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Abstract

Radio-frequency ablation is a difficult operative task that consists in a precise
needle positioning in the center of the pathology. This article presents an Augmented
Reality system for hepatic therapy guidance that superimposes in real-time 3D
reconstructions (from CT acquisition) and a virtual model of the needle on a patient's
external views. The superimposition of reconstructed models is performed with a 3D/2D
registration based on radio-opaque markers stuck on the patient skin. The characteristics of
the problem (accuracy, robustness and time processing) led us to develop automatic
procedures to extract and match the markers and to track the needle in real-time.
Experimental study confirmed that our algorithms are robust and reliable. Preliminary
experiments conducted on a human abdomen phantom showed that our system is highly
accurate (needle positioning error within 3mm) and enables the surgeon to reach a target in
less than 1 minute on average. Our next step will be to perform an in-vivo evaluation.

Introduction

The treatment of liver tumors by radio-frequency ablation (RFA) is an evolving
technology using coagulative necrosis to treat patients with unresectable primary or
metastatic hepatic cancers [1]. The guidance procedure to reach tumors with the needle is
usually performed visually using intraoperative two dimensional (2D) cross-sections of the
patient obtained with either ultrasound (US) or computed tomography (CT) acquisition.
Because of the difficulty to locate the tumor's center in three dimensions (3D), the needle
positioning is not very accurate and the targeting procedure is very time consuming, since it
requires many trials.

Real-time superimposition of images reconstructed in 3D from CT acquisition onto
a real patient, so-called Augmented Reality (AR), may improve the accuracy and decrease
complications in interventions such as RFA needle placement. Such AR guidance systems
are routinely used in the field of neurosurgery and orthopedic surgery [2][3][4][5]1[6]1[7]1[8].
However, there are few applications on abdominal and thoracic zones. Mourgues [9]
superimposes coronary arteries on endoscopic images with an accuracy about 5 pixels and
Lange [10] provides preliminary results in laparoscopy with an accuracy of about 1 cm.
Our purpose is to build a guidance system for the needle positioning that superimposes 3D
reconstructions of the liver and its tumors onto video images of the patient abdomen. To
provide a significant help to surgeons, the overall superimposition error has to be less than
5 mm and the computation time of the data processing has to be under 10 minutes.
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In this article, we present the technical part of our AR system. Twenty five radio-
opaque markers are stuck on the skin of the human abdomen (cf. phantom in Figure 1a),
which is CT-scanned afterwards (slice thickness of 1 mm). A 3D segmentation, followed
by a reconstruction (skin, liver and markers) is performed with a specific software [11] (cf.
Figures 1b and Ic). Two jointly calibrated cameras [12] are oriented toward the patient
from two different points of view. To superimpose the 3D reconstruction in the video
images, we performed a 3D/2D points registration between the markers localized on the
reconstruction and those visible in the video images. Since an interactive procedure to
localize and match the markers in the CT-scan and video images takes several minutes, we
need to realize these tasks automatically. Firstly, we describe the algorithms we developed
to extract and match automatically the markers from the CT-scan and video images.
Secondly, we present the criterion used to find the rigid transformation that relates the CT-
scan and the camera reference frame. Then, we explain how we track the needle in real-
time to superimpose its virtual model. Finally, we show our preliminary experiments made
on our abdominal phantom.

Figure 1: (a) Video image of the phantom on which 25 radio-opaque markers were stuck. (b) 3D
reconstruction of the phantom from CT slices. (c) Organ view in transparency. The liver appears
under the skin.

2D Marker extraction from video images

The principle of the marker localization in the video images is based on a color
analysis and the assumption that the skin covers the main surface area in the video images.
In a real intraoperative image, the operative field may modify this assumption. However, it
has a homogeneous green color and will cover the border part of the image. Therefore it
will be easily identified.

The first step is to find the skin in the image. Working on HSV images, the mean
color of the skin MCgy is given, in the hue histogram, by the mode position with the
highest integral area, and not necessary the highest value. Indeed, a small region, more
homogeneous than the skin, can provide a mode with a lower standard deviation but with a
higher maximum value. Then, a color thresholding is computed around the skin hue.
Considering that the skin hue distribution is approximately Gaussian, a good choice for the
threshold values Tmin and Tmax 1S:

T min = M Cskin - 3 ) Gskin and T max = M Cskin + 3 : Gskin



Pre-print of an article to appear in the Journal of Computer Animation and Virtual Worlds
in 2004. Nadia Magnenat-Thalmann and Daniel Thalmann editors. Wiley publisher.

where o, 1s the standard deviation of the skin mode. To evaluate cgi,, we can compute
the full width at half max (FWHM) of the skin hue distribution, which is theoretically equal
to 2.3548cin under the Gaussian assumption. However, as the histogram is noisy and not
totally smooth, it is preferable to evaluate o4, from a smoothed version of the original hue
histogram. The optimal histogram is defined as the iteratively smoothed original histogram
with a Gaussian filter until its number of modes becomes stable. We call o the standard
deviation of the smoothed hue distribution of the skin and Max,, (resp. Maxg,, ) its
maximum value (resp. the maximum value of the original skin hue distribution). Since
smoothing does not modify the integral area of the distribution mode, G is related to Gop
by:

O ., - Max

=0, -Maxopt

skin

Figure 2: (a) Original image of the phantom. (b) Result of the color thresholding and
largest component extraction. (¢) The potential markers are all the components in white.
(d) Final extraction of markers into the detected skin. The real markers are characterized
among the components with respect to their surface and shape.
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After this step, as we suppose that the skin covers the largest area in the image, we
extract the largest connected component. Figure 2b) shows the results after the color
thresholding and the largest component extraction. Then, since the color of markers is very
different from skin color (the markers are green), it can be considered that all the connected
components entirely enclosed in the detected skin are potential markers. To characterize the
real markers among all these components (cf. Figure 2c), we first remove those whose
surface is empirically too small to be a marker (under 10 pixels of surface). Then, we
compute the median of component surfaces Syegian and we get rid of the components whose
surface is not in the interval [0.5* Spedian 3 2.0* Siedian]. Finally, we discard the components
whose inertial moment is too small (characterizing the flat components).

The remaining components (cf. Figure 2d) are considered as markers and their
barycenter is computed. To evaluate the performance of this algorithm, we conducted an
experimental study on 10 subjects. We stuck around 20 markers on each person and we
took pictures of their abdomen in 4 different positions with 2 cameras. From these 80
images, the mean computation time was around 1 second and we had 5% of false negatives
and 2% of false positives whose location were never on the skin. Visual inspection
indicates that the detection accuracy is around 2 pixels on average. This 2D extraction
algorithm is then fast and robust enough to be easily used in a matching algorithm
involving 2D and 3D points.

3D Marker extraction from the CT-scan

In order to localize the markers in CT-scan images (cf. Figure 3a), we essentially
use mathematical morphological tools. In a first step, we threshold the 3D image to extract
both patient and radio-opaque markers. CT-scans being calibrated (Hounsfield Units), a CT
independent threshold value can be chosen (it is typically over the air density: -800 HU for
the phantom and -300 for a human). In a second step, since some artefacts can appear (like
the CT table), we extract the largest connected component from the binary images to get
only the patient, and we fill the internal cavity out (cf. Figure 3b). Then, in order to erase
the markers, we perform an opening with an adapted structuring element (a sphere with a
radius 3 times larger than the marker diameter) (cf. Figure 3c). Eventually, a simple
subtraction between the opened image and its previous version provides the markers.

The opening erases the markers but smoothes the surface as well, therefore, residual
pieces of surface can remain (cf. Figure 3d). We get rid of them by opening the components
found with a small structuring element and by characterizing them with their volume and
shape (the same procedure as for video markers). Since the radio-opaque markers are
designed to give a high response in CT images, we compute their intensity weighted
barycenter G to take into account partial volume effects:

> I(P)-P

__ PeComp

> IP)

PeComp

where P is a 3D position of a voxel in the component and I(P) is the voxel intensity. An
evaluation performed on 6 CT-scans of the phantom and 3 of a pig, on which were stuck
about 25 markers, showed that there was less than 5% of false negatives and 2.3% of false
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positives. Most of them corresponded to the pig nipples or to pipes lying along its body.
Their presence had no incidence since they were easily identified and discarded during the
robust matching step.

Figure 3: a) Original CT-slice. A radio-opaque marker is circled. b) Original
image after the thresholding and the filling. c) Opening of the largest
component. Markers have disappeared. d) Subtraction of image (c) to image
(b) provides the markers.

Video marker matching

The matching between the 2D markers extracted from the two video images is made
with epipolar geometry constraints. As our cameras are jointly calibrated, it is possible to
define a relationship between a point in one image and its correspondent in the other one. If
m is a point in the image P, its correspondent m' in the image P' lies on a segment whose
location depends on the optical center C and C’ of the cameras, the position of m and the
range of depth to which the phantom belongs (cf. Figure 4). Because of imperfect camera
calibration and noise, m' is not perfectly on the predicted segment, therefore we select the
points that are very close to it. If there is only one point, we consider the match as reliable,
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otherwise it is ambiguous (see Figure 5). In that case, it is discarded at this step (these
markers will be reconsidered in the next step).

Figure 4: Illustration of the epipolar geometry. Given a 2D marker m in the video image
P, we seek its correspondent m’ in the video image P’. The 3D marker M, whose
projection on P is m, lies on the line (mC). Since we know the range of depth to which
the patient belongs, we can define a segment [M pin M max] on (mC) that contains M. By
projecting this segment on the video image P', we build the segment [m'yiy, m'max] on
which m' lies.

Finally the matched markers are reconstructed in 3D in the camera reference frame.
If erroneous 3D reconstructions due to false point matches appear, they are discarded by the
subsequent video/CT matching procedure designed to be robust in the presence of such
outliers. Experiments realized with 210 image pairs of the phantom showed that on 25
potential matches, an average of 15 were correct, 8.7 were ambiguous and 1.3 were wrong.
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Ambiguous

Reliable

Figure 5: Example of epipolar matching on a video image pair. On the right image are
drawn the epipolar segments that correspond to the outlined markers in the left image.
One can see that only one marker lies on L1 and L2 (at the bottom). In that case, the
match is considered as reliable. L3 and L4 being close to 3 different markers, this case is
ambiguous: P3 and P4 are not matched with another marker.

Video / CT-scan marker matching

A set of 3D markers being reconstructed in the camera reference frame, we need to
match them with the corresponding 3D points extracted from the CT-scan. We decided to
use a prediction/verification algorithm [13] with additional distance constraints. This
algorithm provides us not only a matching estimation, but a transformation initialization as
well. The principle is to choose a triplet from the reconstructed marker set and to find a
triplet from the CT-scan markers that has the same dimension (the triangle sides have
approximately the same length). If no CT-scan triplet is found, a new triplet from the
reconstructed marker set is chosen. When a CT-scan triplet is found to have the same
dimension, we compute the rigid transformation that best matches the 2 triplets [14]. To
verify this prediction, we apply this transformation to the extracted CT-scan markers and
project them in the video images. Since the CT (resp. video) marker extraction algorithm
provided 5% (resp. 5%) of false negatives, we accept the transformation as correct if more
than 85% of the projected points are close to the extracted 2D video points. Otherwise, the
2 triplets are not homologous despite the dimension similarity (this case is illustrated on
Figure 6): we have to choose a new triplet in the CT-scan marker set. In fact, to limit
computation time, it is much more interesting to sort the triplet so that we first choose those
whose number of potential corresponding triplets is small (typically, we begin with the
triplets of largest dimension).
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Figure 6: Illustration of a bad triplet matching. One can see in the light
circles three 3D markers from the CT model that are well superimposed
with three 2D markers of the video image. Since almost all the other 3D
model markers are not close to video markers (in dark circles), it means
that the two triplets are not representing the same markers.

When a correct transformation is found, we keep all the 3D/2D correspondences
provided by the verification step to compute a more accurate transformation (see next
section). In this process, markers that belong to ambiguous 2D/2D video matches are
implicitly reconsidered thanks to the verification. The matching experiments made with the
210 image pairs of the phantom used in the previous section always provide a correct
transformation, and 100% of the possible matches were found. The whole matching process
took on average less than 2 seconds and 3 seconds at the most. Eventually, these results
show that our procedure of extraction and matching is sufficiently robust and reliable for
clinical use.
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Computation of the best rigid transformation

We could have directly used the transformation obtained between the 2 matched
triplets, but it only relies on three 3D matches. Since we need the best possible accuracy, it
is desirable to take the information brought by all 3D/2D matches into account. The
classical least square 3D/2D criterion supposes that the noise corrupting the 3D data is
negligible. This assumption being false in our case, we optimize the maximum likelihood
EPPC criterion that we developed in [15] and that is optimal in the case of noise on both
2D and 3D markers extraction:

A N o

2
=1 i=1 20_2D i=1 2G3D

where T is the sought transformation, P'is the projective function of the 1% camera, M ;are

the extracted 3D CT-scan markers, r7zf the extracted video markers from the camera l, o;p
and o3p the estimated standard deviation of the noise corrupting the CT and video markers
extraction, M, the exact location of the CT markers and &' a binary variable equal to 1 if

M, is observed by the 1% camera and 0 otherwise. Note that M, are not known and are
consequently estimated just as the transformation T (M, are called hidden variable). We
perform an alternated minimization w.r.t. the two groups of variables, starting from a
transformation initialization of the M, with the M .. The algorithm is stopped when the

distance between the last two estimates of the transformation becomes negligible. An
experimental study realized with the phantom [15] showed that a superimposition accuracy
of 2 mm was reached for targets within the liver.

Superimposition of the virtual needle on the real one

As the needle is no longer visible as soon as the radiologist introduces it under the
skin, its virtual model needs to be superimposed in real-time onto the video images. This
means that we have to track its location and orientation in space in the camera reference
frame. To realize it, we attach an oriented square marker whose corners are automatically
localized on video images in real-time using ARToolkit library [16]. Then, knowing the
size of the square, we are able to localize it in the camera reference frame by minimizing
the classical 3D/2D SPPC criterion [15]:

where, M .are the position of the 4 corners in the square marker frame, 7, are the pixel

position of the 4 corners in the /* video image and T is the transformation between the
square marker frame and the camera reference frame. Calibrating the relative needle
position with respect to the square marker with the pivot method [17], we are finally able to
superimpose the virtual model on the real one on video images (cf. Figure 7).

i |Per*at,) - ;%}HZ + i |P2er*a1,) - nzfuz
i=1

i=1
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Figure 7: Superimposition of the virtual needle on the real one. Left: original image.
Right: detection of the square marker position and orientation. The virtual needle is
superimposed in orange.

Evaluation of the overall system

The purpose of these experiments was to assess the accuracy of the needle targeting by a
surgeon using our AR guidance system. Targets were modeled with radio-opaque markers
stuck on the fake liver inside the phantom. To reach one target, the augmented view
provides the virtual position of the target and the needle in the two video images (cf. Figure
8). The needle orientation is guided by the color target that changes when the needle points
toward the right direction. Moreover, the distance (in mm) between the virtual needle tip
and the center of the virtual tumor is provided by the software. This distance varied
continuously, because of the fine tremor of the hand of the operator. Two participants (a
computer scientist (CS) and a surgeon) each performed 50 consecutive needle targetings of
the model tumor using the augmented view. During the targeting, the operator placed the
needle and stopped his movement when he thought that he had reached the center of the
tumor. After each trial, the time required to position the needle was recorded, and the
accuracy of the hit was verified by an independent observer using an endoscopic camera
introduced into the phantom and focusing on the targets (cf. Figure 9). Results shown in
Table 1 indicate clearly that our system provides enough accuracy and that it allows to
reach the target very quickly with respect to the usual time needed for a standard
percutaneous intervention.

10
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Figure 8: Augmented view seen by the surgeon on the screen. The video images
display the virtual model of the target (yellow circle) and of the needle (in blue). The
light blue line corresponds to the distance between the needle tip and the target.

Figure 9: Control view: an endoscopic camera is inserted
inside the phantom to check the targeting accuracy.

11
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Total CS Surgeon
Average real distance (mm) 2.79 £ 1.41 36+ 1.03 1.98 £ 1.27
Average time (sec) 4657 +24.64 385+21.78 54.64 +24.88

Table 1: Accuracy of needle targeting (mean value + standard deviation).

Conclusion
In this paper, we have presented an AR system, based on radio-opaque marker registration,
to guide the needle positioning during RF hepatic tumor ablation. To fulfill time
constraints, we have developed procedures to extract and match the markers in the video
and the CT-scan images. Experimental studies proved that these algorithms are robust and
fast enough for clinical application. In order to evaluate the efficiency of the whole system,
we conducted needle positioning experiments on targets embedded into our human
abdominal phantom. Results show that our system of AR guidance is highly accurate (2.8
mm on average) and enables to locate hidden targets quickly (less than one minute on
average), whereas a standard percutaneous intervention generally takes more than 5 min.
The system is also easy to use, and yields reproducible results: an untrained surgeon, not
involved in the initial development of the system, was able to use it repetitively with a
better accuracy than the computer scientist. One other advantage of this system is the
simple material needed. Indeed, only a PC, a video acquisition card, two cameras and a
printed square are required, contrary to the other existing systems that need devoted
tracking materials [3][6][10] (such as Optotrak, Flashpoint...) or a laser scanner [4].

In order to reach a clinical validation and use, we plan experiments on human patients
to verify that our system fits real operative constraints (low organ mobility and good
illumination conditions).
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