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Abstract. Our purpose in this article is to superimpose a 3D model
of the liver, its vessels and tumors (reconstructed from CT images) on
external video images of the patient for hepatic surgery guidance. The
main constraints are the robustness, the accuracy and the computation
time. Because of the absence of visible anatomical landmarks and of the
“cylindrical” shape of the upper abdomen, we used some radio-opaque
fiducials. The classical least-squares method assuming that there is no
noise on the 3D point positions, we designed a new Maximum Likelihood
approach to account for this existing noise and we show that it gener-
alizes the classical approaches. Experiments on synthetic data provide
evidences that our new criterion is up to 20% more accurate and much
more robust, while keeping a computation time compatible with real-
time at 20 to 40 Hz. Eventually, careful validation experiments on real
data show that an accuracy of 2 mm can be achieved within the liver.

1 Introduction

The treatment of liver tumors by radio-frequencies is a new technique which
begins to be widely used by surgeons. However, the guidance procedure to reach
the tumors with the electrode is still made visually using per-operative 2D cross-
sections of the patient using either Ultra-Sound (US) or Computed Tomography
(CT). Because of the difficulty to locate in 3D the tumor’s center, surgeons esti-
mate that the tumor size has to exceed 2 cm to perform a reliable intervention.
Our purpose is to build an augmented reality system that could superimpose re-
constructions of the 3D liver and tumor onto a video image in order to improve
the surgeon’s accuracy during the guidance step. In such a system, the overall
accuracy has to be less than 5 mm to provide a significant help to the surgeon.

Just before the intervention, a CT-scan of the patient is acquired and an
automatic 3D-reconstructions of his skin, his liver and the tumors is performed
[17]. Two cameras (jointly calibrated) are viewing the patient’s skin from two
different points of view. The patient is intubated during the intervention, so the
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volume of gas in his lungs can be controlled and monitored. Then, it is possible to
fix the volume at the same value during a few seconds repetitively and to perform
the CT and the electrode’s manipulation almost in the same volume’s condition.
Thus, we assume that a rigid registration is sufficient to register accurately
the 3D-model extracted from the CT with the 2D video images. Consequently
we are confronted to the classical rigid problem of 3D/3D and 3D/2D Object
Registration.

Surface and iconic registration using mutual information have been used to
register the 3D surface of the face to either video images [18] or another 3D
surface acquired with a laser range scanner [5]. In both cases, thanks to several
highly curved “edges” on the model (nose, ears, eyes), the reported accuracy was
under 5 mm. We believe that in our case, the “cylindrical” shape of the human
abdomen is likely to lead to much larger uncertainties along the cranio-caudal
axis.

Landmarks 3D/3D or 2D/3D registration can be performed when several
precisely located points are visible both in the 3D-model and in the video images.
Since the landmarks are really homologous, the “cylindrical” geometry of the
underlying abdomen surface is not any more a problem. As there are no visible
anatomical landmarks in our case, we chose to stick to the patient skin some
radio-opaque markers that are currently localized and matched interactively.

This problem was largely considered in a wide variety of cases. Closed-form
solution for few points [2,1] and linear resolution [3] were proposed in the last
decades to find the registration as quickly as possible to fulfill real-time con-
straints. Others [9,15] determine the object pose by minimizing the classical
projective least-squares (LSQ) error function. In these cases, the methods differ
by the minimization procedure and by the rotation parameterization. Haralick [6]
and Or [10] turn the 2D/3D problem into a 3D/3D points registration problem
in which they estimate the depth of the points seen in the image by minimizing
a 3D LSQ Euclidean distance criterion. Finally, Yuan and Liu [19,8] solve the
problem by separating the rotational components from the translational one.

Linear and closed-form solution provide a direct resolution, but they are
very sensitive to noise because they assume that data points are exact. As the
accuracy is crucial in our application, we cannot afford using them. An alter-
native approach that separates the rotation from the translation was examined
by Kumar [7], and he shows that it leads to worse parameters estimation in the
presence of noise than the classical LSQ estimation.

Therefore, we think that a LSQ criterion has a definite advantage among the
other methods because it can take into account the whole information provided
by the data. However, all of the existing methods implicitly consider that 2D
points are noisy, but that 3D points are exact. In our case, this assumption
is definitely questionable, which lead to the development of a new maximum
likelihood (ML) criterion generalizing the standard 3D/2D LSQ criterion. Last
but not least, LSQ criterion enables the prediction of the noise influence on the
final registration. This would be very useful as it would allow us to detect an
inaccurate registration. However, this aspect will be considered in a future work.
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In the sequel, we first recall that the classical 2D/3D registration criterion
for points correspondences can be considered as a Maximum Likelihood estima-
tion if the 3D points are exact. Then, modifying the statistical assumptions to
account for an existing noise on the 3D point measurements, we derive a new
and original criterion that generalizes the classical ML one. Section 3 is devoted
to the comparative performance evaluation of both criteria with synthetic data
while Section 4 focuses on a careful validation with real data.

2 Maximum Likelihood 2D/3D Registration

Let Mi = [xi, yi, zi]� be the 3D points that represent the exact localization of the
radio-opaque fiducials in the CT-scan reference frame and mi

(l) = [u(l)
i , v

(l)
i ]� be

the 2D points that represent its exact position in the images of camera (l). In this
article, we assume that correspondences are known. To account for occlusion, we
use a binary variable ξl

i equal to 1 if Mi is observed in camera (l) and 0 otherwise.
We denote by T � M the action of the rigid transformation T on the 3D point
M and by Pl (1 ≤ l ≤ M) the camera’s projective functions from 3D to 2D
such that m

(l)
i = P (l)(T � Mi) (we used in our implementation the calibration

algorithm of [20]). In the following sections, Â will represent an estimation of a
perfect data A, and Ã an observed measure. Thus, the 3D points measured by
the user will be written M̃i, and the measured video 2D points m̃i.

2.1 Standard Projective Points Correspondences (SPPC) Criterion

Assuming that the 3D points are exact (M̃i = Mi) and that the 2D points only
are corrupted by an isotropic Gaussian noise ηi of variance σ2

2D, we have:

m̃i
(l) = m

(l)
i + ηi = P (l)(T � Mi) + ηi with ηi ∼ N(0, σ2D)

The probability of measuring the projection of the 3D point Mi at the location
m̃i

(l) in image (l), knowing the transformation parameters θ = {T} is given by:

p(m̃i
(l) | θ) =

1
2πσ2

2D

· exp
(

− ‖ P (l)(T � Mi) − m̃i
(l) ‖2

2 · σ2D
2

)

Let χ be the data vector regrouping all the measurements, in this case the 2D
points m̃i

(l) only. Since the detection of each point is performed independently,
the probability of the observed data is p(χ | θ) =

∏M
l=1
∏N

i=1 p(m̃i
(l) | θ)ξl

i . In
this formula, unobserved 2D points (for which ξl

i = 0) are implicitly taken out of
the probability. Now, the Maximum likelihood transformation θ̂ maximizes the
probability of the observed data, or equivalently, minimizes its negative log:

C2D(T ) =
M∑
l=1

N∑
i=1

ξl
i ·

∥∥∥P (l)(T � Mi) − m̃
(l)
i

∥∥∥2

2 · σ2D
2 +

(
M∑
l=1

N∑
i=1

ξl
i

)
· log[2πσ2

2D] (1)
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Thus, up to a constant factor, this ML estimation boils down to the classi-
cal LSQ criterion in the 2D coordinates. Of course, this criterion assumes that
there is no noise on the 3D points, or that this noise could be distributed over
the 2D measurements. This simple hypothesis makes the criterion very easy to
optimize because there are only 6 parameters to estimate and lead to a very low
calculations cost. However, from a statistical point of view, distributing the 3D
error on 2D measurements leads to correlated noises, which does not agree with
the independence assumption used to derive the ML estimation.

2.2 Extended Projective Points Correspondences (EPPC) Criterion

To introduce a more realistic statistical hypothesis on the 3D data, it is thus
safer to consider that we are measuring a noisy version of the exact points:

M̃i = Mi + εi with εi ∼ N(0, σ3D).

In this case, the exact location Mi of the 3D points is considered as a pa-
rameter, just as the transformation T . In statistics, this is called a latent or
hidden variable, while it is better known as an auxiliary variable in computer
vision. Thus, knowing the parameters θ = {T, M1, . . . MN}, the probability of
measuring respectively a 2D and a 3D point is:

p(m̃(l)
i | θ) = Gσ2D

(
P (l)(T � Mi) − m̃

(l)
i

)
and p(M̃i | θ) = Gσ3D

(
Mi − M̃i

)
.

One important feature of this statistical modeling is that we can safely assume
that all 3D and 2D measurements are independent. Thus, we can write the prob-
ability of our observation vector χ = (m̃1

1, ..., m̃
1
N , ..., m̃M

1 , ..., m̃M
N , M̃1, ..., M̃N )

as the product of the above individual probabilities. The ML estimation of the
parameters is still given by the minimization of − log(p(χ|θ)):

C(T, M1, . . . MN ) =
N∑

i=1

‖ M̃i − Mi ‖2

2 · σ3D
2 +

M∑
l=1

N∑
i=1

ξl
i · ‖ m̃

(l)
i − m

(l)
i ‖2

2 · σ2D
2 + K (2)

where K is a normalization constant depending on σ2D and σ3D.
The obvious difference between this criterion and the simple 2D ML is that

we now have to solve for the hidden variables (the exact locations Mi) in addition
to the previous rigid transformation parameters. An obvious choice to modify the
optimization algorithm is to perform an alternated minimization w.r.t. the two
groups of variables. Starting from a transformation initialization T0, we initialize
the Mi with the M̃i and perform a first minimization on T (this corresponds to
optimizing the simple 2D ML criterion). In a second step, we keep the transfor-
mation T fixed and we optimize for the Mi. We then continue to alternatively
update the transformation T̂ (given the lastly estimated values M̂i of the exact
Mi) and the exact positions M̂i (given the lastly estimated transformation T̂ ).
The algorithm is stopped when the distance between the two last estimation of
the parameters become negligible. The convergence is insured since we minimize
the same positive criterion at each step.
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2.3 Dealing with 3D and 2D Anisotropic Noise

Up to now, we considered isotropic 2D and 3D noises. However, most of the
CT-scan acquisition are not isotropic (the slice thickness is often larger than the
pixel size within a slice). In that case, the markers 3D localization error will
most probably be anisotropic:

εi ∼ N(0, Σ3D) with Σ3D =


σ2

3Dx
0 0

0 σ2
3Dy

0
0 0 σ2

3Dz




This induces very small changes in our ML formulation: we just have to replace
in our criterion (Eq. 2) the first term ‖M̃i−Mi‖2

2·σ3D
2 by half of the Mahalanobis

distance (M̃i −Mi)� ·Σ−1
3D ·(M̃i −Mi). The same kind of modifications obviously

holds for the second term of the equation in the case of a 2D anisotropic noise.

2.4 Link with Reconstruction and 3D/3D Registration

Let us consider that the exact 3D points are measured in the reference frame of
the cameras (instead of the CT frame as previously) and that we are looking for
the transformation from the camera world to the CT (instead of the reverse as
previously). The 3D/2D ML criterion is then rewritten:

C(T, M1, . . . MN ) =
N∑

i=1

‖ M̃i − T ∗ Mi ‖2

2 · σ3D
2 +

M∑
l=1

N∑
i=1

ξl
i ·

‖ m̃
(l)
i − P (l)(Mi) ‖2

2 · σ2D
2 +K.

As explained in the section 2.2, this criterion can be optimized iteratively by
successively estimating the 3D coordinates and the transformation T . Moreover,
it has to be noticed that the change of variable does not affect the transformation
to be found.

Now, assuming that we are performing an estimation with a largely overesti-
mated σ3D and a correct estimation of σ2D. Around the optimal transformation
T̂ , we will have

1
N

N∑
i=1

‖ M̃i − T ∗ Mi ‖2� 1
N

N∑
i=1

‖ M̃i − T̂ ∗ Mi ‖2= σ̂3D � σ3D

Thus, the first term of the criterion is negligible with respect to the second term
(since σ2D is assumed to be correctly estimated): optimizing for the exact 3D
point positions boils down to the minimization of

CRec(M1, . . . MN ) =
M∑
l=1

N∑
i=1

ξl
i· ‖ m̃

(l)
i − P (l)(Mi) ‖2

This criterion is in fact one of the more widely used reconstruction criterion.
Then, after the determination of the 3D coordinates of the points in the cameras
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frame, the next step consists in minimizing the criterion with respect to T . As
the second term does not depends on T , this corresponds to the minimization of

C3Dreg(T ) =
N∑

i=1

‖ M̃i − T ∗ Mi ‖2

which is no more than the standard 3D LSQ criterion.
As a conclusion, the method consisting in reconstructing the position of 3D

points from the cameras and then registering in 3D can be viewed as a limit case
of our 3D/2D ML criterion where the noise on 3D points is largely overestimated
(with respect to the noise on 2D points). On the other hand, we have already
seen that the standard 2D ML criterion for 3D/2D registration is a limit case of
our 3D/2D ML criterion where the noise on 3D points is largely underestimated
or really very small (still with respect to the noise on 2D points).

Thus, we may expect our criterion to perform better than these methods
when there is effectively some noise on the 3D points and if we have a good
estimation of relative 3D and 2D variances.

3 Performances Evaluation and Criteria Comparison

The goal of this section is to assess on synthetic data the comparative effective-
ness of the SPPC and EPPC criteria in terms of computing cost, accuracy and
robustness. Experiments are realized with two synthetic cameras with a default
angle of 45 degrees and jointly calibrated in the same reference frame. The two
cameras are focusing on the same 15 points Mi representing the markers local-
izations, distributed in a volume of about 10 × 10 × 10 cm3. The ratio of the
distance cameras/points with the cameras focal length is 25. We modeled the
fiducial localization error by a Gaussian noise with different standard deviations
on both the 3D and 2D data (default values are σ3D = σ2D = 2 which cor-
responds to a SNR of 75 dB1. The optimization procedure used is the Powell
algorithm. The registration error is evaluated using 9 control points Ci different
from the Mi to assess a Target Registration Error (TRE) instead of a Fidu-
cial Localization Error (FLE) that does not reflect correctly the real accuracy.
For each experiment, we give the mean computation time, the mean RMS TRE
and the mean relative error (TRESPPC/TREEPPC) over 10000 registrations (a
value above one means that EPPC is more accurate than SPPC).

3.1 Accuracy Performances

Focusing on the accuracy and not on the robustness, we kept the initial and
sought transformation fixed and close enough so that both algorithms do con-
verge correctly. The two following tables present the performances w.r.t. a vary-
ing 3D/2D noise ratio (mean TRE values are meaningless and then not reported
1 SNRdB = 10 log10(

σs
σn

) where σs (resp. σn) is the variance of the signal (resp. noise).
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since the noises do vary) and a varying angle between the cameras. In these
tables, we should only consider the relative values of the computation times as
the absolute value depends on the initialization.

Noise ratio σ3D/σ2D 4 2 1 0.5 0.25
Computation SPPC 0.0024 0.0023 0.0024 0.0023 0.0024
time (sec.) EPPC 0.119 0.057 0.025 0.024 0.021
Mean relative error 1.17 1.15 1.09 1.03 1.006

Cameras angle 90 60 45 30 10
Computation SPPC 0.0025 0.0034 0.0026 0.0025 0.0031
time (sec.) EPPC 0.015 0.021 0.025 0.028 0.022
Mean TRE SPPC 1.76 1.94 2.14 2.50 4.12

(mm) EPPC 1.75 1.83 1.94 2.22 3.40
Mean relative error 1.008 1.051 1.089 1.114 1.188

One can see that EPPC always provides a better TRE (up to 20%) than SPPC,
at the cost of a 10 to 20 times larger computational time. The gain in accuracy
is all the more sensitive that the angle between the cameras is small and the 3D
noise is important w.r.t. the 2D noise. As the amount of 3D information depends
on these two parameters, this results was expected since EPPC better captures
than the SPPC the noisy nature of information on 3D data.

Eventually, the following table presents the influence of the number of points
on the computation times and accuracy performances.

Number of points 30 15 8 4
Computation SPPC 0.0042s 0.0026s 0.0016s 0.0011s
time (sec.) EPPC 0.067s 0.025s 0.011s 0.006s
Mean TRE SPPC 1.55 2.16 2.73 4.45

(mm) EPPC 1.42 1.97 2.51 3.94
Mean relative error 1.080 1.090 1.079 1.117

The first observation is that the computation times are roughly proportional to
the number of points. This was foreseeable since the computational complexity is
linear in the number of data points. The second observation is that the measured
TRE seems inversely proportional to the square root of the number of points
(multiplying 2 times the number of points decrease the RMS error by a factor√

2). This is also in accordance with the standard accuracy improvements in
statistics. One interesting consequence is that we need about 15% less points
with EPPC than with SPPC to reach the same accuracy on this example.

3.2 Robustness Evaluation

To evaluate the robustness w.r.t the initial transformation, we select a random
initial and/or sought transformation (uniform rotation and translation in a range
of the order of the cameras’ field of view), random 2D (resp. 3D) noises from
1 to 3 pixels (resp. mm), and a random angle between the cameras (from 10
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to 90 degrees). In the following table, we display the performance results when
the transformation is initialized using the identity or randomly. The first case
represents the usual situation where we have no prior information, and the second
one simulates a very bad initialization.

Random T with Random T with
identity initialization random initialization

Computation SPPC 0.0223s 0.0250s
time EPPC 0.138s 0.342s

Ratio of wrong SPPC 20.07% 31.55%
convergence (RWC) EPPC 0.09% 0.67%

Mean relative error 1.107 1.139

In both cases, one can see that the SPPC converges wrongly in broadly 20%
of the case, whereas the EPPC almost always converges toward the optimal
transformation (RWC under 1%). The difference in performances between the
two columns probably comes from the optimization algorithm (Powell) that uses
a research domain centered around the identity. Another optimization scheme
may lead to slightly different results.

3.3 Computation Times

EPPC is a more accurate and much more robust criterion than SPPC. This is
paid by a higher computation time that remains however limited to a few tenths
of seconds when the initialization is unknown, and to 0.025 to 0.05 seconds when
the initialization is close to the sought transformation. Thus, in view of a real-
time system, one may expect to obtain with EPPC the best performances with
an initialization time of say 0.3 sec. and an update rate of 20 to 40 Hz if the
motions are sufficiently slow w.r.t. the video-rate. One may further improve the
tracking rate by updated the “exact 3D coordinates” only once in a while or
using a Kalman filter.

4 Performances Assessment with Real Data

This section is devoted to accuracy experiments with real 3D CT-scans and 2D
images of a plastic mannequin with approximately 25 fiducials sticked on its
surface. Ideally, the method’s accuracy should be assessed by comparing each
registration result with a gold-standard that relates both the CT and the camera
coordinate systems to the same physical space, using an external and highly
accurate apparatus. As such a system is not available (otherwise we would not
have to develop a 3D/2D registration algorithm), we adapted the registration
loops protocol introduced in [13,16,14], that enables to measure the TRE error
for a given set of test points.

The principle is to acquire several CT scans of the mannequin that are reg-
istered using a method described below. Then, several couples of 2D images are
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T
CT1/CT2

Consistency measure

The cameras are calibrated together in the same world coordinate

Bronze Standard

2D Points extraction with noise 2D Points extraction with noise

3D Points extraction with noise 3D Points extraction with noise

u1 v1
u2 v2
.
.
.
ui vi

2D set1:

x1 y1 z1
x2 y2 z2

.

.
xt yt zt

3D set1:
x1 y1 z1
x2 y2 z2

.

.
xp yp zp

3D set2:

IMAGE 1 IMAGE 2

CAM 1

IMAGE 1 IMAGE 2

CAM 2

u1 v1
u2 v2
.
.
.
uj vj

u1 v1
u2 v2
.
.
.
uk vk

u1 v1
u2 v2
.
.
.
ul vl

2D set2: 2D set3: 2D set4:

CT2CT1

3D/2D registration 3D/2D registrationT
CAM1/CT1

T
CAM2/CT2

Fig. 1. Registration loops used to estimated the registration consistency.

acquired with the cameras jointly calibrated so that we can compare independent
3D/2D registration of the same object (different 2D and 3D images). A typical
loop is sketched in Fig. 1: a test point in the faked liver of CT1 is transformed
into the CAM1 coordinate system using a first 3D/2D registration, then into the
coordinate system of CT2 using a second 3D/2D registration (the coordinate sys-
tem of CAM1 and CAM2 are identical since cameras are jointly calibrated), and
back to CT1 using the bronze standard registration. Using two different CT im-
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ages allows to de-correlate the two 3D/2D transformation. Indeed, if we register
the 2D points to the same set of 3D points (extracted from a single CT scan), the
two transformations are similarly affected by the 3D points errors. Consequently,
the variability of the 3D points extraction (and any possible bias) is hidden.

If all transformations were exact, we would obtain the same position for our
test point. Of course, since the transformations are not perfect, we measure
a Target Registration Error (TRE) whose variance is σ2

loop = 2σ2
CAM/CT +

σ2
CT/CT . This experiment providing only one error measurement, we still need

to repeat it with different datasets to obtain statistically significant measures. In
order to take into account possible calibration error and/or bias, it is necessary to
repeat the experiment with different calibrations and positions of the cameras,
and not only to move the object in the physical space. As a result, we are
able to measure σ2

loop and thus to estimate the variability due to the 3D/2D
registration σ2

CAM/CT , provided we know σ2
CT/CT . For this purpose, we devise

the following experimental procedure based on multiple CT scan registration
that not only gives a very accuracy registration between CT images, but also
evaluates the accuracy of this registration.

4.1 Bronze Standard Registration between the CT Images

Our goal here is to compute the n − 1 most reliable transformations T̄i,i+1 that
relate the n (successive) CTi images. Estimations of these transformations are
readily available by computing all the possible registrations Ti,j between the
CT images using m different methods ([16]). Then, the transformations T̄i,i+1
that best explain these measurements are computed by minimizing the sum of
the squared distance between the observed transformations Ti,j and the corre-
sponding combination of the sought transformation T̄i,i+1 ◦ T̄i+1,i+2 . . . T̄j−1,j .
The distance between transformations is chosen as a robust variant of the left
invariant distance on rigid transformation developed in [13].

The estimation T̄i,i+1 of the perfect registration Ti,i+1 is called bronze stan-
dard because the result converges toward Ti,i+1 as m and n become larger.
Indeed, considering a given registration method, the variability due to the noise
in the data decreases as the number of images n increases, and the registra-
tion computed converges toward the perfect registration up to the intrinsic bias
(if there is any) introduced by the method. Now, using different registration
procedures based on different methods, the intrinsic bias of each method also
becomes a random variable, which is hopefully centered around zero and aver-
aged out in the minimization procedure. The different bias of the methods are
now integrated into the transformation variability. To fully reach this goal, it is
important to use as many independent registration methods as possible.

In our setup, we used five CT scan of the plastic mannequin in different po-
sitions, and five different methods with different geometric features or intensity
measures. Three of these methods are intensity-based: the algorithm aladin [11]
has a block matching strategy where matches are determined using the coeffi-
cient of correlation, and the transformation is robustly estimated using a least-
trimmed-squares; the algorithm yasmina uses the Powell algorithm to optimize
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the SSD or a robust variant of the correlation ratio (CR) metrics between the im-
ages [16]. For the feature-based methods, we used the crest lines registration
described in [12], and the multi-scale EM-ICP algorithm of [4] on zero-crossings
of the Laplacian surfaces (the images were down-sampled by a factor of 2 to
limit the number of surface points to about 1.5 million...). Since none of these
methods uses the 3D extracted points as registration data, we ensure the inde-
pendence with respect to the marker localization noise that corrupts the 3D/2D
registration.

As a side effect, we may use only four of the five methods to determine the
bronze standard registration, and use that standard to determine the accuracy of
the fifth method (a kind of leave-one-method-out test). This uncertainty is then
propagated into the final bronze standard registration (including all methods)
to estimate its accuracy. In the table below, we give the standard deviation
determined this way on the rotational and translational components of each
method, the uncertainty of the resulting bronze standard registration and the
uncertainty of the 3D registration using standard least-squares of the fiducial
markers positions (w.r.t. the bronze standard).

σrot (deg) σtrans (mm)
Aladin 0.09 0.56
Yasmina SSD 0.02 0.41
Yasmina CR 0.06 0.41
Crest lines 0.04 0.27
EM-ICP 0.08 0.68
Bronze standard 0.01 0.07
Fiducials 0.15 0.85

One can observe that the crest lines registration is performing the best,
quickly followed by the Yasmina registrations. EM-ICP is not performing very
well due to the down sampling of the images. The final bronze standard registra-
tion accuracy is very good (it corresponds to 0.08 mm TRE on the test points).
Finally, we point out that the lack of accuracy of the fiducials registration w.r.t.
the other methods is due to the fact that the markers were stick on the “skin”
of the mannequin, which is elastic and did move by about 1 to 2 mm between
the acquisitions, while all other methods did focus on the rigid structure of the
mannequin (this effect was checked on the images after registration).

4.2 Validation Results and Discussion

After the bronze standard registration of our 5 CT images of the mannequin,
we took pictures of the mannequin in four different positions with four different
cameras and three different (but joint) calibrations. As a result, we have 12 pairs
of 2D images to register to 5 CT scans for each pair of cameras (the second pair
of camera being used to close the registration loop on a different CT scan). To
robustify the experiment, we randomized the camera used in each pair among
the four available, which finally leads to 180 registration loops. Approximately
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25 stick fiducials were interactively localized in each image (σ3D = 0.75 mm,
σ2D = 2.0 pixel). This lead to the following quantitative evaluation.

Angle between the cameras 60o 40o 10o

Computations SPPC 0.023 s 0.025 s 0.027 s
time EPPC 0.21 s 0.21 s 0.25 s

Mean TRE RMS SPPC 1.80 1.99 2.30
error in mm EPPC 1.70 1.83 2.20

Relative error 1.062 1.089 1.054

One can observe that EPPC is always more accurate than SPPC but the
relative error does not increase as much as denoted with synthetic data when
the angle is small (10o). This may be explained by the various conditions in
which the measurement were done (different local lengths, number of fiducial
observed...), and the simple representation of the camera (pinhole model).

Another explanation is obviously the consistent but non-rigid motion (men-
tioned in the last section) of the skin markers on which the registration is done.
However, these small movements realistically simulate the imperfect reposition-
ing of the skin and the organs that is induced by our gas volume monitoring
protocol. In this context, the assumption (on which are based our criteria) of in-
dependent noises on each 3D marker position may not be fulfilled. Despite these
variations from the theoretical assumptions, we underline that the achieved ac-
curacy is around 2mm, which is by far better than the 5mm needed for our
medical application. One can assess the visual accuracy of our registration on
one particular case in Fig. 2.

5 Conclusion

We devised in this paper a new 2D/3D Maximum Likelihood registration cri-
terion (EPPC) based on better statistical hypotheses than the classical 3D/2D
least-square registration criterion (SPPC). Experiments on synthetic and real
data showed that EPPC is 5 to 20% more accurate and much more robust than
SPPC, but requires higher computation times when the initialization is unknown
(0.3 instead of 0.03 sec.). However, synthetic experiments provide evidences that
a refreshment rate of 20 to 40 Hz is achievable in a tracking phase, where only
small motions have to be detected. In the context of augmented reality for liver
radio-frequencies, we showed that the proposed method provides an accuracy of
about 2mm within the liver, which fits the initial goal of 5mm that was necessary
to provide a significant help for radiologists and surgeons.

In the future, we will focus on the automatic detection, tracking and match-
ing of the fiducials in the 3D and 2D images, in order to fully automate the
algorithm. Incidentally, we expect to obtain a much better (probably sub-pixel)
localization of the fiducials, and thus drastically improve the accuracy of the
3D/2D registration down to less than one millimeter. We will also investigate
the effects of the optimization procedure and of the camera calibration algo-
rithm. Another work in progress concerns the prediction of the uncertainty of
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Fig. 2. The top left image shows the plastic mannequin with the radio-opaque fiducials.
The top right image displays the augmented reality view of the surgeon, i.e. the super-
imposition on the video image of the 3D reconstruction of the fiducials and interns parts
(plastic frame and liver) after the registration process. To check visually the quality of
the achieved registration on the liver, we put off the skin (bottom left image), and we
superimposed the reconstruction of the fiducials on the liver (bottom right).

the 3D/2D registration w.r.t. the current data used. This important element of
the system safety will allow the detection of bad geometric fiducials configura-
tions (for instance not enough fiducials visible in both cameras, etc) that lead
to very inaccurate registrations. Lastly, we intend to extend the current system
in order to take into account the deformations due to breathing.
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