally
real data of a soft phantom, show that our prediction is reliable for our current



Validation of 3D/2D Registration Error Prediction for Augmented Reality 3

setup, but may require the inclusion of calibration and skin motion errors if it
was to become more accurate.

2 A New 3D/2D Point-Based Registration Criterion

This section aims at finding the most accurate registration method for our ap-
plication.

2.1 Surfacic, Iconic, 3D/3D or 3D/2D Registration?

Surface and iconic registration using mutual information have been used to reg-
ister the 3D surface of the face to either video images [19] or another 3D surface
acquired with a laser range scanner [5]. In both cases, thanks to several highly
curved parts on the model (nose, ears, eyes), the reported accuracy was under 5
mm. We believe that in our case, the “cylindrical” shape of the human abdomen
is likely to lead to much larger uncertainties along the cranio-caudal axis.

Landmarks 3D/3D or 3D/2D registration can be performed when several
precisely located points are visible both in the 3D-model and in the video im-
ages. Since the landmarks are really homologous, the geometry of the underlying
abdomen surface is not any more a problem. As there are no visible anatomical
landmarks in our case, we chose to stick to the patient skin some radio-opaque
markers that are currently localized interactively (an automatic segmentation is
currently being tested). The matching is performed thanks to epipolar geometry
between video points, and using a prediction/verification (alignment) algorithm
between video and CT points.

As our system is based on a stereoscopic video acquisition, one could think of
using a stereoscopic reconstruction. In our case, the main problem is the possible
occlusion of some 2D points in one of the cameras, which would lead to discarding
the information provided by this point in the other camera. Moreover, one would
need to compute non-isotropic uncertainty of the reconstructed 3D points [8] to
optimize a 3D/3D registration criterion fitting well the statistical assumptions.
Thus, we believe that it is better to rely on LSQ 3D/2D registration criteria.

The 3D/2D registration problem was largely considered in a wide variety of
cases. Briefly, we can classify the different methods in 3 groups: closed-form, lin-
ear and non-linear. The two first method classes were proposed in the last decades
to find the registration as quickly as possible to fulfill real-time constraints [6,
3, 7]. However they are very sensitive to noise because they assume that data
points are exact, contrary to non-linear method. Consequently, non-linear meth-
ods provides better accuracy results [10, 18]. As the accuracy is crucial in our
application, we think that a LSQ criterion optimization has a definite advantage
among the other methods because it can take into account the whole information
provided by the data. However, all of the existing methods [4, 9, 15, 10] implicitly
consider that 2D points are noisy, but that 3D points of the model to register
are exact. In our case, this assumption is definitely questionable, which lead to
the development of a new maximum likelihood (ML) criterion generalizing the
standard 3D/2D LSQ criterion.
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2.2 Maximum Likelihood 3D/2D Registration

Notations Let Mi (i ∈ {1 · · ·N}) be the 3D points that represent the exact
localization of the radio-opaque fiducials in the CT-scan reference frame and
mi

(l) be the 2D points that represent its exact position in the images of camera
(l). To account for occlusion, we use a binary variable ξl

i equal to 1 if Mi is
observed in camera (l) and 0 otherwise. We denote by < ·|· > the cross-products,
by T ? M the action of the rigid transformation T on the 3D point M and by
Pl (1 ≤ l ≤ S) the camera’s projective functions from 3D to 2D such that
m

(l)
i = P (l)(T ? Mi). In the following sections, Â will represent an estimation of

a perfect data A, and Ã will represent an observed measure of a perfect data A.

Standard Projective Points Correspondences (SPPC) Criterion As-
suming that the 3D points are exact (M̃i = Mi) and that the 2D points only are
corrupted by an isotropic Gaussian noise ηi of variance σ2

2D, the probability of
measuring the projection of the 3D point Mi at the location m̃i

(l) in image (l),
knowing the transformation parameters θ = {T} is given by:

p(m̃i
(l) | θ) =

1
2πσ2

2D

· exp
(
− ‖ P (l)(T ? Mi)− m̃i

(l) ‖2
2 · σ2D

2

)

Let χ be the data vector regrouping all the measurements, in this case the 2D
points m̃i

(l) only. Since the detection of each point is performed independently,
the probability of the observed data is p(χ | θ) =

∏S
l=1

∏N
i=1 p(m̃i

(l) | θ)ξl
i . In

this formula, unobserved 2D points (for which ξl
i = 0) are implicitly taken out of

the probability. Now, the Maximum likelihood transformation θ̂ maximizes the
probability of the observed data, or equivalently, minimizes its negative log:

C2D(T ) =
S∑

l=1

N∑

i=1

ξl
i ·

∥∥∥P (l)(T ? Mi)− m̃
(l)

i

∥∥∥
2

2 · σ2D
2

+

(
S∑

l=1

N∑

i=1

ξl
i

)
· log[2πσ2

2D] (1)

Thus, up to a constant factor, this ML estimation boils down to the classical
3D/2D points LSQ criterion.

Extended Projective Points Correspondences (EPPC) Criterion To
introduce a more realistic statistical hypothesis on the 3D data, it is thus safer
to consider that we are measuring a noisy version of the exact points: M̃i =
Mi + εi with εi ∼ N(0, σ3D).

In this case, the exact location Mi of the 3D points is considered as a pa-
rameter, just as the transformation T . In statistics, this is called a latent or
hidden variable, while it is better known as an auxiliary variable in computer
vision. Thus, knowing the parameters θ = {T, M1, . . .MN}, the probability of
measuring respectively a 2D and a 3D point is:

p(m̃(l)
i | θ) = Gσ2D

(
P (l)(T ? Mi)− m̃

(l)
i

)
and p(M̃i | θ) = Gσ3D

(
Mi − M̃i

)
.
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One important feature of this statistical modeling is that we can safely assume
that all 3D and 2D measurements are independent. Thus, we can write the prob-
ability of our observation vector χ = (m̃1

1, ..., m̃
1
N , ..., m̃S

1 , ..., m̃S
N , M̃1, ..., M̃N ) as

the product of the above individual probabilities. The ML estimation of the
parameters is still given by the minimization of − log(p(χ|θ)):

C(T, M1, · · ·MN ) =
N∑

i=1

‖ M̃i −Mi ‖2
2 · σ3D

2
+

S∑

l=1

N∑

i=1

ξl
i ·
‖ m̃

(l)
i − P (l)(T ? Mi) ‖2

2 · σ2D
2

+K

where K is a normalization constant depending on σ2D and σ3D. The convergence
is insured since we minimize the same positive criterion at each step.

The obvious difference between this criterion and the simple 2D ML is that
we now have to solve for the hidden variables (the exact locations Mi) in addition
to the previous rigid transformation parameters. An obvious choice to modify
the optimization algorithm is to perform an alternated minimization w.r.t. the
two groups of variables, starting from a transformation initialization T0, and an
initialization of the Mi with the M̃i. The algorithm is stopped when the distance
between the last two estimates of the transformation become negligible.

Discussion We highlight in [12] that the EPPC can be viewed as a gener-
alization of either the standard criterion (when σ3D → 0), or a stereoscopic
points reconstruction followed by a 3D/3D registration (if σ3D is largely over-
estimated). A quantitative study on synthetic data showed that accuracy gain
brought by EPPC depends essentially on the angle between the cameras and
ratio of 2D and 3D SNR [12]. For instance, with data simulating our clinical
conditions, EPPC brings up to 10% gain accuracy if the cameras angle is 50o

and 18% if the angle is 20o. Finally, as simulation does not take into account
calibration errors and possible noise modeling errors, we made a careful valida-
tion on real data from a phantom. This showed that a mean accuracy of 2 mm
can be reached with a maximum error of 4 mm (obtained when the parameters
configuration are not optimal: weak angle between the cameras and/or markers
occlusion) and that we can rely on an accuracy gain of 9% with computations
time that can still fulfill real-time constraints.

3 Theoretical Uncertainty and Prediction Validation

Now that we have provided a criterion that perfectly fulfills the statistical condi-
tions of our application, we still face the problem of the varying accuracy w.r.t.
the various system parameters. In order to propose a safe product to radiologists,
we should provide a statistical study that would give the mean Target Registra-
tion Error (TRE) w.r.t. the number of markers, the angle between the cameras,
the focus, and the relative position of the target w.r.t. the markers. This is the
equivalent of the direction for use and the secondary effects list mandatory for
all proposed drugs in the therapeutic field, and the reliability and accuracy ta-
bles of robotics tools: these tables give a usability range to assess under which
condition a particular feature (for example accuracy) could be reached.
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As increasing the number of experiments is very expensive and time-consuming,
it is almost infeasible to measure the accuracy provided for each experimental
condition. Moreover, as we want a real-time system, the conditions may change
during the operation (e.g. markers can be occluded by the radiologist), and the
accuracy assessment has to be constantly updated to avoid a potentially dan-
gerous gesture. Consequently, we think that predicting the TRE by studying the
theoretical noise propagation is the best way to ensure the safety of our system.

3.1 Uncertainty Propagation through SPPC and EPPC Criteria

In the sequel, we firstly remind the general covariance propagation theory through
a criterion. Then, following the methodological framework introduced in [14, 13],
we present for SPPC and EPPC analytical formulations of the transformation
covariance matrix.

General Theory of Error Propagation Let the criterion C(χ, θ) be a smooth
function of the data vector χ and the parameters θ. We are looking for the
optimal parameter vector θ̂ = arg minθ(C(χ, θ)). A local minima is reached and
well defined if Φ(χ, θ) =

(
∂C
∂θ (χ, θ)

)>
= 0 and H = ∂2C

∂θ2 (χ, θ) is positive definite.
The function Φ defines θ̂ as an implicit function of χ. A Taylor expansion gives:

Φ(χ + δχ, θ + δθ) = Φ(χ, θ) + ∂Φ
∂χ · δχ + ∂Φ

∂θ · δθ + O(δχ2, δθ2)

which means that around an optimum θ̂ we have:

θ̂(χ + δχ) = θ̂(χ)− (
∂Φ
∂θ

)(−1) · ∂Φ
∂χ · δχ + O(δχ2)

Thus, if χ is a random vector of mean χ̄ and covariance Σχχ, the optimal vector
θ̂ is (up to the second order), a random vector with mean θ̄ = arg minθ(C(χ̄, θ))

and covariance Σθθ = H−1
(

∂Φ
∂χ

)
Σχχ

(
∂Φ
∂χ

)>
H−1. Thus, to propagate the co-

variance matrix from the data to the parameters optimizing the criterion, we
need to compute H = ∂2C(χ,θ)

∂θ2 , JΦχ = ∂2C(χ,θ)
∂χ∂θ and Γ = JΦχ ·Σχχ · J>Φχ

.

SPPC Transformation Covariance Our analytical analysis needs the block-
decomposition of the 3× 4 projection matrix 3 as shown below:

P (l) =

2
4

Q
(l)
2×3 b

(l)
2×1

CT
(l) 1

3
5 so that m

(l)
i = P (l)(T ? Mi) =

Q(l) · (T ? Mi) + b(l)

1 + CT
(l) · (T ? Mi)

The second order derivatives H and J>Φχ
are computed using the chain rule,

and after some calculations, the uncertainty of the transformation may be sum-
marized as ΣTT = H−1 · Γ ·H−1 with

Γ =
∑N

i=1 Di
T

(
σ2

3D ·Ki ·Ki + Li

) ·Di and H =
∑N

i=1 Di
T ·Ki ·Di
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where Di = ∂(T?Mi)
∂T , Li =

∑S
l=1 ξl

i ·
(Q−m

(l)
i ·CT

(l))
T ·(Q−m

(l)
i ·CT

(l))

σ2
2D.(1+<C(l)|T?Mi>)2

and

Ki = Li−
∑S

l=1 ξl
i·

C(l)·(m(l)
i −m̃i

(l))T ·(Q(l)−m
(l)
i ·CT

(l))+(Q(l)−m
(l)
i ·CT

(l))
T ·(m(l)

i −m̃i
(l))·CT

(l)

σ2
2D.(1+<C(l)|T?Mi>)2

EPPC Transformation Covariance For this case the calculations are not
usual because the vector of sought parameters is θ = (T,M1 · · ·MN ) so that:

δθ =
[

δT
δM

]
= −

(
∂Φ

∂θ

)−1

· ∂Φ

∂χ
.δχ = −

[
∂ΦT

∂T
∂ΦT

∂M

∂ΦM

∂T
∂ΦM

∂M

](−1)

·
[ ∂ΦT

∂χ

∂ΦM

∂χ

]
.δχ

Since we only focus on the covariance of the transformation T alone, we need

to extract ΣTT from Σθθ =
[

ΣTT ΣTM

ΣMT ΣMM

]
. This is done using a block matrix

inversion, and after long calculations, we end up with ΣTT = H−1 · Ω · H−1,
where:

Ω =
PN

i=1 Di
T
�
σ2

3DId + K−1
i

�−1 · �σ2
3DId + K−1

i · Li ·K−1
i

� · �σ2
3DId + K−1

i

�−1 ·Di

H =
PN

i=1 Di
T · �σ2

3DId + K−1
i

�−1 ·Di

One can check that for the limit case where σ3D = 0, the transformation
uncertainty given by ΣTT is equal for both criteria.

Target Registration Error (TRE) Finally, to obtain the final covariance
matrix on a target point Ci after registration, we simply have to propagate the

uncertainty through the transformation action: ΣT?Ci = ∂(T?Ci)
∂T ·ΣTT · ∂(T?Ci)

∂T

T
.

3.2 Validation of the Prediction

With the previous formulas, we are able to predict the accuracy of the transfor-
mation after the convergence of the algorithm of Section 2. But this is only one
part of the job: we now have to validate the statistical assumptions used to derive
the theoretical formula (small non-linearity of the criterion, perfect calibration,
unbiased Gaussian noise on points, etc.). The goal of this section is to verify
incrementally that these assumptions hold within our application domain. This
will be done using synthetic data (for the non-linearities of the criterion), real
video images of a precisely defined 3D object (for camera calibration and distor-
tions), and finally real CT and video images of a soft phantom of the abdomen
(for noise assumptions on point measurements).

Synthetic Data Experiments are realized with two synthetic cameras jointly
calibrated with a uniform angle from 5o to 120o, and focusing on 7 to 25 points
Mi randomly distributed in a volume of about 30 × 30 × 30 cm3. The cameras
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are located at a distance of the object of 20 to 50 times the focal length. We add
to the 2D and 3D points a Gaussian noise with σ varying from 0.5 to 4.0 (which
corresponds to a SNR of 60 dB to 90 dB3). The registration error is evaluated
using control points Ci to assess a TRE instead of a Fiducial Localization Error
(FLE).

Since each experiment is different, we need to evaluate the relative fit of
the Predicted TRE (PTRE) vs. the Experimental TRE (ETRE) to quantita-
tively measure the quality of the uncertainty prediction. Due to the signifi-
cant anisotropy, we did not use the basic ratio ETRE2/PTRE2, but rather
the validation index [14], which weights the observed error vector with the in-
verse of its predicted covariance matrix to yield a Mahalanobis distance µ2. As-
suming a Gaussian error on test points after registration, this validation index
should follows a χ2

3 law. Repeating this experiment with many different “param-
eters” configurations, we can verify that µ2 is actually χ2

3 distributed using the
Kolmogorov-Smirnov (K-S) test [16]. We also verify that the empirical mean and
variance matches the theoretical ones (resp. 3 and 6 for a χ2

3 distribution).
Table 1 summarizes the statistics obtained for 20000 registrations where all

the parameters randomly vary as previously described. The values obtained for
both the validation index and the KS-test fully validate the reliability of the
transformation’s accuracy prediction.

Mean µ2 (3.0) Var µ2 (6.0) KS-test (p > 0.01)

SPPC 3.020 6.28 0.353

EPPC 3.016 6.18 0.647

Table 1. Validation of the uncertainty prediction with 20000 registrations.

Real Calibration and Synthetic Noise The perfect validation of our accu-
racy prediction on synthetic data does not take into account possible calibration
errors of the cam eras and excludes likely distortions from the pinhole model.
The goal of this experiment is to address the validity of these assumptions us-
ing a real video system. We used a 54 points calibration grid that allows for a
very accurate detection of the points (σ3D < 0.1 mm, σ2D < 0.2 pixel). Such
an accuracy is obviously far below the current detection of real markers posi-
tions (σ2D ' 2 pixel, σ3D ' 1 mm). To simulate the range of variability of our
application, we still add a Gaussian noise on the collected data points.

Ideally, the Experimental TRE should be assessed by comparing each reg-
istration result with a gold-standard that relates both the CT and the camera
coordinate systems to the same physical space, using an external and highly ac-
curate apparatus. As such a system is not available, we adapted the registration
loops protocol introduced in [13, 17], that enables to measure the TRE error for
a given set of test points.

3 SNRdB = 10 log10(
σs
σn

) where σs (resp. σn) is the variance of the signal (resp. noise).
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Fig. 1. Registration loops used to estimated the registration consistency: a test point
C chosen at a certain distance of the printed grid (typically 20 cm) is transformed into
the CAM1 coordinate system using a first 3D/2D registration T1, then back into the
grid coordinate system using a second 3D/2D registration T2 provided by the other
couple of cameras (the coordinate system of CAM1 and CAM2 are identical since
cameras are jointly calibrated). If all transformations were exact, we would obtain the
same position for the test point. Of course, since the transformations are not perfect,
we measure an error which variance σ2

loop = 2σ2
CAM/GRID corresponds to a TRE. In

fact, to take into account anisotropies we compute a covariance matrix and a statistical
Mahalanobis distance µ2 between C and T1 ? T−1

2 ? C.

The principle is to acquire several couples of 2D images with jointly calibrated
cameras so that we can compare independent 3D/2D registration of the same
object (different 2D and 3D images) using a statistical Mahalanobis distance
µ2. A typical loop, sketched in Fig. 1, described the method to get a µ2-value.
This experiment providing only one error measurement, we still need to repeat
it with different datasets to obtain statistically significant measures. In order
to take into account possible calibration error and/or bias, it is necessary to
change the cameras calibrations and positions, and not only to move the object
in the physical space. Likewise, to decorrelate the two 3D/2D transformations,
we need to use two differently noised 3D data sets. Indeed, when using the same
set of 3D points to register the 2D points, the error on 3D points similarly affects
both transformations, and the variability of the 3D points extraction (and any
possible bias) is hidden.



10 Nicolau et al.
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Fig. 2. Validation of the uncertainty prediction on the calibration grid w.r.t. the num-
ber of points used for the registration. Top: mean and standard deviation of the vali-
dation index. Bottom: KS confidence. Higher scores are more confident.

Finally, varying each set of parameters (different configuration of our four
cameras, different positions/orientations of the calibration grid), we got 144 µ2-
values. The cameras were placed 10o to 60o apart, at a distance of the object of
25 to 30 times the focal length. Figures 2 shows the mean, standard deviation
and K-S test value of the validation index w.r.t. the number of points used
(randomly chosen among the 54 available). One can see that the prediction is
correct up to 40 points (which spans our range of application). This critical value
is due to the progressive reduction of the registration error that finally meets
the ignored calibration error (about 0.5 mm). Likewise, we observed the same
behavior when the feature noise becomes too small (σ3D and σ2D below 0.7).

Real Data (Phantom) To test the last assumption of our prediction (unbiased
Gaussian noise), we now turn to a validation experiment on real 3D and 2D
measurements of a plastic phantom (designed in [12]), on which are stick about
40 radio-opaque markers (see the incrusted top left image in Fig. 4). The set up
is almost the same as for the previous calibration grid (for further details see
[12]). However, target points Ci are now randomly chosen within the phantom
liver, and markers in the CT and on the video images are interactively localized.

The markers used were randomly chosen among the 40 available, and we
obtained 80 µ2-values for each experiment. As we experimentally observed that
there was a consistent but non-rigid motion of the soft skin (about 1mm), we
chose σ3D ' 2.0 mm (instead of 1 mm) to take into account this additional
uncertainty. Figure 3 presents the mean and variance of µ2 w.r.t. the number of
points. Firstly, we notice that the mean value slowly increases with the number of
points. This can be explained by the biases introduced by the calibration error
and the correlated motion of the markers on the skin. Indeed, the measured
accuracy figures do not converge to 0 mm with a large number of points but
rather towards 1 mm, which corresponds to the motion of the skin.
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Fig. 3. Validation of the uncertainty prediction on the phantom w.r.t. the number of
points used for the registration. Top: mean and standard deviation of the validation
index. Bottom: KS confidence. Higher scores are more confident.

Nevertheless, it appears that the prediction is well validated for a range of 15
to 25 points. As µ̄2 can be interpreted as a relative error or the error prediction
(see [14]), Fig. 3 shows that we over-estimate the mean TRE by a factor 1.7 for
a small number of points (µ̄2 ' 1 ), and that we under-estimate it by a factor of
1.3 for more than 25 points (µ̄2 ' 5). For our application, in which the number
of visible points should not exceed 20, this means that we predict correctly the
amplitude of the error on the transformation. In the worst case, we over-estimate
it, which can be considered as a good safety measure. One can visually assess
the validation of our prediction error on one case among the 160 registrations
we performed (Fig.4).

Fig. 4. Left image: the top image shows the phantom with radio-opaque markers on
its skin. The main image shows the phantom without its skin and we can see the radio-
opaque markers on the fake liver. Right image: we superimpose the reconstructions of
the fiducials whose predicted accuracy is around 2 mm. One can visually assess the
quality of the registration.
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4 Conclusion

We devised in this paper an augmented reality system for Radio-Frequency ab-
lation guidance based on a new 3D/2D registration criterion with a validated
error prediction. We argue the necessity to provide not only the best afford-
able registration accuracy but also an accurate assessment of the TRE for safety
consideration.

To reach the best accuracy performances, we firstly derived a new 3D/2D
Maximum Likelihood registration criterion (EPPC) based on better adapted
statistical hypotheses than the classical 3D/2D least-square registration criterion
(SPPC). Experiments on real data showed that EPPC provides an accuracy of
about 2mm within the liver, which fits the initial requirements of less than 5mm.
Moreover, EPPC is up to 9% more accurate than SPPC with a refreshment rate
that can reach real-time constraints. We underline an alternative interpretation
of this gain: we can typically reach the same accuracy with 20 markers for EPPC
where 24 are needed for SPPC. As we face possibilities of markers occlusion
because of the surgeon’s hand and cumbersomeness constraints on the placement
of the markers, this gain should not be taken with the light one. In addition,
as clinical conditions do not allow a free camera positioning, we could meet
situation where an angle between the cameras could decrease below 20o, which
would mean an accuracy gain of 18%.

In order to assess the system accuracy for all configurations, we propose in a
second step a theoretical propagation of the target covariance through SPPC and
EPPC w.r.t the experimental configuration parameters. To verify the validity of
all the assumptions of that method, we conducted a careful validation study that
assess in turn the range of validity of each hypothesis. We firstly verified that
non-linearities in the criterion and calibration error are negligible. Then, we use
a realistic phantom with a soft and deformable skin to validate the prediction in
the range of our application (i.e. for 15 and 25 markers). This study confirmed
that we correctly predict the registration error, with a slight over-estimation if
too much markers are occluded, which is a good safety rule.

To reach the clinical usability, the whole system still has to be validated
on real patients. We are currently conducting experiments (using repeated CT
scans at the same point of the breathing cycle) to certify that the motion of the
internal structures due to the monitored breathing of the patient cannot bias
our accuracy prediction. Preliminary results indicates that this motion is of the
order of 1 mm, which is in accordance with the motions we experienced because
of the phantom soft skin. Thus, we are pretty confident that our registration
error prediction will work properly in the final system. Last but not least, it
is possible to estimate broadly the TRE before scanning the patient, by using
the stereoscopic reconstruction of the markers instead of their positions in the
scanner. This will allow a better control of the external conditions (number of
markers, angle between the cameras) and the optimization of the intervention
preparation.
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