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Abstract—In this paper, we used a non-conservative La-
grangian mechanics approach to formulate a new statistical
algorithm for fluid registration of 3D brain images. This al-
gorithm is named SAFIRA, acronym for Statistically-Assisted
Fluid Image Registration Algorithm. A non-statistical version
of this algorithm was implemented [9], where the deformation
was regularized by penalizing deviations from a zero rate of
strain. In [9], the terms regularizing the deformation included the
covariance of the deformation matrices (Σ) and the vector fields
(q). Here we used a Lagrangian framework to re-formulate this
algorithm, showing that the regularizing terms essentially allow
non-conservative work to occur during the flow. Given 3D brain
images from a group of subjects, vector fields and their corre-
sponding deformation matrices are computed in a first round of
registrations using the non-statistical implementation. Covariance
matrices for both the deformation matrices and the vector fields
are then obtained and incorporated (separately or jointly) in
the non-conservative terms, creating four versions of SAFIRA.
We evaluated and compared our algorithms’ performance on
92 3D brain scans from healthy monozygotic and dizygotic
twins; 2D validations are also shown for corpus callosum shapes
delineated at midline in the same subjects. After preliminary
tests to demonstrate each method, we compared their detection
power using tensor-based morphometry (TBM), a technique
to analyze local volumetric differences in brain structure. We
compared the accuracy of each algorithm variant using various
statistical metrics derived from the images and deformation fields.
All these tests were also run with a traditional fluid method,
which has been quite widely used in TBM studies. The versions
incorporating vector-based empirical statistics on brain variation
were consistently more accurate than their counterparts, when
used for automated volumetric quantification in new brain
images. This suggests the advantages of this approach for large-
scale neuroimaging studies.
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I. INTRODUCTION

NONLINEAR registration is an image analysis procedure
that warps one image or volume onto another, matching

the two images using biological or geometrical features present
in both images. It is widely used in medical applications,
most commonly to align images from multiple subjects or
modalities to a common coordinate space, prior to voxel-based
statistical analysis [27]. Registration may also be used for
computational morphometry, as the applied deformations can
be analyzed statistically to study regional volume or shape
differences in conditions such as Alzheimer’s disease [40],
HIV/AIDS [12], [48], blindness [51], neurogenetic disorders
such as Williams syndrome [13], or during childhood develop-
ment [71]. Statistical analysis of image deformations has also
been used to study genetic influences on brain structure [10].

Most image registration algorithms select a similarity term
(also called a fidelity term or cost function) that compares
information in the two images, and a regularizing term (or
statistical prior) that prevents tears, shears or holes from
appearing in the resulting registered image, or encourages
deformations with certain properties [38], [54]. Brain structure
varies widely across subjects, and across the human lifespan
[67], and some registration methods have been developed to
encode information on the natural variability in brain structure
[24], [26], [61], [70]. Cortical surface variation is especially
complex, and some researchers have used registrations of
curves and surface landmarks to build models of cortical vari-
ation based on diffeomorphic currents [21], or 6D covariance
tensors that related vector-valued deformations between pairs
of points on the cortex [26].

Other researchers have taken a more formal approach to
modeling brain variation using deformable template methods.
Grenander’s pattern theory [34] considers the variation of a de-
formable anatomical template to be modeled using a stochastic
PDE of the form Lu = e, where e is vector-valued noise,
u is the 3D deformation vector field aligning the template
anatomy onto new subjects’ scans, and L is a self-adjoint
differential operator (such as the Laplacian or Cauchy-Navier
elasticity operator) regularizing the deformation. Since L is
an infinite-dimensional operator with known eigenfunctions,
many approaches have aimed to develop a spectral model of
anatomical variation by projecting the template deformations
onto the basis of eigenfunctions, assembling statistics of
the basis coefficients, and using them to perform statistical
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inference regarding group anatomical differences, or as a prior
to control the registration of new images [28]–[30]. More
recently, these continuum-mechanical registration approaches
have been extended to methods that guarantee diffeomorphic
warps (smooth mappings with smooth inverses) and develop
metrics on the flow fields [1], [3].

Even so, very few widely used registration methods incor-
porate empirical information on population variability in brain
structure; the use of empirical statistics has been advocated
many times, but none of the 14 nonlinear registration methods
evaluated in [45] uses empirical information on brain variation
during the registration process.

In registration, the cost function is commonly taken as a dis-
tance between common anatomical or stereotactic landmarks
explicitly defined in the images (such as 3D points, curves and
surfaces) or intensity-based measures over the whole image
such as the squared-intensity difference (L2-norm), cross-
correlation or more complex metrics derived from information
theory, such as the Jensen-Rényi divergence [13], [63]. The
regularizer compensates for the effects of the data fidelity
term and enforces desirable properties in the deformation, such
as smoothness, invertibility and inverse-consistency [11], [17],
[77].

One method to account for these properties is to add the
variational derivative, or gradient, of the similarity criterion as
a distributed force field (also known as a body force) in the
mechanical equations that govern elastic [6] (through Hooke’s
Law) or viscous fluid motions (via the Navier-Stokes equation)
[8], [16], [33], [49]. Other non-physical regularization models
such as Gaussian filtering have been implemented, as these
tend to be more efficient than the filters that are needed to
implement continuum-mechanical operators [75], [76].

Alternatively, some algorithms focus on formally guarantee-
ing specific axiomatic properties of the deformation, enforcing
for instance diffeomorphic trajectories for the mapping [37],
[55]. All these registration processes have different levels of
efficiency and precision depending on the accuracy and speed
requirements [45].

Very efficient implementations are crucial when real-time
registration is required such as in surgical procedures, but
longer runtimes may be acceptable for alignment of functional
and structural images in research studies of large populations.
For instance, registration methods are commonly used in
neuroimaging for population studies of brain structure, and for
computational morphometry. These studies typically require
precise registration to map the influence of disease, genetics
or normal development throughout the brain.

In the registration methods mentioned so far, a field of
2D or 3D displacement vectors is usually computed based
on univariate data (one value per voxel) or from pre-defined
landmarks. Consequently, as the information that can be
consistently identified is limited, a realistic model is needed to
interpolate the deformation to the rest of the brain. As noted by
other proponents [29], if such empirical information on brain
variation was added in the registration process, the statistics of
the modeled differences in brain structure would better match
those that truly occur, possibly improving registration accu-
racy, stability, and convergence. Some approaches have used

ad hoc methods to incorporate regionally-adaptive statistics
into the registration. For instance, in [19], the authors nonlin-
early rescaled the statistics of the strain tensors so that they
could be used in a Demons-like registration algorithm. In [52],
[68], non-stationary Gaussian filtering was used to take into
account tissue type information during the registration. Early
studies by Gee and colleagues also suggested that principal
component analysis of intra-subject registration fields could be
used to develop an empirical model of brain shape, for use as a
Bayesian prior to constrain registrations [29]. Parallel work on
active shape models by Cootes, Taylor and others suggested
that deformable segmentation methods, for extracting and
tracking structures, benefited from prior empirical knowledge
of the covariance structure of the deformations [20]. Miller
and Grenander also pioneered a spectral method in which the
deformations were projected onto the eigenfunctions of the
operator governing the deformation, and statistical analysis of
the resulting coefficients could be used to infer anatomical
abnormalities [34].

In this paper, we focused on fluid registration as it
overcomes several known limitations of some continuum-
mechanical elastic models, which are derived under small
deformation assumptions and the resulting mappings may not
be invertible if large image transformations are needed [15].
Fluid transformations remain diffeomorphic even for large
deformations. We introduce a new Lagrangian approach where
different types of (vector and tensor) statistics on the expected
deformations can be seamlessly taken into account in the
registration.

The use of a prior to describe the anatomical variations in a
population relies on some assumptions. Clearly, it assumes that
the brains being analyzed are representative of the population
used to create the prior; a prior encoding the variations
typically observed in normal subjects may not be optimal for
registration of data from subjects with gross lesions (such as
tumors) or with anatomical distortions (such as atrophy). Even
so, the methods here generalize to creating an atlas or prior
from mixed populations of patients and controls. Likewise, a
prior model of anatomical variation based on adult brains may
not be optimal for analyzing data from children or infants, but
the methods proposed here could be used to generate a prior
from pediatric data. In other words, our approach assumes
that a dataset is available that is representative of the scans
that will be analyzed. In terms of formal assumptions for
building a prior, there is no model or physical law determining
a priori how one brain deforms to match another brain. This
is partly because there is no physical or biological process
that transforms one brain onto another, unless the images are
taken from the same subject over time. In the case of intra-
subject registration, some authors have proposed generative
priors based on the supposed biological causes of the growth
process [35], [36]; [58]. But in the case of registration across
subjects, the prior encodes empirical statistics on the positions
of points that match across subjects, and their covariances.
There has been substantial work on understanding the patterns
of anatomical variance and covariances (i.e., spatial correla-
tions) in human populations. The variability of anatomy is
not uniform and has preferred directions [69] [26], so this
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motivates a locally varying prior rather than one based on a
stationary (spatially homogeneous) differential operator such
as the Laplacian. Also, the pattern of deformation within a
population does not follow an identical and independent law
on all deformation parameters (in our case, the vector fields
or their deformation tensors), and the covariance tensors of
corresponding points across a population are not spherical
[26]. Consequently, the standard regularization, which treats
deformations in each direction equivalently, is not optimal. For
instance, one can imagine that the deformation rate should not
be constrained so much in highly variable areas (e.g., temporo-
parietal areas of the cortical) compared to more anatomically
invariant areas, such as the central sulcus. Our prior is just one
term in a constrained optimization problem. As such, does not
enforce deformations learned from previous datasets, but pro-
motes them. As these deformations are more likely, the chance
of proceeding more rapidly and with greater likelihood to an
accurate local minimum is higher. If a deformation deviates
considerably from those in the learning set, our method would
change the trajectory in the transformation space towards the
optimum, which might lead to a different result than that
obtained via standard regularization. In that case, the question
would become: which of the two results is more plausible? By
building the prior using a representative dataset, our adapted
metric should lead in general to a mapping that is as plausible,
or more so, than obtained from a non-statistical prior. Finally,
when the algorithm is used to find groupwise differences, the
prior should be built from a representative sample of subjects
from both groups, to avoid bias.

Practically, one of the main ideas is to rephrase the image
registration minimization problem as the evolution of a non-
conservative dynamic system (i.e., a system subjected to
conservative forces, which derive from a potential and to
non-conservative forces, the most common of which is the
dissipative force). In this way, the kinetic energy gained by
the gradient descent at each step is transferred to become
part of the non-conservative forces, depending on the expected
deformations. In mechanics, a force is conservative if the work
it does in moving a particle between two points is independent
of the path taken. Conservative forces can be written as the
gradient of a potential while non-conservative forces cannot.
In physical systems, non-conservative forces include friction,
drag, and other contact forces. We rewrote the Isotropic
Riemannian Fluid registration algorithm developed in [9] using
the Lagrangian formalism, where the regularizing terms are
formally derived from a Non-conservative Lagrangian, which
is a function that describes the energy of a dynamical system.
This concept, introduced by the Italian mathematician Joseph
Louis Lagrange, can be used to re-formulate problems in
classical mechanics by solving for the trajectories of systems
of particles in terms of conservation laws for momentum and
energy, and action functionals.

These terms consist of the Riemannian term and the dissipa-
tive term and can be modified to include statistical information
on the covariances for the deformation tensors (DTs) and
the displacement vector fields (VF), respectively. This leads
to four different versions of our algorithm, depending on
which types of statistical constraints are added: DTs and VFs

statistics both at the same time, or just one of these, or neither
(the non-statistical version).

As a result, a mechanically meaningful framework is created
that allows the incorporation of biological information in the
registration process. This new Lagrangian formulation can
help in understanding the constraints and forces that the
mechanical system experiences (here, the 3D volume). To a
reader familiar with the concepts of classical and Lagrangian
mechanics, the statistical constraints on the deforming system
can be represented using dissipative (non-conservative) forces
that are not naturally represented by a classic Newtonian
approach. In the evolving mechanical system, the action of the
similarity term corresponds to a conservative force that drives
the system towards the desired minimum. The Riemannian and
dissipative terms correspond to non-conservative forces that
favor empirically more likely deformations along the trajectory
towards that minimum.

One particular application we use to test our algorithm - for
which it was primarily designed - is Tensor-Based Morphome-
try (TBM). TBM is an image analysis method that has gained
popularity and has been used successfully to detect morpho-
metric differences associated with HIV/AIDS [48], Williams
sydrome [13], Fragile X syndrome [46], schizophrenia [31],
and normal brain development [41]. It consists of a registration
of all the subjects’ MRI images to an atlas followed by a
statistical analysis, which aims to find the profile of volume
differences between populations (or similarities in the case of
a population of twin subjects). Our registration algorithm is
well-suited for TBM as in the most general method, statistics
of the Jacobian matrices J = (Id +∇q) are computed from
the displacement fields q [48]. P -value maps are generated to
show local volumetric (or surface in 2D) differences, via the
statistical analysis of J , or its determinant, which measures
relative volumetric gain or loss. Local shape differences may
also be studied using a multivariate statistical analysis of the
DT Σ = JTJ = (Id+∇q)T (Id+∇q). Σ retains not only the
local volume differences but also the directional characteristics
of differences [48]. As such, there is a consistency between
the subsequent statistical analysis of tensors arising from the
registration, and the empirical information used to estimate the
tensors in the first place.

Here, we start by introducing the Lagrangian, L, and
show how its expression varies depending on the type of
forces that a given system is subjected to (conservative or
non-conservative). The Hamiltonian is also computed, and
reflects the energy of the system (Section II). Section III
links the Lagrangian theory to our statistical fluid equation.
The Lagrangian framework contains an appropriate structure
to provide a clear mechanical explanation of SAFIRA. In
Section IV, a TBM analysis resulting in heritability measures
is performed on both the corpus callosum (2D) and cerebrum
(3D) from a structural brain MRI dataset (from identical and
fraternal twin pairs). We also used the LPBA40 image dataset
to test segmentation and volume quantification accuracy. Tests
were run with the different versions of SAFIRA, and compared
with a traditional fluid registration algorithm [49]. The latter
method was chosen as a basis for comparison as it has been
the registration method of choice in several published TBM
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analyses. These tests of registration accuracy and statistical
power in anatomical studies are used to validate our method.
Sections V and VI present and discuss the results. For TBM, in
both 2D and 3D, the biological findings were consistent for all
algorithms, but the method incorporating vector-based statis-
tics gave more powerful results (greater effect sizes). Based
on the tests of volume labeling accuracy (and registration
error), the use of vector-based statistics greatly improved the
registration accuracy, compared to using tensor-based statistics
or no statistics at all.

II. THE GENERAL LAGRANGIAN FRAMEWORK

A. Background

As stated in section I, a number of existing methods regard
the 3D brain image volume as embedded in a deformable
continuum-mechanical system: each voxel is seen as a particle
of this deforming system. In such cases, its dynamic behavior
may be studied using Newtonian mechanics, as in [16],
where the displacement of each particle (i.e., the voxels) is
constrained by the Navier-Stokes equation for viscous fluid
systems. Here, we modify the traditional fluid equation to
allow the integration of statistical data computed from the
dataset. A consequence of this modification is that the Newton
formulation no longer explains the role of the similarity and
regularizing terms mechanically speaking. On the contrary,
the generalized framework determined by the non-conservative
Lagrangian structure is flexible enough to contain the two
types of statistical information (obtained from the dataset)
proposed here while remaining mechanically meaningful. In
fact, SAFIRA is a modified version of a standard fluid equa-
tion, whose terms do not all have a Newtonian mechanical
equivalent.

B. A generalized Lagrangian

The Lagrangian L can express the dynamic behavior of a
system that is subject to conservative forces [32].

L = T − V

In the conservative case, T (q̇) and V (q) represent the kinetic
energy and the potential energy of the system, respectively. q
is the displacement, and q̇ is the velocity of the system. One
way to define the Lagrangian L is to examine its integral,
called the action, S. S is defined as S =

∫ t1
t0
Ldt, and the

paths followed by a mechanical system between the times t0
and t1 are the ones that minimize the action.

In cases where the system is also subjected to non-
conservative forces, the definition of S changes as the work
produced by the non-conservative forces, W , must be added
to S:

S =
∫ t1

t0

L+W dt with δW = ~F .δ~r

δW is the work created by the non-conservative forces ~F
during the virtual displacement δ~r. δ~r is a variation associated
with the possible body position ~r, and not with the actual
solution ~r(t). ~r is thus chosen such that the force ~F remains

constant during the displacement δ~r and depends only on q. In
fact, by definition a virtual displacement is a displacement that
occurs during an infinitesimal time t and that agrees with the
constraints of the system. It can also be seen as the difference
between two permissible but unequal displacements taken over
the same time interval of time (t to t+ dt) (see Figure 1). It
is always orthogonal to the forces constraining it (an example
of constraint force may be illustrated by a bead that is forced
to slide on a ring) [32], [60]. To find the path followed by the
dynamic system (i.e., the path that minimizes the action), δS
can be derived as

δS =
∫ t1

t0

δL+ δW dt = 0

Hence, (
∂L

∂q

)
− d

dt

(
∂L

∂q̇

)
+ ~F

(
∂~r

∂q

)
= 0; (1)

(see Appendix A and [74] for further explanation). This
dynamic equation defines the movement of a non-conservative
system at each time t.

C. A detour through Hamiltonian mechanics: conservation of
energy?

Using a Lagrangian structure makes each term easier to
interpret; it also facilitates the computation of the Hamiltonian
H , a quantity that, among other things, characterizes the
energy conservation of the system with time. While the energy
of conservative systems is maintained with t, this is no longer
the case when non-conservative forces are added. Within the
context of registration, summarizing the transfers between the
different types of energies is of considerable interest, as it gives
a clear understanding of the energy minimization scheme.

The Hamiltonian H represents the energy of the conser-
vative system and may be derived from the conservative
Lagrangian L as

H = pq̇ − L with p =
(
∂L

∂q

)
qq̇

(2)

where p is the momentum of the system and q is the displace-
ment. The variation of H w.r.t. time indicates if the energy
is conserved, and if not, where it is transferred to. For NC
systems, we obtain

dH

dt
= ~F .

(
∂~r

∂q

)
q̇ (3)

(see Appendix B for the complete derivation). The energy H of
the NC system is not constant with time: this equation shows
that the kinetic and potential energies lost by the system are
transferred to the NC terms.

III. SAFIRA: AN ADAPTIVE FLUID REGISTRATION
ALGORITHM

A. Previous work

1) The Riemannian Elastic energy: In [57], Pennec intro-
duced a new elastic registration algorithm, which replaces the
commonly used Euclidean metric for the elastic regularizer by
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a more suitable Riemannian one. More specifically, he defined
a statistical regularizer using a Mahalanobis distance on the
space of DTs Σ (Σ = JTJ = (Id+∇q)T (Id+∇q), with J
and q the Jacobian matrix and the displacement, respectively.
The Σ’s are considered as random variables in the Riemannian
space of DTs). The Σ’s are matrices defined at each voxel that
characterize the distortion and volume change of each voxel
from the registration. As they are symmetric positive-definite
matrices and form a convex half-cone in the vector space of
3x3 matrices, standard Euclidean operations are extrinsic to
the manifold that they form; hence the need for a Riemannian
(intrinsic) metric in the regularizer. In [57], this metric was
determined through the Log-Euclidean framework [2] as we
describe below; this formalism allows simple computations to
be performed intrinsically on the manifold.

In standard elastic registration, each voxel is considered
as a particle whose movement is controlled by Hooke’s law
and follows an equation that is derived from the Saint-Venant
Kirchoff elastic energy:

RegSVKE(~q) =
∫
µ

4
Tr((Σ− Id)2) +

λ

8
Tr(Σ− Id)2

where λ and µ are the Lamé coefficients. When RegSVKE(~q)
is redefined in a Riemannian framework, the elastic energy
becomes [57]:

RegRE(~q) =
1
4
dist2Log(Σ, Id) (4)

=
1
4
dist2Eucl(log(Σ), log(Id)) (5)

=
1
4

∫
|| log(Σ)||2

A statistical elastic registration can be implemented as follows.
The elastic algorithm with RegRE can be used to run a first
round of registration on a dataset. Then, the covariance and
the mean of the Σ’s can be computed using the Log-Euclidean
metrics. RegRE can then be generalized to its statistical form
using Mahalanobis distance on these tensors [57]:

RegSRE(~q) =
1
4

∫
V ect(ΣL − Σ̄L)Cov−1V ect(ΣL − Σ̄L)T (6)

where V ect(Σ)T = (σ11, σ22, σ33,
√

2σ12,
√

2σ13,
√

2σ23),
ΣLi = log(Σi), and the means and covariances of the Σ’s
are represented by Σ̄L = 1

N

∑
i log(Σi) and

Cov = 1
N

∑
V ect(ΣLi−Σ̄L)V ect(ΣLi−Σ̄L)T , respectively.

The new regularizer RegSRE is used on the original (non-
registered) images to perform a second round of registration,
this time taking into account known statistical information on
the data through the covariances and means.

2) The Fluid formulation: The general problem in image
registration is to find the transformation q that minimizes
the dissimilarity between the images, usually as part of a
compound cost functional that also considers the regularity
or smoothness of the deformation VF. Here and in our
previous work [9], we use the sum of squared intensity
differences (SSD) criterion Cost = Sim(I,K◦q) =

∫
(I(x)−

K(q(x))2dx, but any other image similarity criterion might
be used. In [9], we used a fluid matching approach - which,

unlike the elastic case, allows for large deformations. We
combined the fluid and Riemannian frameworks to create a
so-called isotropic Riemannian fluid registration algorithm. At
each voxel, for each of the time steps ∆t, the regularizer and
image similarity cost terms were optimized to find the velocity
q̇ according to the equation 1:

dq̇(x, t)
dt

= ∇qCost− α∇q̇RegRiem(q̇)− βq̇ (9)

α and β are the weights of the regularizing terms with regard
to the cost function. q̇ is obtained from equation (9) at each
time step ∆t and integrated over time to find the displacement
q. Following eq. (4), the fluid Riemannian regularizing term
is

RegRiem(q̇, t) =
∫
µ
4Tr(log(Σ2

q̇)) + λ
8Tr(log(Σq̇))2 (10)

with Σq̇ = (∇~̇q + Id)T (∇~̇q + Id).

RegRiem constrains the deformation of one image into
another by acting on the rate of strain Σq̇ rather than on
the DT Σ (as was the case in equation (4)). The introduction
of RegRiem was a first step toward the implementation of a
statistical fluid algorithm, as the aim was to integrate statistical
information on the Σ’s within this regularizing term.

B. Redefining the fluid algorithm with the Lagrangian formu-
lation

In this section, we use the Lagrangian theory of section
(II) to reformulate the isotropic Riemannian fluid registration
algorithm (equation 9). In particular, given the definition of the
kinetic energy and acknowledging the conservative properties
of the similarity term (see paragraph III-A2), the different
terms of this modified Navier-Stokes equation (9) can be
defined as follows:

• Kinetic energy: T = 1
2 ||q̇j ||

2
2

• Potential Energy: V = Cost(q)

• Nonconservative energy:

V~F = V~F1 + V~F2 =
1
2
β||q̇||22 + αRegRiem(q̇)

In this case, following the expression of the dynamic La-
grangian equation (equation (1)), equation (9) may be rewritten
with the following equalities:

d

dt

(
∂L

∂q̇j

)
=
dq̇(q, t)
dt

=
d

dt

(
∂

∂q̇

(
1
2
||q̇||22

))
(11)

1Note: As in [16], we assume small deformations at each time step, thus the
kinematic nonlinearities of the VF q are not taken into account. Consequently,
we have

d~q(x, t)

dt
=
∂~q

∂t
+
∑

q̇
∂~q

∂x
≈
∂~q

∂t
(7)

Similarly, we will consider that

dq̇(x, t)

dt
≈
∂q̇

∂t
(8)
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∂L

∂q
= ∇qCost(I,K, q) (12)

~F

(
∂~r

∂q

)
= α∇q̇RegRiem(q̇) + βq̇ (13)

C. Incorporating statistics on the deformation matrices

Given a dataset, we execute a first round of registrations
to compute the statistics that will be needed for the statistical
regularization, i.e., that will be incorporated in the regularizing
(non-conservative) terms. For each image from this dataset,
we apply the non-statistical algorithm (see equation (9)) to
obtain a distribution of vector fields, from which we compute
the covariance of the DTs, Σ, and the covariance of the
displacement fields, ~q. According to the elastic version (see
equation (6)), the first non-conservative regularizing term can
be defined as:

Regstat =
1
4

∫
V ect(Wq̇ − W̄q̇)Cov−1V ect(Wq̇ − W̄q̇)T

(14)
Here Wq̇ = log(Σq̇), and to avoid any bias, we choose to keep
the average rate of strain W̄q̇ = 1

N

∑
i log(Σq̇i

) equal to zero
at all times. The covariance Cov is computed using DTs Σq .
Using Σq̇ would be equivalent because q and q̇ are collinear
to each other. This new form Regstat can replace RegRiem in
V~F .

D. Incorporating statistics on the displacement fields

The other non-conservative term can also be modified to
embody the covariance of the displacements. The Euclidean
norm ||.||2 is replaced by a Mahalanobis distance in V~F1:

V~F1 = ||q̇j ||2 = q̇Tj cov
−1
qj
q̇j (15)

with covqj = 1
N

∑
i(qi − q̄j)T (qi − q̄j), the covariance of

the displacements q at a voxel j across the images i. Strictly
speaking, this non-conservative term may be interpreted as a
Rayleigh dissipation term, as explained in Appendix C. In fact,
it is proportional to the quadratic velocity.

The algorithm can include both of the previous types of
statistical data (vector- + tensor-based statistical version), the
information on the Σ’s only (tensor-based version), informa-
tion on the displacement fields q only (vector-based version)
or neither of them (non-statistical version of the algorithm).

E. Conclusion on the Lagrangian Structure

The Lagrangian definition is well suited for solving the
minimization problem, and is used to find q̇ at each time step.
To transform the registration problem into a dynamical system,
a gradient descent is performed to find the optimal registration
parameters. For instance in [49], this can be achieved by
dissipating the kinetic energy acquired at each step according
to the Navier-Stokes equation. In our algorithm, we dissipate
more energy when we are going into an expected direction
(that agrees with the prior statistical information) or retain the
energy when we are going in unlikely directions. Practically,
this is possible because the regularizing term VF1 and Regstat

can be modulated by the prior information. They can either
be enhanced (relative to what they would be without the
statistical constraint) if the inverse of the covariance (of the
vector fields and diffusion tensors, respectively) is high, or
they may decrease if the inverse of the covariance is small.
These modulated values help the algorithm to surpass some
local minima and keep moving towards a statistically plausible
solution.

F. Implementation

The use of Lagrangian mechanics allows a clear explanation
of the forces exerted on the mechanical system. While this
formulation is fundamental for a complete understanding of
our algorithm, we go back to Newton equations to explain the
resolution of the problem. In fact, our final goal is to find the
displacement q and thus the velocity q̇ of each particle at each
time step δt. We use a multiresolution algorithm. As a first
approximation, the second-order terms are neglected. All the
first-order derivatives are computed using finite differences.
Thus equation (9) is modified into:

∇qCost− α∇q̇Reg(q̇)− β ˆ̇q = 0

Reg can either be the Riemmanian regularizing term (equation
(10)) or the statistical one (see III-C). Similarly, β ˆ̇q is either the
velocity (as presented in the initial equation 9) or the gradient
of the Mahalanobis distance (see III-D). The regularizing
part of this equation contains non-linear terms, hence the
computation of q̇ using a gradient descent method based
on Levenberg-Marquardt optimization. At each time δt, the
cost function is calculated between the moving image and
the template. The velocity is found and integrated to find
the displacement. A supplementary step is needed to prevent
singularities. If the Jacobian falls below a threshold (here
0.5), a regridding step is performed [16]. The algorithm is
as follows:

1) Define a grid on the template and an initial resolution;
initialize t = 0 and q̇(~x, t = 0) = ~0

2) Calculate the force, i.e. the gradient of the mean square
difference ∇qCost at this given resolution.

3) Solve the PDE to find the velocity at the same resolution,
at each point in the grid, using gradient descent (RK4).
We chose q̇ = γG◦ ~F with γ = 0.3 and G is a Gaussian
function that can be modified according to the resolution.
The general slope of the gradient descent is:
S1 = (β ˆ̇qn− ~F +α∇Reg) (β = 1 and α varies with the
resolution). Si’s (i ∈ [2 : 4]) are computed iteratively.
qn+1 is computed the following way:
q̇n+1 = q̇n − 1

6ε(S1 + 1
2S2 + 1

2S3 + S4).
4) Find a time step that is consistent with the maximal flow

allowed (which is predetermined).
5) Integrate q̇ to find q, using an explicit algorithm (qt+δt =

qt + q̇t.δt)
6) Compute the Jacobian of the displacements. If the

Jacobian determinant falls below 0.5, then re-grid the
template and return to Step 4.

7) Obtain the new displacement field once the Jacobian
value is acceptable.
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The gradient descent scheme used here may converge on local
minima, especially when the number of degrees of freedom
is large, as is the case here. This is a generic problem for
all deformable registration algorithms, and the cost functions
often have large numbers of local minima. Here, we do not
use a traditional gradient descent but an explicit iterative
method (RK4, [62]). This was chosen so that the resolution
is less sensitive to local minima than a first-order method.
Interestingly, as observed below (see Results, paragraph V-B
and figure 5), including vector statistics in the deformation re-
duces the variance of the deformation matrix without affecting
registration accuracy (Figure 4). Our statistically regularized
method promotes solutions with a reasonable magnitude of
deformation, and with spatial derivatives typical of smooth
anatomical mappings. This avoids very high frequency solu-
tions or local minima that optimize the data fidelity term only.

IV. EVALUATION OF THE ALGORITHM: METHODOLOGY

A. Data and preprocessing

1) Twin dataset: We scanned 23 pairs of monozygotic (MZ)
(11 male and 12 female pairs) and 23 pairs of same-sex
dizygotic (DZ) twins (10 male and 13 female pairs), recruited
as part of a 5-year research project that will eventually
evaluate 1150 twins. Additionally we also scanned one healthy
subject with the same protocol to be used as template for
the registration. This template image was used strictly as a
common space and was not included in the data set for the
genetic analysis. The age range for the subjects was 22− 25
years old for all the subjects, including the template (mean
age: 23.8± 1.8 SD years). Each subject was informed of the
goals of the study and signed a formal consent. The study
was approved by the appropriate Institutional Review and Re-
search Ethics Boards. Zygosity was established objectively by
typing nine independent DNA microsatellite polymorphisms
(Polymorphism Information Content > 0.7), using standard
polymerase chain reaction (PCR) methods and genotyping.
These results were cross-checked with blood group (ABO,
MNS and Rh), and phenotypic data (hair, skin and eye color),
giving an overall probability of correct zygosity assignment
of greater than 99.99%. All subjects underwent physical and
psychological screening to exclude cases of pathology known
to affect brain structure. None of the twin subjects reported a
history of significant head injury, a neurological or psychiatric
illness, substance abuse or dependence, or had a first-degree
relative with a psychiatric disorder.

2) Image Acquisition and preprocessing: All MR images
were collected using a 4 Tesla Bruker Medspec whole body
scanner (Bruker Medical, Ettingen, Germany) at the Center for
Magnetic Resonance (University of Queensland, Australia).
Three-dimensional T1-weighted images were acquired with
a magnetization prepared rapid gradient echo (MP-RAGE)
sequence to resolve anatomy at high resolution. Acquisition
parameters were: inversion time (TI) /repetition time (TR)
/echo time (TE) = 1500/2500/3.83 msec; flip angle = 15o;
slice thickness = 0.9 mm with a 256x256x256 acquisition ma-
trix. Extracerebral (non-brain) tissues were manually deleted
from the MRI images using the 3D interactive program,

Display (Montreal Neurological Institute, McGill University,
Canada). All scans were then aligned to the standard Colin27
brain template using a 9-parameter global registration (i.e.,
translational and rotational alignment, allowing scaling in 3
independent directions), which may be found in the FMRIB’s
Linear Image Registration Toolbox, FLIRT [44]. For all sub-
jects, corpus callosum outlines were manually traced in the
mid-sagittal plane, using BrainSuite [65] and rigidly aligned
to the target corpus callosum (using 2 translations, 2 rotations,
and scaling in 2 independent directions), using a least-squares
cost function on the binary mask data.

B. Data analysis

All subjects’ 3D scans and 2D binary corpus callosum
images were non-linearly registered using SAFIRA’s four
versions as well as the traditional fluid method [49] (3D only).
In each case, VFs, and their corresponding Jacobian matrices
J were computed at each voxel, resulting in a scalar value
for the Jacobian determinant, det(J). The det(J)’s express
the local differences in volume (3D) or area (2D) between
each subject and the target image: detJ(~u) > 1 indicates a
local excess in the image being studied in comparison to the
template while detJ(~u) < 1 indicates a local deficit.

C. Accuracy of volume quantification

As our algorithm was primarily developed to study vol-
ume and shape differences between subjects and groups in
morphological studies such as TBM, we first estimated how
the incorporation of different types of statistics influenced
the results with regard to volume estimation. We based this
analysis on the method developed by Klein et al. in their
validation study [45], which used the LPBA40 brain MRI
dataset, which is based on data from 40 healthy volunteers
(20 men and women) [66]. We randomly chose a subject from
this LPBA40 dataset as a template and registered all the other
MRI scans to this template using the 3 independent versions of
our algorithm (non-statistical, tensor-based and vector-based)
in order to see the independent effect of each statistical prior
on the accuracy of the registration. Then, we applied the VF,
obtained from each subject’s structural MRI registration to the
template, to the corresponding labeled image (for each of the
subjects, 56 structures (or regions of interest) were delineated
manually - see http://www.loni.ucla.edu/Atlases/LPBA40 for
more details). Each registered labeled image was compared
to the manually segmented labeled template, which served
as the ground truth segmentation. The volume differences
between the template Tr and each subject Sr were reported for
each region and summed across the population. The volume
similarity coefficient Vs was defined as follows:

Vs = 2
∑

(|Sr − Tr|)∑
(|Sr|+ |Tr|)

For this measure, smaller values denote a more accurate
quantification of substructure volumes. We repeated this test
using the traditional fluid algorithm.
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D. Measure of the smoothness and regularity of the deforma-
tion

In general, if two registration algorithms match the features
in two images equally well, the one that produces the smoother
(regular) deformation is usually considered better, as smoother
deformations are usually more biologically plausible. Sec-
ondly, a smoother deformation usually requires fewer degrees
of freedom to model, so, to obtain a more parsimonious
model, a less complex transformation is usually preferred
over a more high-dimensional one. The smoothness of the
deformation can be illustrated for each subject in several ways,
by showing deformed grids carried through the transformation
or voxelwise maps of det(J). det(J) shows the amount of
deformation when registering each image to the template,
while the deformation grid gives an indication of the level of
regularization. More complicated measures, such as the voxel-
wise norm of the deformation matrix Σ can be determined:

NΣ =
√

(trace(log(Σ)2))

This quantity measures the smoothness of the deformation be-
tween a subject’s image and the template in the log-Euclidean
framework [2]. The voxel-wise variance can be averaged
across the whole population (composed of one twin per pair
randomly selected) to show the variability the registration
mappings.

E. Genetic influence on brain structure

The statistical power of the different versions of SAFIRA
and the traditional fluid, for use in a morphometry study, was
compared by computing genetic measures from the dataset.
To measure the resemblance between twin pairs, we first
computed the intraclass correlation coefficient (ICC) for both
the MZ and the DZ groups in the cerebrum and the corpus
callosum, according to the equation:

ICC =
σ2
b

(σ2
b + σ2

w)
(16)

σ2
b is the pooled variance between pairs and σ2

w is the variance
within pairs [64].

These ICC measures were computed from the Jacobian
determinant at each voxel in the registered maps, which is
an index of the regional volume of specific structures, relative
to the standard template. As such, the meaning of the ICC
is just a map of how similar brain structure volumes are
between twins of various kinds, with higher values meaning
that volumes are more correlated across members of a twin
pair.

Heritability is an estimate of the proportion of the variation
in a measurement that is attributable to genetic differences
among individuals. We computed Falconer’s heritability statis-
tic, h2, defined as twice the difference in correlation between
MZ and DZ pairs

h2 = 2(r(MZ)− r(DZ))

where r(MZ) and r(DZ) are the intraclass correlation values
for the MZ and DZ groups, respectively [23]. This is a fairly
standard measure of heritability, although it may be estimated

using other methods, such as structural equation models and
path analysis, which we have used in other reports [10], [14].

We did not want to assume that the data, det(J), was
normally distributed across subjects, so we computed p-values
at each voxel with a voxelwise permutation test, to establish a
null distribution for the ICC statistics at each voxel [56]. The
null hypothesis for the intraclass correlation was ICC = 0
(no correlation). At each permutation, every subject’s scalar
value, det(J), is randomly assigned to another subject; the
r-values computed from this randomly-generated distribution
are compared to the r-values for our data; the resulting
permutation-based (non-parametric) p-value is defined as the
quantile of the empirical null distribution where the real data
falls. To control the standard error of p, we performed 5000
permutations at each voxel [22].

F. Definition of the distances between images

We also defined four metrics to define a global (overall)
distance between one image and its target, based on the
deformation mappings. Two of the distances were based on
displacements and the two others on DTs.

• Distance on q:

dq1 =
∫
image

||~qj ||2,

• Statistical distance on u:

dq2 =
∫
image

V ect(~qj)cov−1
qj
V ect(~qj)T ,

• Distance on the Σ’s (defined using the Log-Euclidean
framework [2]):

ds1 =
∫
image

N2
Σ,

• Statistical distance on the Σ’s equivalent to the energy
Regstat:

ds2 =
∫
image

V ect(Wq − W̄q)Cov−1V ect(Wq − W̄q)T

These distances were computed on the binary 2D images
for all the MZ twin pairs. From these single values per subject,
for each algorithm, and each distance, we compute the ICC
for the MZ group. The corpus callosum is a highly heritable
subcortical structure of the brain [43], so the premise of
this approach is that the ICC should be high for all these
distances, and that any registration error should tend to deplete
the correlation between identical twins. As such, in the absence
of ground truth on what the deformation should be, the ICC
is a fair measure of the registration accuracy, offering a useful
but not sufficient criterion for good registration.

A subset of the monozygotic twins were then fluidly reg-
istered to their twin sibling and to the rest of the population.
For the four algorithms, the obtained vector (~q) and DT (Σ)
fields were input into the distances.
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V. RESULTS

A. Preliminary results

Figure 2 illustrates the influence of the variations of the
non-conservative terms on the deformation. A circle is trans-
formed into an ellipse using the non-statistical version of the
2D registration algorithm (green grid) (see eq. 9). The same
transformation was made with the same number of iterations
(time steps) with a strong dissipation and with a small dissipa-
tion (corresponding to small and large covariance matrices on
the displacement incorporated into V~F1). These two cases are
represented by the red grid (small dissipation) and the blue grid
(strong dissipation). For an equivalent number of time steps,
the greater the dissipation, the slower the progression of the
transformation. In the case of biological data, the dissipation
decreases as the global value of the covariance matrices
computed from the displacement fields increases. For local
areas where the dissipation is stronger (and the covariance
smaller) in the image deforms less than the other areas within
a time step. This is logical, because a small covariance matrix
means that the anatomical variation is small across subjects
and the target structure is expected to be found within a small
deformation distance of the starting position. The tensor-based
version follows the same kind of behavior. As the global value
of the covariance matrices computed from the Σ’s increases,
the progression of the transformation increases.

Figure 3 compares the regularity of the deformation, ob-
tained from the transformation of one corpus callosum into the
template, using the four different versions of the algorithm.
The smoothness of the deformation is also given by det(Σ)
maps. When prior information on the displacements (vector-
based statistics) is incorporated in the registration, smoother
transformations tend to occur. The Jacobian determinant map
for the non-statistical version (bottom - left) shows that with-
out any a priori information, the larger deformations are
concentrated around the edges of the structures, especially
where there are irregularities (such as in the isthmus and
splenium). This pattern is observable in all cases. Even so, the
effects are much more localized with the vector-based statistics
algorithm (bottom - middle left) whereas they propagate to the
whole white matter structure when the tensor-based statistics
technique is used (bottom - middle right). Introducing both
statistics combines the influences of the two previous methods
(bottom - far right). The dissipation is stronger with the vector-
based statistics where the covariance of the displacement field
is smaller (i.e., inside the structure). This smoother effect is
not seen with the tensor-based prior.

B. Estimating the volume conservation

As explained in paragraph (IV-C), the volumetric quantifi-
cation error was computed across the LPBA40 population for
each of the 56 delineated labels (see Figure 4). Our algorithm
was primarily developed for use in tensor-based morphometry
studies, the deformation of one brain volume onto another is
essentially measuring volume differences between structures,
so its accuracy in labeling subvolumes of the brain can be
evaluated using manually labeled standard brain datasets. In
other words, the differences between the manually labeled

volumes and those obtained by deforming a labeled template
onto them can be regarded as a measure of registration
accuracy.

Figure 4 shows the volume quantification error, Vs, for
all 56 regions of interest. Blue colors indicate no volume
difference between the registered label and the manually
defined ground truth label, whereas red colors indicate a large
difference between the volume of the deformed segmentation
and the manually defined ground truth. The results are shown
for three versions of the algorithm (non-statistical, and the
versions using vector-based and tensor-based statistics) and
for the traditional fluid. Overall, incorporating vector-based
statistics on the deformation field during the registration
improves volumetric matching, and improves the accuracy of
volume quantification. In particular, this is especially clear for
the subcortical gray matter structures, such as the caudate and
the putamen (near the bottom of Figure 3). In those cases,
the vector-based statistical algorithm was more accurate for
volume quantification, which is advantageous for large-scale
volumetric studies.

C. Estimating the smoothness of the deformation
Figure 5 shows the voxel-wise variance of the DTs Σ

measured over a population composed of one twin randomly
selected per pair, for each version of the algorithm (see
paragraph IV-D). Blue indicates a small variance. In all cases
where a statistical regularization was applied, the variance
of the deformation matrices was smaller than in the non-
statistical case. This means that each subject’s transformation
is closer to the other ones when a statistical prior is used.
Whether or not these deformations are closer to the truth
depends on whether the population variance in the Jacobian
reflects true biological variation or methodological noise. In
other words, it is not necessarily better to have a low variance
in the Jacobian maps for morphometric studies, it might be
advantageous to have a high variance in the Jacobian maps so
long as they are really encoding true features of the anatomy.
Otherwise, low-dimensional warps would always be favored,
when really the optimal dimension and frequency content of
the registration field depends on the detail or complexity in
the true signal. Even so, these maps do show that the priors
do limit the variance in the deformations, and are likely to
favor transformations that are more likely to occur.

For the algorithm using vector-based statistics (middle left),
the covariance of q is smaller in large homogeneous regions,
such as the white matter. This is to be expected, as constraining
q affects the magnitude of the deformation field, rather than
just its derivatives (which can be low even for a large-
deformation mapping). Even so, the differences between the
non-statistical and the tensor-based methods were less notice-
able (middle right), as the tensor constraints tend to influence
only the smoothness of the deformation (1st order-statistics
compared to 0th-order statistics). When the two statistics
were included in the transformation (far right), the effect of
the displacement-based prior information (constraining q) was
more influential.

An additional test was performed to better understand the
evolution of the covariance of the VFs, when the statistical
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approach is iterated until convergence. It is of interest to see
the effects a recurring registration scheme on the deformations
(see Figure 6). We ran a first round of registrations, computed
the covariance on the VFs, included this information in a
second round of registrations, computed the covariance of
these latter VFs and re-injected it again into another round
of registrations. The number of iterations was fixed for all
registrations. The voxelwise trace of the covariance of the
VFs is presented here in a logarithmic scale. Blue colors
indicate regions of low covariance and red colors correspond
to a high covariance. The first image (top left) represents
the covariance of the non-statistical -unconstrained- VFs (i.e.,
using the standard homogeneous regularizer as the prior).

For each round of registration, the deformation of the image
is more constrained in regions of low covariance (see equation
15). This means that the constraint on the magnitude of the
deformation will be higher in subcortical regions (Figure 6,
top left) and thus the displacement in these regions will be
smaller. This will result in a smaller covariance at the level
of these regions and will be echoed in the following round of
registration and so forth. In fact, as the covariance becomes
smaller, the deformation is more constrained and there is less
variability in the resulting vector fields. The outcome of this
experiment suggests that repeated rounds of registration, using
an updated statistical prior, may not be advantageous, as the
damping due to the statistical prior increase over the iterations
and drive the solutions towards the identity. Given this, it may
be optimal to base the prior on one round of unconstrained
registration without statistical damping rather than use the
approach recursively.

D. Statistical Analysis

1) Corpus callosum: Figure 7 shows the results of the
Tensor-based Morphometry study of the corpus callosum with
each method. The intraclass correlations were computed for
both the MZ and DZ groups, as well as their significance and
the corresponding heritability. All versions of the algorithm
show a similar pattern: the 2D structure is shown to be
influenced by genetic factors in several regions: the extreme
part of the splenium (corresponding to white matter fibers
projecting primarily to the occipital lobes [39]), the anterior
third (projecting primarily to frontal and prefrontal cortices)
and the midbody (projecting to the mid-cingulate cortex and
other limbic areas). Intriguingly, the non-statistical version
gave slightly more powerful results, in the sense that the effect
sizes for intraclass correlations were greater. Both MZ and DZ
groups showed higher intraclass correlation and significance
(i.e., higher effect sizes at the voxel level) with the non-
statistical technique compared to the others. While the pattern
presented in the DZ group and its significance are comparable
with the first three algorithms (although less strong in the
statistical versions), the incorporation of both statistical priors
in the registration decreases the signal in the DZ group,
removing part of the effects found along the midbody.

2) Cerebrum: The ICC, its significance and the heritability
are displayed as 3D maps for the whole cerebrum in Figures
8 to 10. Again in the 3D case, the anatomical pattern is

consistent overall across all methods for the three types of
maps. Subcortical structures, white matter and ventricles are
shown to be influenced by genetic differences across individ-
uals. However, the effect sizes given by each method follows
a different rank order than that seen in the 2D case (see
V-D1). In both MZ and DZ groups, similar overall patterns
of resemblance are mapped by each of the four versions of
the algorithm and by the traditional fluid method. Even so,
the ICC, its significance and the heritability maps present a
more powerful signal when the vector-based algorithm is used
in the registration step of the TBM study. In all cases, SAFIRA
outperforms the traditional fluid algorithm. To better quantify
the difference in power, cumulative distribution functions
were plotted for each version in the MZ group (Figure 11),
based on the pvalues for the ICC. This is also consistent
with the previous results; including prior information on the
deformation fields increases the detection sensitivity (the black
and blue lines are merged together; they lie on top of each
other). However, the incorporation of tensor statistics, on their
own, very slightly depletes the statistical power to detect
differences (yellow line) when compared to the non-statistical
version (purple line).

E. Distances

The statistical maps and cumulative distribution functions
showed differences in effect sizes between the different ver-
sions of the algorithm. We also examined several global
distances between twins images (see IV-F), on the premise that
any registration errors would tend to diminish the correlation
(ICC) between twins.

Table I shows the ICC and its significance for distances
defined on the the corpus callosum. As this subcortical struc-
ture is known to be under strong genetic control, we estimate
the robustness of the algorithms by comparing the ICC and
p-values. The higher the ICC the more the registration has
picked up the similarities between the images; registration
errors tend to deplete the correlation between identical twins.
For each of the measures, the more significant statistics were
determined (red color values in the table). While none of
the algorithms gave statistically significant results with ds2
(as all the p-values are > 0.05), the vector-based distances
dq1 and dq2 favored the versions containing the statistical
information on the displacement fields. The non-statistical
version benefited from ds1. Overall, across the distances, the
version incorporating vector statistics gave higher similarities
across twins (mean of the ICC).

Figure 12 illustrates the distances measured on a subset
of the MZ group for the method-distance combinations that
showed highest effect sizes (lowest p-values) in Table I (red-
colored values in the table). Each twin is represented by
an integer on the x-axis. The distance to its twin sibling is
represented by a filled blue circle. In most cases, members of
a twin pair were less distant from each other than they were
to the other subjects. This suggests the biological validity of
these metrics and the registration from which they are derived.
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VI. DISCUSSION

A. Results

Here we combine the advantages of a large-deformation
fluid matching approach with empirical statistics on popula-
tion variability in anatomy to build SAFIRA, a Statistically-
Assisted Fluid Registration Algorithm. SAFIRA was math-
ematically formulated using a non-conservative Lagrangian
approach, which allows one to regard the 3D image volume as
being embedded in a deforming mechanical system, subjected
to conservative and non-conservative forces. Two types of prior
information from the dataset can meaningfully be incorporated
in the regularization terms. The covariance on the displacement
fields q was included in the first term (Rayleigh’s dissipation
term) and the covariance of the deformation matrices Σ was
embodied in the second term (or Riemannian term), using Log-
Euclidean metrics. In both cases, Mahalanobis distances were
used. The statistical dissipation acts during the registration
process by slowing down or favoring the deformation at certain
regions in the image. The medium is consequently considered
as non-homogeneous, following prior papers that have ascribed
non-uniform deformability to the medium (e.g., [52]).

From these results, we can conclude that all four versions
of SAFIRA outperformed the traditional fluid registration
approach, using various performance metrics. Preliminary
observations in 2D showed that deformation patterns vary
somewhat depending on the technique used. While the overall
transformation was smoother with the vector-based statistics
version of the algorithm, the inclusion of tensor information
in the registration process gave the opposite effect. As the
corpus callosum is a fairly narrow 2D structure at midline,
the gradient of the displacement fields (∇q) is relatively high
and so the tensor information tends to be quite variable in this
region. In 3D, both the vector- and tensor-based regularizer
give smoother deformations than the non-statistical one, even
though there is not as much evidence in the second case. In
fact, the non-statistical prior has a stationary and isotropic
autocorrelation which is the same everywhere in the image,
by the definition of a homogeneous material. The empirically-
derived priors, however, will have an autocorrelation that
matches that of the data. Consequently, in large homogeneous
regions, which are less subject to deformations, such as the
white matter, the vector-based prior is likely to give smoother
deformations than in the regions with more anatomical detail
in the data (higher spatial autocorrelation in homogeneous
regions). This effect can be improved by performing several
rounds of registration to include a more accurate estimate of
the covariance.

This autocorrelation effect has been further investigated in
various cortical areas in [25]. In this paper, the authors used
a large set of sulcal lines to evaluate the spatial correlation
between any pair of cortical points, which they extended to
interhemispheric correpondences. Naturally, they found high
correlation between points that are spatially close to each
other, but they also found long range local maxima in the
correlation fields, revealing somewhat surprising connections
between anatomical variation in distant brain regions. In an
earlier study [29], the author similarly used the correlation

between two points of the images, to guide an intra-subject
registration method based on Bayesian statistics.

We also relied on the heritability of brain structures to
quantify the power and effect sizes of each algorithm, in
an application to a genetic study of brain structure. When
computing statistics in 2D, the statistical versions of the
algorithm were slightly less powerful. Results differed in 3D.
First, it is worth noting that all four versions of SAFIRA
improve the detection sensitivity compared to the traditional
fluid. Secondly, the incorporation of the empirical information
on q clearly resulted in more powerful results, whereas adding
1st-order statistics did not influence the results compared to
the non-statistical version.

The difference in power between the 2D and 3D results
noted for the q-based method might be explained by a smaller
influence of the statistical prior in the case of a 2D bi-
nary structure, compared to a grayscale 3D volume. In 2D,
registrations are obtained from the information found at the
border of the structure only. For registration of binary data,
the gradient data fidelity term is a very strong constraint and,
as the structure is quite elongated, is quite densely defined in
the image. The amount of information that is re-injected in the
statistical registrations is thus relatively limited and the impact
of the statistical regularizer compared to the non-statistical one
may be somewhat minimal. However, in both dimension (and
more so in 3D), the information on the displacement seems
to have more impact on the results and on the registration.
This is likely due to the fact that a penalty on the deformation
gradients Σ does not constrain the deformation field as much
as a constraint on the displacement vectors, which restricts the
magnitude of the deformation. The Σ’s are computed from
the derivatives of q and made symmetric. The strength of the
statistics and thus its influence on the registration is smaller
as a result, when the tensor statistics are used on their own.

The biological plausibility of all methods was also inves-
tigated. First, the volumes of different gray matter structures
were compared between a registered image and the template
image, and these automated labeling experiments favored the
vector-based over the traditional fluid, the non-statistical and
tensor-based versions. Furthermore, as the corpus callosum is a
heritable structure, then under certain reasonable assumptions,
the closer the intraclass correlation in the MZ population,
the more accurate the registration method is. One of the
assumptions of this metric is that there is no confound that
would tend to lead to the registration errors being more similar
for members of the same twin pair than for a randomly selected
pair of subjects, or for twin pairs of different zygosities (MZ
versus DZ). As all registrations are performed to a common
template, which is based on a different subject (not one of the
twins), then there should be no registration error x zygosity
interaction, so this assumption is reasonable.

When global distances between images were examined,
the vector-based statistical method consequently showed the
greatest improvement in detection sensitivity versus the non-
statistical Riemannian Fluid code. Theoretically, constraining
the deformations via prior information on the dataset is
equivalent to decreasing the dissipation in regions where the
displacements are more likely to happen. Smoother transfor-
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mations were also achieved using the vector-based statistical
method, and these may also be more biologically plausible.

These findings offer some guidance on which algorithm
to use. Relative to standard methods, priors that incorporate
empirical statistics will tend to help, whenever the local defor-
mation statistics (here the displacement field or its Jacobian
matrix) are significantly non-stationary or non-isotropic. In
other words, they should perform a more standard deforma-
tion model by a greater amount in brain regions where the
directional biases of anatomical variation are greater.

When choosing the order of the statistics to include in the
prior (on 0th-order displacement fields or 1st-order local defor-
mation tensors), the statistics on the displacement field seem to
provide greatest benefit; statistics on the deformation vectors
are also more stable to compute than the local deformation
tensors, which rely on spatial derivatives.

B. Limitations and Future Work

1) On the registration algorithm: This algorithm was built
so that the deformations produced by all versions remain
diffeomorphic. In fact, any singularity is prevented through
the regridding step (see section III-F). However, SAFIRA does
not ensure inverse consistency. At each step, a numerical opti-
mization method is solved through a modified gradient-descent
method and consequently local minima may be reached instead
of global minima. An additional consequence is that the path
found by this optimization scheme is not geodesic. However,
in certain cases, such as in atlas construction, dependence
upon the directionality of the registration can introduce a
bias. One solution to this problem would be to optimize
the transformation in a symmetric-fashion, such as in [5],
[17], [47], [76], [77]. This could be implemented in the non-
statistical case but could become computationally demanding
when using the statistical versions.

Our formulation of the registration problem as a Lagrangian
mechanical system places it in the class of methods that find
a natural path of a deforming physical system over time,
with forces that may depend on the path taken. As such, it
is conceptually distinct from some other registration methods
that optimize the transformation over the space of paths. For
example, some methods regularize an energy on the space-
time interval K x [0, 1], and find the optimal path among
the natural paths. Recent work on ‘geodesic shooting’ has
noted that many optimization problems initially formulated
on the space-time interval can be reformulated in terms of
the initial momentum only, greatly reducing computational
burden. In general, it is worth noting that these two approaches
to the energy minimization problem have slightly different
conceptual foundations.

2) On the validation method: The differences between the
2D and 3D results deserves comment. In 2D, the registration
problem is relatively simple, as it consists of registering
binarized images of the corpus callosum. In that case, most
algorithms with sufficiently many degrees of freedom will pro-
duce an accurate match, and the data fidelity term reduces to
a difference between binary functions. In that simpler context,
the non-statistical approach produced the most statistically

sensitive measures in 2D, but not in 3D. It could be that this
difference in power (and the relative improvement given by
vector statistics in 3D) occurs because binary shapes are easy
to register even without statistical information, and not because
the image is 2D. Statistical regularization may help to ‘fix’ the
limitations of the similarity metric. That is, the performance
of all algorithms is good in the 2D case, where the intensity
difference metric is a good model of the underlying matching
goal. In 3D, however, the performance of the non-statistical
approach may suffer because the intensity difference metric
may not be a good model for the joint histogram of correctly
registered T1-weighted MR images. It has to be recognized
that, to some extent, the statistical prior may be overcoming
limitations of the similarity metric. This is also true of any
regularization method, as regularized solutions can be most
beneficial in cases where (1) the signal to noise of the data is
low, or (2) the information provided by the data fidelity term is
poor or unreliable. A more agnostic interpretation of the results
is that the statistical priors may help overcome a poorly chosen
intensity model by reducing its impact in regions where the
similarity metric is failing or introducing noise. This effect
may explain the increased ICC in the prior-based algorithm
and may be a more plausible explanation than the statistics
being capable of capturing something with more biological
meaning.

The use of the intraclass correlation, as one of our methods
of validation can be discussed as well. When using twin data
to study registration results, one goal is to both maximize
ICC for the twins and maximize differences in the ICC
groups of twins as well. It is worth nothing that this goal
is somewhat different than the usual goal of TBM, which is
to identify group differences in anatomy. The premise of the
twin approach is that, in general (except for some confounding
situations noted below) registration errors will tend to deplete
the ICC obtained for twin pairs, and they will also tend to
deplete the differences in ICCs between types of twins (MZ
and DZ), which are the basis for studying genetic effects. In
other words, ICCs may be considered as a possible measure
of registration error. There are two caveats regarding this
approach. The first is that the use of high ICCs to suggest
good registration accuracy is just a guide, and cannot be treated
as the sole criterion of registration accuracy. For example, it
could be that in reality, twins differ in anatomy at a very fine
scale, but resemble each other at a more global scale. If this
biological scenario were true, then an algorithm with more
degrees of freedom or with better recovery of correspondences
at high frequencies may in fact lead to a lower ICC when
run on the same set of twin scans. A similar argument may
be proposed to suggest that the ICC between twins may be
higher with decreasing deformation. However that is not the
case, because every twin is independently registered to an
independent template (not to each other), so there is no reason
for smaller deformations to be more correlated among twins.
Second, the registration errors tend to deplete the ICC, so they
will be proportionally higher (lowering the ICC) when the
deformation magnitude is too low. In the limiting case of zero
deformation (poor registration), the ICC is not defined. Even
so, the ICC is just one of many metrics that may be useful
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for assessing a successful registration algorithm. In this paper,
we also made sure that registration accuracy was assessed
via the more traditional approach of quantifying manually
labeled volumes (Figure 4), and the statistical version of the
algorithm performed very well. Clearly, in a real TBM study of
group differences, one would hope that the registration method
could detect group differences with the highest possible effect
size, or with the smallest minimal sample sizes (maximum
efficiency). However, one of the issues with comparing effect
sizes on data representing group differences is that we have
no ground truth on how much difference there really is: and
in fact an algorithm that finds smaller group differences may
be more accurate. This is related to the confound that twins
may resemble each other on a gross scale but not a fine scale.
Overall, the agreement of deformation maps with independent
methods for volumetric quantification is the primary criterion
of success (see [45] for other metrics).

3) Future work: In this paper, we focused on considering
the sum of squared intensity differences (SSD) as a data
fidelity term, as it is perhaps the most commonly used. Even
though SSD was proved to perform as well as other similarity
measures for brain MRI [45] (see, e.g., http://picsl.upenn.
edu/ANTS/metric.php), it would be worth comparing different
similarity metrics such as cross-correlation or information-
theoretic measures, when used in conjunction with the sta-
tistical formulation here. Without substantially altering the
overall mathematical formulation here, more complex image
similarity measures could replace the SSD, such as cross-
correlation or information-theoretic measures. These data-
dependent terms only affect the body force added to the
cost function, and could easily be swapped in, in a modular
way. Registration methods developed for more precise cortical
pattern matching (e.g., [72]) could alternatively be used to
better match cortical areas. For applications requiring more
accurate registration of the cortical mantle, hybrid surface and
volume registration methods have recently been proposed to
enable precise simultaneous registration of both subcortical
and cortical regions [50], [59].

Future work will also examine the value of including
statistical information for longitudinal MRI studies, tracking
brain change over time. In clinical trials, for example, it is
often vital to maximize the statistical power to detect brain
changes, but power falls off dramatically when the inter-scan
interval is shorter [42]. In this context, a statistical prior may
have additional value for registering serial images, as Bayesian
theory suggests that the relative value of the empirical statistics
increases when the image data are noisier or less informative.
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VII. APPENDIX A: COMPUTATION OF THE GENERALIZED
LAGRANGIAN

For a dynamic system subject to generalized (i.e., con-
servative and non-conservative) forces, the action S can be
expressed as:

S =
∫ t1

t0

L+Wdt with δW = ~F .δ~r

δW is the work created by the non-conservative forces ~F
during the virtual displacement δ~r. The path followed by a
mechanical system minimizes the action, hence the variational
principle with generalized forces,

δS =
∫ t1

t0

δL+ δWdt = 0

Given that the Lagrangian L(q, q̇) is defined for the kinetic
and potential energies,

δS =
∫ t1

t0

(
δq̇
∂L

∂q̇
+ δq

∂L

∂q
+ δq ~F .

∂~r

∂q

)
dt

δq(t0) = δq(t1) = 0 as t0 and t1 are the initial and final
times. Using integration by parts, the first term in the equation
becomes:∫ t1

t0

δq̇

(
∂L

∂q̇

)
dt = −

∫ t1

t0

δq

(
d

dt

∂L

∂q̇

)
dt

Thus,

δS =
∫ t1

t0

δq

(
∂L

∂q
− d

dt

∂L

∂q̇
+ ~F .

∂~r

∂q

)
dt

hence, (
∂L

∂q

)
− d

dt

(
∂L

∂q̇

)
+ ~F .

(
∂~r

∂q

)
= 0

VIII. APPENDIX B: VARIATION OF THE ENERGY OF THE
SYSTEM

The variation of the energy of the system with time is given
by ∂H

∂t . According to the definition,

H = pq̇ − L with p =
(
∂L

∂q

)
qq̇

The new Hamiltonian equation is found from the Lagrangian
L, and modified to include the generalized forces:

ṗ =
d

dt

(
∂L

∂q

)
qq̇

=
(
∂L

∂q

)
+ ~F

(
∂~r

∂q

)
(17)

So,

dH

dt
=

d

dt
(pq̇ − L) = ṗq̇ + pq̈ − ∂L

∂q
q̇ − ∂L

∂q̇
q̈ − ∂L

∂t
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As in our case, ∂L∂t = 0

dH

dt
= ṗq̇ − ∂L

∂q
q̇ (18)

Combining equations 18 and 17, we obtain

dH

dt
= ~F

(
∂~r

∂q

)
q̇

IX. APPENDIX C: DISSIPATIVE FORCES

If non-conservative forces are dissipative, then a term D
can be included in the derivative of L such that(

∂L

∂q

)
− d

dt

(
∂L

∂q̇

)
+
∂D

∂q̇
+ ~F .

(
∂~r

∂q

)
= 0

Here, ~F represents all the other non-conservative forces. In
fact, as dissipative forces are inversely proportional to the
velocity q̇, the work becomes

δW = ~f.δq = −αq̇2dt

and the power of this force is

P = −dW
dt

= αq̇

The dissipation is such that D = 1
2P , so

D =
1
2
αq̇2

Consequently,

f = −∂D
∂q̇

The first term of the nonconservative energy V~F1 (see para-
graph III-B) is a dissipative term.
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[1] Allassonnière, S., Trouvé, A., Younes, L., Geodesic Shooting and Diffeo-
morphic Matching Via Textured Meshes, Energy Minimization Methods
in Computer Vision and Pattern Recognition, (2005), 365–381

[2] Arsigny V., Fillard, P., Pennec, X., Ayache, N., Log-Euclidean metrics
for fast and simple calculus on diffusion tensors, Mag Res Med, 56 (2),
(2006) 411–421

[3] Avants, B.B., Gee, J.C., Geodesic estimation for large deformation
anatomical shape averaging and interpolation, NeuroImage, 23(1),
(2004) S139-S150

[4] Avants, B.B., Schoenemann, P.T., Gee, J.C., Lagrangian frame diffeo-
morphic image registration: Morphometric comparison of human and
chimpanzee cortex Med Image Anal, 10 (3), (2006) 397–412

[5] Avants, B.B., Epstein, C.L., Grossman, M., Gee, J.C., Symmetric diffeo-
morphic image registration with cross-correlation: evaluating automated
labeling of elderly and neurodegenerative brain, Med Image Anal, 12
(1), (2008) 26–41
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Fig. 1. Example of a virtual displacement δr. The system consists of a bead on a moving inclined plane (moving at the speed u). The virtual displacement
can be seen as the difference between two displacements that are allowed by the constraint forces (vdt and v′dt) between t and t+ dt.

Fig. 2. Circle deformed into an ellipse using the non-statistical algorithm (green grid), and the statistical algorithm with small dissipation (red grid - left
panel) and large dissipation (blue grid - right panel). A large dissipation delays the progression of the transformation.

Fig. 3. Top row: Deformation grids obtained from the registration of one of the subjects’s 2D corpus callosum to the template image using the four versions
of the algorithm, showing the regularity of the deformation. From left to right: non-statistical regularization, vector-based statistics, tensor-based statistics,
vector and tensor-based statistics versions. Bottom row: Maps of the determinants computed from the deformation matrices (Σ’s), themselves computed from
the displacement fields (~q). These maps give a measure of the smoothness of the deformation (see IV-B).

Fig. 4. Volume Quantification Error. Dark blue colors denote more accurate measurements: the volumetric labeling error is computed as the difference
between the ground truth and estimated volumes, divided by their mean volume. Low values (dark blue) therefore denote more accurate volume quantification.
These measures of registration accuracy were computed across the LPBA40 population (a standard manually labeled brain MRI dataset) for 56 structures
(shown here on the y-axis). Results are shown for the non-statistical version of the registration algorithm, and for the versions of the algorithm that include
vector- or tensor-based statistics during the registration and lastly for the traditional fluid registration (from left to right). Dark blue shades indicate that the
difference in volume is very small whereas red colors indicate a large difference between the two volumes (i.e., poor volumetric overlap). In most cases and
across all regions, the registration method that incorporates vector-based empirical statistics consistently performs better for volume quantification. Areas that
are difficult to label include the right cingulate, inferior gyri of the occipital lobe, and the insular cortex. In these regions, gyral patterning is notoriously
variable across subjects, and labeling is more likely to be successful with a registration approach that also includes cortical constraints.

Fig. 5. The smoothness of a transformation can be illustrated using the deformation matrix Σ. The images represent the variance of the norm of Σ measured
across the whole population for the four algorithms (IV-D). Blue colors indicate regions where this variance is small (V ar = 0), whereas red colors represent
a higher relative variance (V ar = 0.05). The corresponding anatomical images are shown in Fig. 10. The variance of the deformation is smaller when using
statistical regularization. The variance in the deformation fields is quite heavily reduced when prior information on the displacement vectors is included.

Fig. 6. Maps of the covariance of the vector fields obtained from the 0- non-statistical algorithm, 1- the vector-stat version, 2- the vector-stat version including
the information from 1, 3- the vector-stat version including prior information from 2. The scale is logged. Blue corresponds to small covariance and red
colors correspond to regions of high covariances. The overall covariance decreases from 0 to 3. At a given step, the vector-statistical algorithm controls the
deformation in regions of low covariance. Resulting vector fields are more homogeneous in these regions, and thus the resulting covariance is lower.

Fig. 7. Intraclass correlation, heritability and significance maps are presented for TBM analysis performed using each of the four registration methods. From
left to right: non-statistical, vector-based statistics, tensor-based statistics, vector and tensor-based statistics versions. In the intraclass correlation maps (1st

and 2nd row), blue corresponds to 0 (i.e. no correlation) while red colors indicate a high correlation (ICC = 0.75). The same scale applies to the heritability
maps (3rd column). Blue colors indicate regions where there are little or no detectable genetic influences, whereas red colors show regions in which genetic
influences on brain structures are relatively high. The bottom two rows show the significance of the intraclass correlation computed separately for the MZ and
DZ groups (3rd and 4th row, respectively). Green regions indicate regions that are significant (p-value< 0.05) - see IV-E. All registration methods generated
a similar pattern for all of the statistical measures.

Fig. 8. Intraclass correlation computed in the MZ and DZ groups from Jacobian determinants from the four registration methods. From left to right:
non-statistical, vector statistics, tensor statistics, vector and tensor statistics versions and Traditional Fluid. Blue colors correspond to 0 (i.e., no correlation)
while red colors indicate a high correlation (ICC = 0.75). The different slices represented here correspond to the anatomical images in Figure 10. In the top
and the bottom panels, the first row corresponds to A, the second and third to B and C, respectively. The black circles show the main regions of differences
between all the methods. The incorporation of the vector statistics in the registration gives more powerful results in the TBM statistical analysis.

Fig. 9. Maps showing the voxelwise significance of the intraclass correlation (the correlation values are shown in Figure 8). These p-values were computed
using voxel-wise permutation (see IV-E). From left to right: non-statistical, vector statistics, tensor statistics, vector and tensor statistics algorithms and
Traditional Fluid algorithm. Red colors indicate significant effects at the voxel level (p-value < 0.05), while blue regions are not significant (p-value > 0.05).
The scale has been logarithmically transformed so that the significant regions are found from 0 (red) to 0.05 (yellow). The slices from the top to the bottom
row correspond to A-C (see bottom panel, Figure 10). Black circles show the main regions of differences across all the registration methods. Incorporation of
vector-based statistics during the registration process also boosts statistical power in the TBM statistical analysis, although all methods give largely consistent
results.
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Fig. 10. Top panel: Maps of heritability coefficients (which show the degree to which brain structure depends on individual genetic differences) are computed
from the maps of intraclass correlations for both MZ and DZ groups (see IV-E). From left to right: non-statistical, vector statistics, tensor statistics, vector
and tensor statistics algorithms and Traditional Fluid algorithm. Blue colors indicate regions where no genetic influences are detected h2 = 0 whereas red
colors indicate a relatively high heritability, h2 = 0.75. Top panel: Anatomical view of the template brain (target used in the non-fluid registration). A, B
and C show the slices presented in all the panels in Figure 5 and Figures 8 to 10, from the top row to the bottom row. Black circles show the main regions
of differences across all the registration methods. Again, incorporation of vector-based statistics during the registration process also boosts statistical power
in the TBM statistical analysis, although all methods give largely consistent results.

Fig. 11. Cumulative distribution functions are shown for the observed p-values in 3D for the MZ group intraclass correlation, versus the corresponding
p-value under the null hypothesis for the non-statistical (magenta line), vector-based (black line), tensor-based (yellow line), and joint vector- plus tensor-based
(dark blue line) statistical versions of the algorithm. The light blue color line represents the traditional fluid. Note that the dark blue line is on top of the
black line, and shows that using vector statistics, or both vector and tensor statistics improves the effect sizes. This was confirmed by the computation of the
areas under the curve (A). The green dotted line shows the expected distribution of p-values under the null hypothesis (here, the null hypothesis would be
that members of MZ twin pairs would show no statistical similarity in brain structure). The detection power is higher in all versions of SAFIRA compared to
the traditional fluid but appears to be slightly depleted by the addition of a prior on deformation matrices (tensors) in the registration process (yellow line).
However, it is greatly improved by the addition of prior information on deformation fields (black and blue lines). This type of CDF plot is fundamental to
tensor-based morphometry analyses that use the false discovery rate method as a criterion to decide whether the overall pattern of findings in a statistical map
is significant, after multiple comparisons correction. As such, steeper plots are generally the ones that can be thresholded in such as way as to control the
false discovery rate in the supra-threshold set, and would therefore be regarded as significant in a voxel-based brain mapping study.

Fig. 12. Plot showing the distances between subjects’ corpus callosum outlines, for the distance-algorithm combinations highlighted in red in Table I. From
left to right: dq1 and Vector and tensor-based statistics version - dq1 and vector-based statistics version - ds1 and non-statistical version. Each integer on the
x-axis corresponds to a twin subject. The blue filled circles represent the distance between two members of a twin pair, whereas the other colored circles
represent the distance between one twin and the rest of the subset (i.e., other subjects unrelated to that twin). In general, members of a twin pair are less
distant from each other than they are from the other subjects, which is in line with the notion that anatomy is highly heritable. In addition to the measures
for volume quantification, these plots show that the registration methods produce distance metrics between anatomies that are sensitive to known biological
information, such as the high heritability of brain structure in human populations.

dq1 dq2 ds1 ds2

(0) ICC 0.61 0 0.56 0.07
p-value 0.002 1 0.036 0.34

(1) ICC 0.77 0.42 0.46 0.17
p-value 0.0002 0.02 0.011 0.22

(2) ICC 0.50 0 0.14 0.10
p-value 0.009 1 0.24 0.29

(3) ICC 0.76 0.27 0.08 0
p-value 0.0001 0.09 0.30 1

TABLE I
INTRACLASS CORRELATION AND ITS SIGNIFICANCE (p-VALUE)

COMPUTED FROM THE FOUR DISTANCES dq1 , dq2 , ds1 AND ds2 (SEE
PARAGRAPH IV-F) APPLIED TO THE CORPUS CALLOSUM FOR EACH
ALGORITHM. (0) NON STATISTICAL VERSION - (1) VECTOR-BASED

STATISTICS VERSION - (2) TENSOR-BASED STATISTICS VERSION - (3)
VECTOR AND TENSOR STATISTICS VERSION. THE MORE SIGNIFICANT

RESULTS ARE SHOWN IN RED. IN PARTICULAR, dq1 AND dq2 FAVORS THE
VECTOR-BASED VERSIONS WHILE ds1 IS A BETTER FIT FOR THE

NON-STATISTICAL TECHNIQUE. OVERALL, THE BEST APPROACH FOR ALL
THE DISTANCES IS THE REGISTRATION METHOD USING VECTOR-BASED

STATISTICS ONLY.


