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Abstract Computational anatomy aims at develop-
ing models to understand the anatomical variability of
organs and tissues. A widely used and validated in-
strument for comparing the anatomy in medical im-
ages is non-linear diffeomorphic registration which is
based on a rich mathematical background. For instance,
the “large deformation diffeomorphic metric mapping”
(LDDMM) framework defines a Riemannian setting by
providing a right invariant metric on the tangent spaces,
and solves the registration problem by computing geo-
desics parametrized by time-varying velocity fields. A
simpler alternative based on Stationary Velocity Fields
(SVF) has been proposed, using the one-parameter sub-
groups from Lie groups theory. In spite of its better
computational efficiency, the geometrical setting of the
SVF is more vague, especially regarding the relation-
ship between one-parameter subgroups and geodesics.

In this work, we detail the properties of finite dimen-
sional Lie groups that highlight the geometric founda-
tions of one-parameter subgroups. We show that one
can define a proper underlying geometric structure (an
affine manifold) based on the canonical Cartan con-
nections, for which one-parameter subgroups and their
translations are geodesics. This geometric structure is
perfectly compatible with all the group operations (left,
right composition and inversion), contrarily to left- (or
right-) invariant Riemannian metrics. Moreover, we de-
rive closed-form expressions for the parallel transport.
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Then, we investigate the generalization of such proper-
ties to infinite dimensional Lie groups. We suggest that
some of the theoretical objections might actually be
ruled out by the practical implementation of both the
LDDMM and the SVF frameworks for image registra-
tion. This leads us to a more practical study comparing
the parameterization (initial velocity field) of metric
and Cartan geodesics in the specific optimization con-
text of longitudinal and inter-subject image registra-
tion.Our experimental results suggests that stationarity
is a good approximation for longitudinal deformations,
while metric geodesics notably differ from stationary
ones for inter-subject registration, which involves much
larger and non-physical deformations. Then, we turn
to the practical comparison of five parallel transport
techniques along one-parameter subgroups. Our results
point out the fundamental role played by the numer-
ical implementation, which may hide the theoretical
differences between the different schemes. Interestingly,
even if the parallel transport generally depend on the
path used, an experiment comparing the Cartan par-
allel transport along the one-parameter subgroup and
the LDDMM (metric) geodesics from inter-subject reg-
istration suggests that our parallel transport methods
are not so sensitive to the path.

1 Introduction

One of the main objectives of computational anatomy
is to develop suitable statistical models on several sub-
jects for the study of the anatomical variability of or-
gans and tissues. In particular, longitudinal observa-
tions from time series of images are an important source
of information for understanding the developmental pro-
cesses and the dynamics of pathologies. Thus, a reliable
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method for comparing different longitudinal trajecto-
ries is required, in order to develop population-based
longitudinal models.

Non-rigid registration is an instrument for the de-
tection of anatomical changes on medical images, and
it has been widely applied on different clinical con-
texts for the definition of population-based anatomi-
cal atlases [38,26,9]. However, in case of longitudinal
data, the optimal method for comparing deformation
trajectories across different subjects is still unknown.
In fact, the methods for integrating the subtle inter-
subject changes into the group-wise analysis have an
important impact on the accuracy and reliability of the
subsequent statistical results. The aim is to preserve
as much as possible the biological informations carried
on by the different subjects, while allowing a precise
comparison in a common geometrical space.

Among the different techniques proposed for the
comparison of longitudinal trajectories ([33,5,10]), the
parallel transport represents a promising method which
relies on a solid mathematical background. Basically, it
consists in transporting the infinitesimal deformation
vector across different points by preserving its proper-
ties with respect to the space geometry, such as the
parallelism.

Parallel transport has been introduced in medical
imaging within the LDDMM setting [40,42]. LDDMM
solves the image registration problem by using a Rie-
mannian framework in which the deformations are para-
metrized as diffeomorphisms living in a suitable space,
once provided an opportune right-invariant metric [27].
The registration problem is solved by computing the
deformation that best matches the images with a pe-
nalization on the energy of the trajectory in the space
of diffeomorphisms. The solution is given by the end-
point of a geodesic parametrized by a time-varying ve-
locity field. This endpoint can also be parametrized by
the Riemannian exponential map of the initial veloc-
ity field (or its metric dual, the momentum). The set-
ting allows the computation of the parallel transport
along geodesics at the cost of a computationally inten-
sive scheme, and this limitation often prevents the ap-
plication on high resolution images or large datasets.
Moreover, this assumes that both longitudinal defor-
mations and inter-subject transformations live in the
same space of diffeomorphisms, which may have very
different characteristics.

A simplified solution to the diffeomorphic registra-
tion problem was introduced with the stationary veloc-
ity field (SVF) setting [2]. In this case, the diffeomor-
phisms are one-parameter subgroups parameterized by
stationary velocity fields through the Lie group expo-
nential. This restriction allows an efficient numerical

scheme for the computation of the deformation but it
does apparently not rely on any geometric assumption
on the underlying space. This implies that some impor-
tant mathematical properties are not guaranteed, for
instance whether the one-parameter subgroups are still
geodesics or if the space is complete. In spite of this
lack of knowledge, the framework was found very effi-
cient and reliable in many application in different con-
texts [25,23,36]. For instance, a framework based on the
Schild’s Ladder has been proposed for the evaluation of
the parallel transport with the SVF in [22].

In this paper we investigate the relationship between
Lie groups and affine geometry and we highlight many
interesting properties that provide the SVF setting with
part of the geometrical solidity required. In Section 2 we
present the relevant properties of the finite dimensional
Lie groups and the relationship with the Riemannian
setting for the definition of the geodesics and the par-
allel transport. Section 3 is dedicated to a discussion
on the extension of the Lie group theory in the infinite
dimensional case. In Section 4, we study the differences
between the registration based on the one-parameter
subgroups and on the Riemannian metric on specific
registration problems. Finally, Section 5 focuses on the
evaluation of Cartan’s parallel transport of deformation
vectors in the image registration context.

2 Differential Geometry on Lie Group

This section references the conceptual basis for the defi-
nition of the parallel transport along the one-parameter
subgroups. Many details on differential geometry an Lie
groups can be found in classical books like [11,7,13].
However, most results of this section are more easily
found in the more modern (and quite comprehensive)
presentation of differential geometry and Lie groups of
Postnikov [32].

2.1 Basics of Lie Groups

A Lie group G is a smooth manifold provided with an
identity element id, a smooth associative composition
rule (g, h) ∈ G × G 7→ gh ∈ G and a smooth inver-
sion rule g 7→ g−1 which are both compatible with the
differential manifold structure. As such, we have a tan-
gent space TgG at each point g ∈ G. A vector field X
is a smooth function that maps a tangent vector X|g
to each point g of the manifold. The set of vector fields
(the tangent bundle) is denoted TG. Vector fields can
be viewed as the directional (or Lie) derivative of a
scalar function φ along the vector field at each point:
∂Xφ|g = ∂φ(g+tX|g)

dt . Composing directional derivatives
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∂X∂Yφ leads in general to a second order derivation.
However, we can remove the second order terms by sub-
tracting ∂Y∂Xφ (this can be checked by writing these
expression in a local coordinate system). We obtain the
Lie bracket that acts as an internal multiplication in
the algebra of vector fields:

[X,Y](φ) = ∂X∂Yφ− ∂Y∂Xφ.

Given a group element a ∈ G, we call left translation
La the composition with the fixed element a on the
left: La : g ∈ G 7→ ag ∈ G. The differential DLa of
the left translation maps the tangent space TgG to the
tangent space TagG. We say that a vector field X ∈
T (G) is left invariant if it remains unchanged under
the action of the left translation: DLaXg = X|ag. The
sub-algebra of left-invariant vector fields is closed under
the Lie bracket and is called the Lie algebra g of the
Lie group. Since a left-invariant vector field is uniquely
determined by its value at identity through the one-to-
one map X̃|g = DLgX, the Lie algebra can be identified
to the tangent space at the identity TidG. One should
notice that any smooth vector field can be written as
a linear combination of left-invariant vector fields with
smooth functional coefficients.

Left-invariant vector fields are complete in the sense
that their flow ϕt is defined for all time. Moreover, this
flow is such that ϕt(g) = gϕt(id) by left invariance. The
map X 7→ ϕ1(id) of g into G is called Lie group expo-
nential and denoted by exp. In particular, the group
exponential defines the one-parameter subgroup associ-
ated to the vector X and has the following properties:

– ϕt(id) = exp(tX), for each t ∈ R;
– exp((t+ s)X) = exp(tX)exp(sX), for each t, s ∈ R.

In finite dimension, it can be shown that the Lie group
exponential is a diffeomorphism from a neighborhood
of 0 in g to a neighborhood of id in G.

For each tangent vector X ∈ g, the one parame-
ter subgroup exp(tX) is a curve that starts from iden-
tity with this tangent vector. One could question if this
curve could be seen as a geodesic like in Riemannian
manifolds. To answer this question, we first need to de-
fine what are geodesics. In a Euclidean space, straight
lines are curves which have the same tangent vector
at all times. In a manifold, tangent vectors at differ-
ent times belong to different tangent spaces. When one
wants to compare tangent vectors at different points,
one needs to define a specific mapping between their
tangent spaces: this is the notion of parallel transport.
There is generally no way to define globally a linear op-
erator Πh

g : TgG → ThG which is consistent with com-
position (i.e. Πh

g ◦Π
g
f = Πh

f ). However, specifying the
parallel transport for infinitesimal displacements allows

integrating along a path, thus resulting into a parallel
transport that depend on the path. This specification
of the parallel transport for infinitesimal displacements
is called the (affine) connection.

2.2 Affine Connection Spaces

An affine connection on G is an operator which assigns
to each X ∈ T (G) a linear mapping ∇X : T (G) →
T (G) such that, for each vector field X,Y ∈ T (G), and
smooth function f, g ∈ C∞(G,R)

∇fX+gY = f∇X + g∇Y (Linearity); (1)

∇X(fY) = f∇X(Y) + (Xf)Y (Leibniz rule). (2)

The affine connection is therefore a derivation on
the tangent space which infinitesimally maps tangent
vectors from one tangent plane to another. Once the
manifold provided with a connection, it is possible to
generalize to the manifolds the notion of “straight lines”:
a vector field X is parallel transported along a curve γ(t)
if ∇γ̇(t)X = 0 for each t. Thus, a path γ(t) on G is said
to be straight or geodesic if ∇γ̇ γ̇ = 0.

In a local coordinate system, the geodesic equation
is a second order differential equation. Thus, given a
point p ∈ G and a vector X ∈ TpG, there exist a unique
geodesic γ(t, p,X) such that at the instant t = 0 passes
through p with velocity X [32]. We define therefore the
Affine exponential as the application exp : G×T (G)→
G given by expp(X) = γ(1, p,X).

If, as in the Euclidean case, we want to associate to
the straight lines the property of minimizing the dis-
tance between points, we need to provide the group G
with a Riemannian manifold structure, i.e. with a met-
ric operator g on the tangent space. In this case there
is a unique connection, called Levi-Civita connection,
which, for each X,Y,Z ∈ T (G):

– Preserves the metric, i.e. the parallel transport along
any curve connecting f to g is an isometry:

g(X,Y)g = g(Πf
gX, Πf

gY)f .

– Is torsion free:

∇XY −∇YX = [X,Y],

thus the parallel transport is symmetric with respect
to the Lie bracket.

By choosing the Levi-Civita connection of a given
Riemannian metric, the affine geodesics are the length
minimizing paths (i.e. classical Riemannian geodesics).
However, given a general affine connection, there may
not exist any Riemannian metric for which affine geo-
desics are length minimizing.
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2.3 From Affine Geodesic to One-Parameter
Subgroups

Given an affine connection ∇ and a vector X on TidG,
we can therefore define two curves on G passing through
id and having X as tangent vector, one given by the Lie
group exponential exp and the other given by the affine
exponential expid. When do they coincide?

The connection ∇ on G is left-invariant if, for each
left translation La (a ∈ G) and any vector fields X and
Y, we have ∇DLaX(DLaY) = DLa∇X(Y). Using two
left invariant vector fields X̃, Ỹ ∈ g generated by the
tangent vectors X,Y ∈ TidG, we see that ∇X̃Ỹ is it-
self a left-invariant vector field generated by its value
at identity. Since a connection is completely determined
by its action on the left-invariant vector fields (we can
recover the connection on arbitrary vector fields using
Eq. (1,2) from their decomposition on the Lie Alge-
bra), we conclude that each left-invariant connection
∇ is uniquely determined by a product α (symmetric
bilinear operator) on TidG through

α(X,Y ) = ∇X̃Ỹ
∣∣∣
id
.

Notice that such a product can be uniquely decomposed
into a commutative part α′ = 1

2 (α(X,Y ) + α(Y,X))
and a skew symmetric part α′′ = 1

2 (α(X,Y )− α(Y,X)).
The symmetric part specifies the geodesics (i.e. the par-
allel transport of a vector along its own direction) while
the skew-symmetric part specifies the torsion which gov-
erns the parallel transport of a vector along a different
direction (the rotation around the direction of the curve
if we have a metric connection with torsion).

Following [32], a left-invariant connection ∇ on a
Lie group G is a Cartan connection if, for any tan-
gent vector X at the identity, the one-parameter sub-
groups and the affine geodesics coincide, i.e. exp(tX) =
exp(t, id,X). We can see that a Cartan connection sat-
isfies α(X,X) = 0 or, equivalently, is purely skew-sym-
metric.

The one-dimensional family of connections gener-
ated by α(X,Y ) = λ[X,Y ] obviously satisfy this skew-
symmetry condition. Moreover, the connections of this
family are also invariant by right translation [31], thus
invariant by inversion also since they are already left in-
variant. This make them particularly interesting since
they are fully compatible with all the group operations.

Among this family, three connections have special
curvature or symmetric properties and are called the
canonical Cartan-Schouten connections [8]. The zero
curvature connections given by λ = 0, 1 (with torsion
T = −[X̃, Ỹ] and T = [X̃, Ỹ] respectively on left in-
variant vector fields) are called left and right Cartan
connections. The choice of λ = 1/2 leads to average the

left and right Cartan connections. It is called the sym-
metric (or mean) Cartan connection. It is torsion-free,
but has curvature R(X̃, Ỹ)Z̃ = − 1

4

[
[X̃, Ỹ], Z̃

]
.

As a summary, the three canonical Cartan connec-
tions of a Lie group are (for two left-invariant vector
fields):

∇X̃Ỹ = 0 Left (Torsion, Flat);

∇X̃Ỹ =
1
2

[
X̃, Ỹ

]
Symmetric (Torsion-Free, Curved);

∇X̃Ỹ =
[
X̃, Ỹ

]
Right (Torsion, Flat).

Since the three canonical Cartan connections only
differ by torsion, they share the same affine geodesics
which are the left and right translations of one param-
eter subgroups. In the following, we call them group
geodesics. However, the parallel transport of general
vectors along these group geodesics is specific to each
connection as we will see below.

2.4 Left and Right Invariant Riemannian Metrics on
Lie Groups

Given a metric < X,Y > on the tangent space at
identity of a group, one can propagate this metric to
all tangent spaces using left (resp. right) translation
to obtain a left- (resp. right-) invariant Riemannian
metric on the group. In the left-invariant case we have
< DLaX,DLaY >a=< X,Y > and one can show [20]
that the Levi-Civita connection is the left-invariant con-
nection generated by the product

α(X,Y ) =
1
2

[X,Y ]− 1
2

(ad∗(X,Y ) + ad∗(Y,X)),

if the operator ad∗ verifying< ad∗(Y,X), Z >=< [X,Z], Y >

for all X,Y, Z ∈ g is well defined. A similar formula can
be established for right-invariant metrics using the al-
gebra of right-invariant vector fields.

We clearly see that this left-invariant Levi-Civita
connection has a symmetric part which make it dif-
fer from the Cartan symmetric connection α(X,Y ) =
1
2 [X,Y ]. In fact, the quantity ad∗(X,X) specifies the
rate at which a left invariant geodesic and a one pa-
rameter subgroup starting from the identity with the
same tangent vector X deviates from each-other. More
generally, the condition ad∗(X,X) = 0 for all X ∈ g
turns out to be a necessary and sufficient condition to
have a bi-invariant metric [32]. It is important to notice
that geodesics of the left- and right-invariant metrics
differ in general as there do not exists bi-invariant met-
rics even for simple groups like the Euclidean motions
[31]. However, right invariant geodesics can be obtained
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from the left invariant one through inversion: if φ(t) is
a left invariant geodesic joining identity to the trans-
formation φ1, then φ−1(t) is a right-invariant geodesic
joining identity to φ−1

1 .

2.5 Parallel Transport on Cartan Connections

For the left Cartan connection, the unique fields that
are covariantly constant are the left-invariant vector
fields, and the parallel transport is induced by the dif-
ferential of the left translation [32], i.e. ΠL : TpG →
TqG is defined as

ΠL(X) = DLqp−1X. (3)

One can see that the parallel transport is actually inde-
pendent of the path, which is due to the fact that the
curvature is null: we are in a space with absolute par-
allelism. Similarly, the right-invariant vector fields are
covariantly constant with respect to the right invari-
ant connection only. As above, the parallel transport is
given by the differential of the right translation

ΠR(X) = DRp−1qX, (4)

and we have an absolute parallelism as well.
Finally, the parallel transport for the symmetric Car-

tan connection is given by the infinitesimal alternation
of the left and right transports. However, as there is cur-
vature, it depends on the path: it can be shown [13] that
the parallel transport of X along the geodesic exp(tY )
is:

ΠS(X) = DLexp( 1
2Y )DRexp( 1

2Y )X. (5)

2.6 The Schild’s Ladder: a Parallel Transport Scheme
for Symmetric Connections

A more general method for parallel transport was in-
troduced in [29] after Schild’s similar constructions [21].
The Schild’s Ladder infinitesimally transports a vector
along a given curve through the construction of geodesic
parallelograms (Figure 1). Since this scheme relies only
on geodesics, it is only valid for symmetric connections
with no torsion [19], in which case it provides a first or-
der approximation of the parallel transport. Although
the Schild’s Ladder was known in gravitation theory
for 40 years, it was apparently not used in practice as
a computational tool before it was turned into an algo-
rithm for the parallel transport of deformation vectors
in [22].

Fig. 1 The Schild’s Ladder. Given a curve C, the vector
A on P0 is transported to P1 in two steps: 1) compute the
geodesic connecting P2 and P1 and define the mid-point P3,
2) compute the geodesic from P0 to P3 and prolongate twice
to reach P4. The tangent vector A′ to the curve connecting
P1 and P4 is the parallel transport of A.

3 A Glimpse of Lie Group Theory in Infinite
Dimension

In the previous Section, we derived the equivalence of
one-parameter subgroups and the affine geodesics of the
canonical Cartan connections in a finite dimensional
Lie group. In order to use such a framework for diffeo-
morphisms, we have to generalize the theory to infinite
dimensions. However, defining infinite dimensional Lie
groups is raising much more difficulties. This is in fact
the reason why Lie himself restricted to finite dimen-
sions. The theory was developed since the 70ies and is
now an active field of research. We refer the reader to
the recent books [18,41] for more details on this theory
and to [34] for a good overview of the problems and
applications.

3.1 Infinite Dimensional Lie Groups

The basic construction scheme is to consider an infi-
nite dimensional manifold endowed with smooth group
operations. Such a Lie group is locally diffeomorphic
to an infinite-dimensional vector space which can be a
Fréchet space (a locally convex space which is complete
with respect to a translation invariant distance), a Ba-
nach space (where the distance comes from a norm) or a
Hilbert space (where the norm is derived from a scalar
product). We talk about Fréchet, Banach or Hilbert
Lie groups, respectively. Extending differential calculus
from Rn to Banach and Hilbert spaces is straightfor-
ward, but this is not so simple for Fréchet spaces. In par-
ticular, the dual of a Fréchet space need not be Fréchet,
which means that some extra care must be taken when
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defining differential forms. Moreover, some important
theorems such as the inverse function theorem hold for
Banach spaces but not necessarily for Fréchet spaces.

For instance, the set Diffk(M) of Ck diffeomor-
phisms of a compact manifoldM is a Banach manifold
and the set of Sobolev Hs diffeomorphisms Diffs(M)
is a Hilbert manifold (if s > dimM/2). However, these
are no-classical ”Lie groups” since one looses deriva-
tives when differentiating the composition and inver-
sion maps. To obtain the complete smoothness of the
composition and inversion maps, one has to go to in-
finity, but the Banach structure is lost in the process
[34, p.12] and we are left with Diff∞(M) being only a
Fréchet Lie group. Some additional structure can be ob-
tained by considering the sequence ofDiffk(M) spaces
as a succession of dense inclusions as k goes to infinity:
this the the Inverse Limit of Banach (ILB)-Lie group
setting. Likewise, the succession of dense inclusions of
Sobolev Hs diffeomorphisms give rise to the Inverse
Limit of Hilbert (ILH)-Lie group setting.

3.2 General Groups of Diffeomorphisms

As the diffeomorphisms groups considered are Fréchet
but not Banach, the usual setting of infinite dimensional
Lie groups is the general framework of Fréchet mani-
folds. This implies that many of the important proper-
ties which are true in finite dimension do not hold any
more for general infinite dimensional Lie groups [35].

First, there is no implicit or inverse function theo-
rem (except Nash-Moser type theorems.) This implies
for instance that the log-map (the inverse of the expo-
nential map) may not be smooth even if the differential
of the exponential map is the identity.

Second, the exponential map is not in general a dif-
feomorphism from a neighborhood of zero in the Lie al-
gebra onto a neighborhood of the identity in the group.
This means that it cannot be used as a local chart to
work on the manifold. For instance in Diffs(M), in ev-
ery neighborhood of the identity there exists diffeomor-
phisms which are not the exponential of an Hs vector
field. A classical example of the non-surjectivity of the
exponential map is the following function in Diff(S1)
[28]:

fn,ε(θ) = θ + π/n+ ε sin2(nθ). (6)

This function can be chosen as close as we want to the
identity by opportunely dimensioning ε and θ. How-
ever, it can be shown that it cannot be reached by any
one-parameter subgroup, and therefore the Lie group
exponential is not a local diffeomorphisms of Diff(S1).

This example is quite instructive and shows that
this theoretical problem might actually be a very prac-

tical advantage: the norm of the k-th derivative of fn,ε
is exploding when k is going to infinity, which shows
that we would rather want to exclude this type of dif-
feomorphisms from the group under consideration.

3.3 Theoretical Background of Diffeomorphic Image
Registration

In the Large Deformation Diffeomoprhic Metric Map-
ping (LDDMM) framework [41], a different construc-
tion is leading to a more restricted subgroup of diffeo-
morphisms which is more rational from the computa-
tional point of view. One first chooses a Hilbert norm on
the Lie Algebra which turn it into an admissible Hilbert
space. Admissible means that it can be embedded into
the space of vector fields which are bounded and vanish-
ing at infinity, as well as all the first order derivatives.
Typically, this is a Sobolev norm of a sufficiently high
order. Then, one restricts to the subgroup of diffeomor-
phisms generated by the flow of integrable sequences
of such vector fields for a finite time. To provide this
group with a Riemannian structure, a right invariant
metric is chosen. The reason for choosing right transla-
tion is that it is simply a composition which does not
involve a differential operator as for the left transla-
tion. On can show that the group provided with this
right-invariant metric is a complete metric space: the
choice of the norm on the Lie algebra is specifying the
subgroup of diffeomorphisms which are reachable, i.e.
which are at a finite distance.

3.4 The Stationary Velocity Fields (SVF) framework

In [2], Arsigny proposed to parameterize deformations
by the exponential (i.e. the flow) of stationary velocity
fields [2]. The fact that the flow in an autonomous ODE
allows us to generalize efficient algorithms such as the
scaling and squaring algorithm: given an initial approx-
imation exp(δY ) = id + δY , the exponential of a SVF
Y can be efficiently and simply computed by recursive
compositions:

exp(Y ) = exp
(
Y

2

)
◦ exp

(
Y

2

)
=
(

exp
(
Y

2n

))2n

.

A second algorithm is at the heart of the efficiency
of the optimization algorithms with SVFs: the Baker-
Campbell-Hausdorff (BCH) formula [4] tells us how to
approximate the log of the composition:

BCH(X, δY ) = log(exp(X) ◦ exp(δY ))

= X + δY +
1
2

[X, δY ] +
1
12

[X, [X, δY ]] + . . . .
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In order to have a well-posed space of deformations,
we need to specify on which space is modeled the Lie
algebra, as previously. This is the role of the regular-
ization term of the SVF registration algorithms [39,15]
or of the spline parameterization of the SVF in [3,30]:
this restricts the Lie algebra to the sub-algebra of suf-
ficiently regular velocity fields. The subgroup of diffeo-
morphisms considered is then generated by the flow of
these stationary velocity fields and their finite compo-
sition. So far, the theoretical framework is very similar
to the LDDMM setting and we can see that the diffeo-
morphisms generated by the one-parameter subgroups
(the exponential of SVFs) all belong to the group con-
sidered in the LDDMM setting, provided that we model
the Lie algebra on the same admissible Hilbert space.
As in finite dimension, the affine geodesics of the Car-
tan connections (group geodesics) are metric-free (the
Hilbert metric is only used to specify the space on which
is modeled the Lie Algebra) and generally differ from
the Riemannian geodesics of LDDMM.

When modeling the Lie algebra on a reproducing
kernel Hilbert space (RKHS) with a real analytic kernel
(typically a Gaussian Kernel), the Lie algebra is stable
under the bracket, which is necessary for the classical
Lie group theory. If we could show that the adjoint
operator is uniformly bounded with a sufficiently small
bound, then we would expect the BCH series to be con-
vergent. Having such a BCH-Lie group would already
be sufficient to justify the optimization steps performed
in the SVF registration framework.

However, it is well known that the subgroup of dif-
feomorphisms generated by this Lie algebra is signif-
icantly larger than what is covered by the group ex-
ponential. Indeed, although our affine connection space
is geodesically complete (all geodesics can be contin-
ued for all time without hitting a boundary), there
is no Hopf-Rinow theorem which state that any two
points can be joined by a geodesic (metric complete-
ness). Thus, in general, not all the elements of the group
G may be reached by the one-parameter subgroups. An
example in finite dimension is given by SL(2).

However, this might not necessarily results into a
problem in the image registration context since we are
not interested in recovering “all” the possible diffeo-
morphisms, but only those which lead to admissible
anatomical transformations. For instance, the diffeo-
morphism on the circle defined above at Eq. (6) cannot
be reached by any one-parameter subgroup of S1. How-
ever, since

lim
k→∞

‖fn,ε‖Hk →∞,

this function is not well behaved from the regularity
point of view, which is a critical feature when dealing
with image registration.

In practice, we have a spatial discretization of the
SVF (and of the deformations) on a grid, and the tem-
poral discretization of the time varying velocity fields
by a fixed number of time steps. This intrinsically lim-
its the frequency of the deformation below a kind of
”Nyquist” threshold, which prevents these diffeomor-
phisms to be reached anyway both by the SVF and
by the ”discrete” LDDMM frameworks. Therefore, it
seems more importance to understand the impact of
using stationary velocity fields in registration from the
practical point of view, than from the theoretical point
of view, because we will have in fine to deal with the
unavoidable numerical implementation and relative ap-
proximation issues.

4 Practical Differences between Metric and
Group Geodesics in Registration

In this Section, we investigate the practical differences
between metric and group geodesics, by applying the
SVF and LDDMM image registration settings on com-
mon data. In this case, we are interested in the differ-
ences between the estimated diffeomorphisms and the
related tangent parametrization.

We investigate two different scenarios: longitudinal
and inter-subject registration problems. In the former
case the registration aims at retrieving the small dif-
ferences occurring on the same subject after two sub-
sequent imaging session, most likely due to precise bio-
logical processes. In the latter case, the differences are
given by the large variability among different subjects,
with potential structural and topological changes. In
this case, even if there might not exist real one-to-one
correspondences, the diffeomorphic constraint is impor-
tant in term of smoothness and reliability of the repre-
sented deformation. In the following the SVF and LD-
DMM settings will be provided by the Log-Demons and
the AtlasWerk registration algorithms.

4.1 Log-Demons

The symmetric log-domain diffeomorphic Demons (or
Log-Demons) [39] estimates a diffeomorphic deforma-
tion parametrized by a SVF. The Log-Demons alter-
nates the estimation of unconstrained correspondences
(encoded through the exponential of a SVF vc) that
optimize the image similarity measure, and the estima-
tion of the transformation parameters (a SVF v) that
best explains the correspondence field using a penal-
ized least-squares approach. The regularity criterion is
an infinite order differential quadratic forms (Qk) of the
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velocity field [6],

Reg(v) = ‖vc − v‖2 +
∞∑
k=1

Qk(v)
σ2k
t

' ‖vc − v‖2 +
σ2

2
‖∇v‖2 +

σ4

4
‖∇2v‖2 + . . . ,

where we chose σ2
t = 2/σ2 so that the optimum is

explicitly obtained through a Gaussian convolution of
smoothing parameter σ [25]. The Lie group exponential
is efficiently implemented by the scaling and squaring
computational scheme. An additional (so-called fluid)
regularization step is often performed when updating
the correspondences in addition to the above elastic-
like penalization.

In the following experiments we used the regular-
ization parameters σfluid = 0.5 and σel = 1.5, maxi-
mum update step length σx = 2 voxels, with a multi-
resolution scheme of 100 and 50 iterations at coarser
and finer level respectively. This choice leads to a rea-
sonable compromise between image matching and smooth-
ness of the deformation in both longitudinal and inter-
subject settings, as already tested in several previous
experiments. The average computational time for the
registration of a couple of brain images (image resolu-
tion 182x218x182, voxel size 1x1x1) is 25 minutes on a
AMD Opteron dual core 2000Mhz.

4.2 AtlasWerks

The AtlasWerks suite [1] is an implemention of the
Large Deformation Diffeomorphic Metric Mapping (LD-
DMM) framework. The algorithm minimizes the sum
of an image similarity metric and an elastic regular-
ization term which measures the energy of the trajec-
tory deforming one image into the other. This formula-
tion ensures that the optimum trajectory is a geodesic
evolution equation, which means that the path is com-
pletely defined by the initial tangent vector or, equiv-
alently, by the initial momentum [17,16]. The energy
of the geodesic is measured by the norm of the initial
vector ‖v0‖2 = ‖Lv0‖2L2

(or equivalently by its inte-
gral along the geodesic path). The differential operator
L = γ−α∇2−β∇(∇·) is controlled by three parameters
α, β and γ responsible respectively for the smoothness
and the compressibility of the deformation, and trade-
off between matching and regularity terms. This energy
corresponds to a Sobolev H2 norm on the Lie Alge-
bra, which is weaker than the one imposed by the Log-
Demons regularization: roughly, the normalized weight
α/γ of the first order term could be compared to the
weight σ2/2 of the Log-Demons while β/γ should be
compare to zero. The same comparison is also valid for

Fig. 2 Intra-subject registration. Tangent representation for
the intra-subject longitudinal deformation estimated by A)
the SVF, and B) the LDDMM (initial tangent vector v(0))
settings. C,C’) LDDMM time varying velocity field v(ti) at
time points ti = 0.4 and 0.8, and D) associated magnitude
measured by the L2 norm.

the second order term. Higher order terms are not pe-
nalized by AtlasWerks while they are increasingly pe-
nalized with the Log-Demons.

The AtlasWerks suite requires to set-up different
registration parameters and, in order to obtain results
compatible with those given by the Demons registra-
tion, we finally chose the ones which lead to the maxi-
mum SSD similarity with the Demons results (not shown).
Therefore, the following experiments were performed by
setting the fluid registration parameters as follow: α =
1.5, β = 0.01,γ = 3 and σ = 15, with a multi-resolution
scheme of 100 and 50 iterations and the geodesic path
computed on 5 time points. These parameters seems of
the same order than the Log-Demons one (α/γ = 0.5
versus σ2/2 = 1, β/γ = 0.003 versus 0). In the following
experiments on brain images the average computational
time was of 150 minutes.
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Fig. 3 Deformation trajectory for the inter-subject warp estimated by the LDDMM (top sequence), and the SVF (bottom
sequence).

4.3 Longitudinal Registration

We chose the one year follow-up brain images from 5
subjects affected by Alzheimer’s disease from a clinical
study presented elsewhere [12]. The MR images were
acquired with a 1.0 Tesla Philips Gyroscan. The T1-
weighted scan was acquired in the sagittal plane with a
gradient echo techniques as follows: TR= 20 ms, TE=
5 ms, flip angle= 30◦, field of view= 220 mm, acquisi-
tion matrix= 256x256, slice thickness= 1.3 mm. After
a standard preprocessing pipeline consisting in affine
registration and histogram matching, the images were
diffeomorphically registered with the LDDMM and the
SVF algorithms.

In Figure 2, top row, we can see an example of the
different tangent representations for the estimated de-
formations. The two methods retrieve similar deforma-
tion patterns, both mapping to the cortical areas, hip-
pocampus and white matter.

In this example related to small longitudinal changes,
the time-varying representation does not exhibit rel-
evant changes in time concerning the direction of the
deformation vectors (Figure 2, row C,C’), and the mag-
nitude (Table 2), here evaluated as the L2 norm of the
velocity fields. In fact, as shown in Figure 2, row D, and
in Table 2, the variation of the time-varying velocity
fields are minimal in terms of location and magnitude
of the forces.

In Table 1 we can see that both Demons and LD-
DMM provide similar results for the matching in terms
of the SSD. Interestingly, the similarity between the de-
formed images obtained with the two registration meth-
ods is higher than the similarity of the deformed images
with the target. This example suggests that, in the
small deformation setting, both stationary and time-

varying parameterizations lead to similar results, and
that the LDDMM velocity field stays barely constant
during the evolution.

4.4 Inter-subject Registration

In this experiment, the two methods were employed to
register a set of 10 T1 brain scans from the LPBA40
dataset of the Laboratory of Neuro Imaging (LONI) at
UCLA1[37]. A reference subject was chosen among the
dataset, and the other brain images underwent affine
registration and histogram matching prior to non-rigid
registration with the SVF and the LDDMM frame-
works.

In Figure 4 we can observe an example of the esti-
mated tangent representation of the deformations. Con-
trarily to the intra-subject case, the variation in orien-
tation and magnitude of the time-varying velocity fields
is here more pronounced (rows C-C’, D), and the same
result is quantified by the increased non-stationarity of
the LDDMM velocities (Table 2). Moreover, the veloc-
ity field appears more localized than for the SVF. This
could come from the regularization of the higher differ-
ential terms in the Log-Demons for the SVF. However,
we also know that the optimal momentum for LDDMM
has to be aligned with the gradient of the image and is
thus localized on the edges. This second reason is prob-
ably more important although it remains to be quanti-
fied.

Table 3 (first row) shows the average L2 distance
between the displacement fields obtained with the two
different frameworks. As already described before, the

1 http://www.loni.ucla.edu/Atlases/LPBA40
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SVF and LDDMM displacements are closer in the lon-
gitudinal setting than in inter-subject. Figure 3 shows
the estimated evolution from the source to the target
image under the two registration settings. As can be
seen for instance for the deformation on the ventricles,
the two methods perform here differently. However, as
in the experiments on the longitudinal registration, the
two methods provide similar results in terms of result-
ing SSD (Table 1).

Clearly these experiments do not aim to provide
comparisons in terms of accuracy and precision which
notably depend on the opportune tuning of the registra-
tion parameters. However it is interesting to notice the
very similar result for the intensity matching in spite of
the rather different parameterizations estimated by the
two methods.

Fig. 4 Inter-subject registration. Tangent representation for
the inter-subject deformation estimated by A) the SVF, and
B) the LDDMM (initial tangent vector v(0)) settings. C,C’)
LDDMM time varying velocity field v(ti) at time points ti =
0.4 and 0.8, and D) associated magnitude measured by the
L2 norm. We notice the variation in magnitude and location
of the time varying velocity.

Table 1 Average SSD (standard deviation) for the differ-
ent tests in the longitudinal and the inter-subject registration
settings. The SVF method performs very similarly to the LD-
DMM, as also shown by the low SSD between the resulting
warped images (Row 2). Moreover, the exponential given by
the “scaling and squaring” numerical scheme of the initial
LDDMM tangent vector generally provides lower matchings
with the target images, tough the resulting warped images
are still consistent with the LDDMM ones, especially in the
longitudinal setting (Rows 4-5).

Longitudinal Inter-Subject
SVF-Target 256(37) 355(39)
SVF-LDDMM 139(102) 122(70)
LDDMM-Target 284(90) 372(35)

ScSq-LDDMM 162(105) 368(62)
ScSq-Target 514(111) 950(98)

Table 2 Evaluation of the non-stationarity of the LDDMM
velocity fields. Average (standard deviation) change in the L2

norm
R
Ω
‖v(0)−v(t)‖2

L2R
Ω
‖v(0)‖2

L2
for the sampled LDDMM time varying

velocity fields in the inter-subject and longitudinal settings.
As qualitatively shown in Figure 2 and 4, the LDDM evolu-
tion is more stationary in the longitudinal setting.

Relative distance from v(0)
Longitudinal setting Inter-Subject setting

v(0.2) 0.026 (0.020) 0.007 (0.013)
v(0.4) 0.077 (0.088 ) 0.046 (0.027)
v(0.6) 0.13 (0.125) 0.283 (0.213)
v(0.8) 0.208 (0.160) 1.6 (1.23)

Table 3 Differences between LDDM and SVF displace-
ments. Relative average L2 distance (standard deviation)R
Ω
‖ϕLDDMM−ϕSV F‖2L2R
Ω
‖ϕLDDMM |2L2

between the displacement fields ob-

tained in the different settings: inter-subject vs longitudinal
registration, and Lie group vs Riemannian exponentials on
the LDDMM initial tangent vector. As for the SSD on the
resampled images (Table 1), the SVF method performs more
similarly to the LDDMM in the longitudinal setting. More-
over, in this setting the “scaling and squaring” Lie group
exponential is closer to the Riemannian one.

Longitudinal Inter-Subject
SVF-LDDMM 674 (4.66) 5692 (1322)

ScSq-LDDMM 1.93 (1.63) 39.3 (58.8)

4.5 Lie Group vs Riemannian Exponential of the Same
Initial Vector Field

Finally, we investigated the practical differences be-
tween the Lie group exponential and the Riemannian
one, by comparing the relative results in terms of vector
field exponentiation. For this purpose, the Lie group ex-
ponential implemented by the scaling and squaring al-
gorithm was applied on the initial vector field v(0) pro-
vided by the LDDMM, and the resulting warped image
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Fig. 5 Lie group exponential (scaling and squaring) applied to the LDDMM initial vector for the intra and the inter-subject
registration. From left to right: Target image, A) resulting warped source image with the scaling and squaring, B) warped source
imaged with the LDDMM, and differences between C1) LDDMM and Scaling and Squaring warped images, C2) LDDMM
warped and target images and C3) scaling and squaring warped and target images. We note that although the scaling and
squaring provides worse matching with respect to the target, the resulting warped image is still close to the LDDMM one.

was compared to the LDDMM one, which is obtained
from the geodesic evolution equation.

Figure 5 shows the result for both intra and inter-
subject registration. In the longitudinal case (top row),
the Lie group exponential generates results close to the
LDDMM ones, as shown by the low intensity differ-
ences between the respective warped images. This is
confirmed at the group level (Table 1), where the aver-
age SSD between the two exponential methods is lower
than the one resulting from the LDDMM registration
(162 vs 284), even though the Lie group exponential led
to increased average intensity mismatch with respect
to the target(514). In the inter-subject case the differ-
ences are more pronounced (Figure 5, bottom row): the
Lie group exponential of the initial tangent vector pro-
duces a deformation that differs from the the original
LDDMM one (for instance in the ventricles and around
the cortex). This is reflected at the group level by the
resulting similarities (Table 1), where the average SSD
between the exponential methods is comparable to the
one of the inter-subject registration LDDMMM-Target
(368 vs 372), and the mismatch Lie Group Exponential-
Target is sensitively higher (950). The result is con-
firmed when considering the relative difference between
the L2 norm of the displacements given by two expo-
nentials (Table 3).

This experiment is a supporting argument for the
stationary nature of the longitudinal deformations, where
the scaling and squaring of the tangent vector lead to
a satisfactory description of the morphological changes.
Thus, for small deformations, the metric geodesics seems

to correspond to the one-parameter subgroups. A rather
different scenario is given by the inter-subject registra-
tion problem, where the evolution of the momentum
for the geodesic evolution cannot be neglected and pro-
duces a different representation of the deformation from
the one from the one-parameter subgroup.

5 Cartan Parallel Transport along Group
Geodesics in Practice

In group of diffeomorphisms, the left and right trans-
lations are respectively Lg exp(X) = g ◦ exp(X), and
Rg exp(X) = exp(X) ◦ g. Their first order Taylor ex-
pansion leads to

DLg(X) = Dg ·X DRg(X) = X ◦ g,

where Dg(x) = ∂g(x)/∂x is the usual Jacobian ma-
trix. We can therefore provide an explicit closed form
formula for the parallel transport with respect to the
canonical Cartan connections. In particular, if X is a
vector field to be transported along the one-parameter
subgroup exp(tY ) we have:

ΠL
Y (X) = Dexp(Y ) ·X, (7)

ΠR
Y (X) = X ◦ exp(Y ), (8)

ΠS
Y (X) = Dexp(

Y

2
) ·
(
X ◦ exp(

Y

2
)
)
. (9)
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5.1 Computing the Jacobian of the Deformation

From the computational point of view, we notice that
among the three transport methods, ΠR requires the
simple resampling of the velocity field by the trans-
formation, while both ΠL and ΠS involve the compu-
tation of the Jacobian matrix of the exponential. The
presence of these first order differential terms is raising
numerical accuracy problems when the Jacobian matrix
is computed by finite differences of the displacement
field sampled on the image grid. In the case of large
deformations, the displacement field is undergoing high
frequency changes and its sampling in the finite differ-
ence scheme is notably error prone.

We can alleviate this numerical problem by taking
advantage of the properties of the one-parameter sub-
groups. Rather than computing directly the Jacobian
Dexp(Y ) using finite differences on the final displace-
ment field, we can derive a recursive scheme from the
following property:

exp
(
nY

N

)
= exp

(
(n− 1)Y

N

)
◦ exp

(
Y

N

)
Starting from the approximation Dexp(Y/N) ' Id +
1
NDY for a suitable scaling factor N , we have the re-
cursive formula (for n = 2 to N):

Dexp
(
nY

N

)
= Dexp

(
(n− 1)Y

N

)∣∣∣∣
exp( YN )

·Dexp
(
Y

N

)
(10)

Thanks to this recursive scheme, the Jacobian is com-
puted by finite differences on a low frequency displace-
ment field, which sampling does not raise numerical is-
sues, and the matrix valued image of Jacobian matri-
ces is recursively resampled and multiplied along the
one-parameter subgroup. Thus, the scheme avoids the
sampling of a high frequency field, at the cost of multi-
ple interpolations. Here, interpolating derivatives (Ja-
cobian matrices) instead of displacements is giving a
very important gain in numerical accuracy. Although
the smoothness of the interpolation scheme (trilinear,
spline, etc.) may be thought of as having an important
impact on the final computational accuracy, we use sim-
ple trilinear interpolation in the sequel.

5.2 Schild’s Ladder Implementation for SVF

The Schild’s Ladder scheme was introduced in the SVF
setting in [22] to parallel transport longitudinal trajec-
tories along inter-subject deformations. When applied

to the symmetric Cartan connection, we can take ad-
vantage of the symmetry properties of the parallelo-
gram to replace the computation of the geodesics with
the composition of group exponentials, and the initial
tangent vector of the resulting geodesic can be effi-
ciently approximated with the BCH formula. This leads
to a computationally efficient and numerically stable
method where the parallel transport of a vector X along
the trajectory exp (tY ) is

ΠY
Schild(X) = X + t[Y,X] +

t2

2
[Y, [Y,X]] +O(t3),

with [Y,X] = DY ·X−DX ·Y . Notice that here we take
the spatial gradient of the SVFs Y and X while the
previous transport schemes differentiate the exponen-
tial exp(Y ). This might make an important numerical
difference.

5.3 Synthetic Experiment on a Simplified Geometry

Morphometric studies often investigate pathological phe-
nomena described by the loss of matter, which is mod-
eled by compressible deformations and quantified by
scalar indices of volume change, such as the Jacobian
determinant or its logarithm. Therefore it is important
to preserve these measures when normalizing to a ref-
erence space in group-wise studies of deformation tra-
jectories. In this section we propose a simple example
aimed at testing the ability of the proposed Cartan par-
allel transport techniques to preserve the atrophy tra-
jectory simulated on a simplified geometry.

A synthetic progression of longitudinal atrophy was
simulated on a 3D gray matter sphere S0 enclosing

Fig. 6 Synthetic example: Intra and inter-subject variations
from the sphere source space to the ellipsoid target space with
related deformations.
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Table 4 Average measures of changes on the gray matter layer. Top-row (Source Space): changes measured on the reference
sphere at each time point 1 − 4. Bottom-rows: changes measured from the transported longitudinal deformations on the
ellipsoid. For the conjugate action it was not possible to compute the L2 Norm of the associated stationary velocity field, since
it acts on deformation fields.

L2 Norm Log Jacobian
1 2 3 4 1 2 3 4

Source Space 2.97 9.85 22.68 44.62 -4.77 -9.54 -14.76 -19.14
ΠL 3.02 9.57 22.14 42.32 -5 -9.82 -14.88 -20.43
ΠR 2.94 10 22.81 44.58 -4.70 -9.36 -14.51 -19.18
ΠS 3.3 11.17 25.7 50.37 -5.74 -11.2 -17.13 -23.65
Schild’s Ladder 3.65 10.74 24.3 51.49 -4.83 -9.86 -14.65 -19.11
Conjugate / / / / -2.6 -5.5 -9.18 -13.93

Jacobian Elastic energy
1 2 3 4 1 2 3 4

Source Space 0.68 0.47 0.35 0.37 3.47 3.93 4.5 5.23
ΠL 0.69 0.51 0.43 0.45 3.51 4.01 4.67 5.53
ΠR 0.69 0.49 0.36 0.37 3.49 3.9 4.44 5.15
ΠS 0.67 0.50 0.42 0.48 3.58 4.2 4.99 6.05
Schild’s Ladder 0.71 0.51 0.45 0.49 3.57 4.14 4.84 6.21
Conjugate 0.8 0.63 0.47 0.32 3.43 3.83 4.36 5.04

a white/black matter region. The atrophy was simu-
lated by decreasing the gray layer thickness on four
subsequent time points to generate the sequence Si,
i = 1 . . . 4 (Figure 7). The longitudinal trajectories of
deformation fields exp(Xi) were then evaluated by reg-
istering the images to the baseline with the Log-Demons
algorithm [39]. The sequence of deformations exp(Xi)
was then transported on a target ellipsoidal geome-
try E0 along the inter-subject deformation exp(Y ) such
that exp(Y ) ∗S0 = E0 (Figure 6). The transport meth-
ods that we tested were:

– Right Cartan connection (right translation) ΠR;
– Left Cartan connection (left translation) ΠL and

Cartan symmetric connectionΠS implemented with
the recursive scheme;

– Conjugate action
Conj(exp(Xi)) = exp(Y )exp(Xi)exp(Y )−1;

– the Schild’s Ladder, which operates along the “diag-
onal” inter-subject deformations exp(Y i) such that
exp(Y i) ∗ Si = E0 (Figure 6)

The methods were quantitatively assessed by eval-
uating the features of interest in the ellipsoidal gray
layer: the average L2 norm of the transported SVF, the
Jacobian determinant, log-Jacobian determinant and
elastic energy of the associated deformation fields. Since
we are interested in preserving the interesting features
of the transported trajectories, the transported quanti-
ties were compared to the original values in the refer-
ence sphere space. Moreover, the stability of the meth-
ods was tested by checking the scalar spatial maps as-
sociated to the features (this involves resampling).

Table 4 shows the accuracy of the transport meth-
ods in the preservation of the measure of changes in the

gray matter layer. Among the different methods, the
transport ΠR was the most accurate in preserving the
average measures, while the Schild’s Ladder performed
better on the Log-Jacobian.

From the inspection of the related scalar log-Jacobian
maps (Figure 7), the transport ΠL is the less stable
and leads to noisy maps. Moreover, we notice that the
areas of expansions does not fit the boundary of the
ellipsoid. On the other hand, the transport ΠR leads
to smooth maps of changes, consistent with the target
geometry, while the transport ΠS lies “in between”, as
one could reasonably expect. The Schild’s Ladder leads
to smooth maps as well, although the inner spherical
shape seems corrupted for higher deformations. This
could explain the lower performance on the quantitative
measurements for the time points 3 and 4. Finally, the
log-Jacobian maps associated to the conjugate actions
are smooth but fail to preserve the target ellipsoidal
geometry, especially for the higher deformations.

5.4 Real Longitudinal Changes in Alzheimer’s Disease

In this section the parallel transports ΠL,ΠR, ΠS , and
the Schild’s Ladder were applied to an example of real
longitudinal brain atrophy. Baseline and follow-up scans
from a subject affected by Alzheimer’s disease were
registered with the Symmetric Log-Demons algorithm.
Further details on the image acquisition protocol are
given in section 4.3. The longitudinal atrophy encoded
by the SVF was then transported along the inter-subject
registration on a different reference anatomical space
(Figure 8).
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Fig. 7 Top row: Spherical source and ellipsoidal target geometrical references. From top to bottom: Longitudinal atrophy se-
quence in the spherical space, associated log-Jacobian determinant scalar maps, and log-Jacobian determinant maps associated
to the different methods of transport.

As in the synthetic experiment, all the above meth-
ods provide results that are consistent with the orig-
inal trajectory. As already seen in the synthetic case,
the transport ΠL seems to introduce some noise which
lead to increased velocities (for instance in the poste-
rior cingulate and on the left side of the cortex), which
indicates that numerical issues still play a central role.

Interestingly, we notice in the posterior part of the ven-
tricles in the source space a rotational movement point-
ing to the medial axis of the brain which is captured by
ΠL, ΠS , and by the Schild’s Ladder, but which seems
missing in ΠR. This observation suggests that the sim-
ple resampling of the vector field might provide only a
partial representation of the deformation, and is poten-



Geodesics, Parallel Transport & One-parameter Subgroups 15

Fig. 8 Parallel transport of longitudinal atrophy. Longitu-
dinal ventricular expansion in the source space and related
parallel transport given by the different methods.

tially missing some features of interest for a subsequent
analysis.

5.5 Cartan Parallel Transport Along Metric vs Group
Geodesics

Finally, we investigate the differences in transporting
a longitudinal trajectory along different paths, namely
the LDDMM metric geodesics and the one-parameter
subgroups that best register two images. We restrict our
study to the parallel transport of the Cartan connec-
tions. The LDDMM parallel transport could be com-
puted by the equations of Jacobi fields [40] or could
be approximated using the Schild’s ladder algorithm
by explicitly computing metric geodesics at each step
of the ladder. However, the computational complexity
is much worse because the simplifications used for the
group exponential with the BCH in [22] are not valid
any more for Riemannian geodesics. Thus, we focus here
on the comparison of the different type of Cartan paral-
lel transport along group and metric geodesics without
comparing LDDMM versus Cartan parallel transports.

From the geometrical point of view, parallel trans-
porting a vector along different trajectories generally
leads to different parallel vectors (Figure 9). However,
the similarity of the deformation trajectories evaluated
by different methods could lead to according results.
Moreover, the practical application to the image regis-
tration might hide the effect of these theoretical issues.
Evaluating the impact of the choice of the trajectory is

therefore of interest to understand the effect of differ-
ent parameterizations and to generalize the transport
schemes to diverse registration settings.

We use here the Synthetic example of the Para-
graph 5.3. The spherical source space was registered to
the target ellipse with the Demons and the AtlasWerks
methods. The related tangent parameterization define
two different paths in the space of diffeomorphisms,
respectively the one-parameter subgroup associated to
the SVF, and the metric geodesic associated to the time
varying velocity field v(t). In the LDDMM case, the
time-varying trajectory is sampled in time to give a se-
ries of n stationary vectors vi = v(ti), i = 1, . . . , n, and
the final deformation ϕ is generated from the composi-
tion:

ϕ = exp(
vn−1

n
) ◦ exp(

vn−2

n
) . . . ◦ exp(

v0
n

)

Therefore we decompose here the time varying process
into successive stationary ones, in order to apply the
same methods derived from the Lie group theory. Thus,
the parallel transport methods illustrated in the previ-
ous section can be applied on each trajectory vi to it-
eratively transport a longitudinal trajectory along the
metric geodesic.

Figure 10 shows the resulting vectors transported
from the sphere to the ellipse space along the SVF one-
parameter subgroup and the LDDMM metric geodesic:
transporting along the different paths does not seems
to introduce relevant differences. We notice that the
right transport ΠR and the Schild’s Ladder provide
the most consistent and robust results. The left (ΠL)
and the symmetric (ΠS) transports appear to be more
sensitive to the very high Jacobian matrix variations
of the LDDMM trajectory, though they are still con-
sistent with respect to the deformation pattern. The
“concentration” of the transported vector field at the
high momentum places along the LDDMM trajectory

Fig. 9 The parallel transport of the vector v closely depends
on the chosen trajectory, and generally transporting along
different curves lead to different parallel vectors.
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Fig. 10 Parallel transport of the longitudinal trajectory on the sphere to the ellipse target space along the trajectories defined
by the SVF one-parameters subgroup and the LDDMM metric geodesic. The Schild’s Ladder and the Right Cartan connection
lead to the more consistent results in term of the resulting transported vectors.

could be interesting for statistical studies but might
also disperse more easily the information even in case
of very small inter-subject matching errors.

This very simple experiment shows that the SVF
tools can also be used in different settings such as with
LDDMM, where geodesics can be approximated by a
sequence of stationary approximations. Moreover, the
similarity of the transport on the different paths sug-
gests that the parallel transport is more influenced by
the type of parallel transport than by the inter-subject
registration method. It would be quite interesting to
verify if this still holds for the LDDMM transport. In
all cases, the numerics behind the parallel transport
scheme seems to be a key issue.

6 Conclusions

This study investigates the theoretical background which
underlies diffeomorphic registration based on stationary

velocity fields. We illustrate the use of Lie group con-
cepts to derive effective and efficient solutions for com-
putational anatomy. We showed that the one-parameter
subgroups (and their left and right translations) are
geodesics of the a family of connections called Cartan
connections. This mathematical setting is completely
consistent with the Lie group operations (left and right
composition, inversion) and leads to a closed form so-
lution for the parallel transport. Moreover, the geo-
desics of the Cartan connections are ”metric-free”, and
the parallel transport is not related to the preservation
of metric properties. This affine geometric mathemati-
cal setting differs from invariant Riemannian manifolds
used for instance in LDDMM, for which the choice of
left or right invariance, as well as the choice of the met-
ric, lead to different geodesics. Among the three canon-
ical (right, left and symmetric) Cartan connections, the
transport with the right one was the smoother, due
to the simple computational requirements. However,
this connection is related to a specific geometry where



Geodesics, Parallel Transport & One-parameter Subgroups 17

the group is flat (no curvature), but has torsion. From
a theoretical point of view, it is widely accepted in
other domains (e.g. general relativity and gravitation)
that working with a symmetric connection is preferable
than working in a space with torsion. However, we be-
lieve that it would worth verifying by experiments on
real data that the symmetric Cartan connection indeed
leads to a better description of the groupwise anatomy
than non-symmetric ones. Such test could be performed
on disease classification experiments for instance, where
the statistical power of the separation would designate
the optimal parallel transport method.

The experimental results highlight also the trade-off
between the choice of proper mathematical construc-
tions and the related numerical implementation issues.
For instance, the left and symmetric Cartan transports
could benefit from more robust numerical schemes for
the computation of the differential quantities like the
Jacobian matrix, which could lead to more stable and
accurate results. On the registration side, our experi-
ments showed that the SVF and LDDMM settings per-
formed very similarly in the longitudinal case. This re-
sult suggests that, when dealing with small deforma-
tions, stationary and time varying parametrization lead
to negligible discrepancies. Moreover, even in case of the
inter-subject registration, the different parametrization
performed similarly for the resulting intensity match-
ing. It seems therefore that the choice of the admissi-
ble transformations is decisively circumscribed by the
smoothness constraints and by the numerical imple-
mentation, which limit the set of possible anatomical
deformations that can be retrieved by a registration al-
gorithm.

We should note that the above conclusions come
from a precise choice of the registration parameters
(fluid/elastic regularization, incompressibility, . . .), and
we cannot exclude that a different tuning might lead
to a different scenario. However, the choice made here
was motivated by the search of an optimal compro-
mise between registration accuracy and smoothness of
the deformations and, among the several configurations
tested, the proposed was the most suitable one. More-
over, given the lack of a ground truth for the inter-
subject registration problem, the reliable comparison
of different registration techniques can be assessed only
by statistical measures on large datasets, which goes
beyond the scope of the presented study.
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Birkhäuser, Boston, Basel, Berlin (1992)

8. Cartan, E., Schouten, J.: On the geometry of the group-
manifold of simple and semi-simple groups. Proc. Akad.
Wekensch, Amsterdam 29, 803–815 (1926)

9. Durrleman, S., Fillard, P., Pennec, X., Trouvé, A., Ay-
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