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Geometric Variability of the Scoliotic Spine Using
Statistics on Articulated Shape Models

Jonathan Boisvert, Farida Cheriet, Xavier Pennec, Hubert Labelle, Nicholas Ayache

Abstract— This paper introduces a method to analyze the
variability of the spine shape and of the spine shape deformations
using articulated shape models. The spine shape was expressed
as a vector of relative poses between local coordinate systems
of neighbouring vertebrae. Spine shape deformations were then
modeled by a vector of rigid transformations that transforms
one spine shape into another. Because rigid transforms do not
naturally belong to a vector space, conventional mean and
covariance could not be applied. The Fréchet mean and a
generalized covariance were used instead. The spine shapes of a
group of 295 scoliotic patients were quantitatively analyzed as
well as the spine shape deformations associated with the Cotrel-
Dubousset corrective surgery (33 patients), the Boston brace
(39 patients) and the scoliosis progression without treatment
(26 patients). The variability of inter-vertebral poses was found
to be inhomogeneous (lumbar vertebrae were more variable
than the thoracic ones) and anisotropic (with maximal rotational
variability around the coronal axis and maximal translational
variability along the axial direction). Finally, brace and surgery
were found to have a significant effect on the Fréchet mean and
on the generalized covariance in specific spine regions where
treatments modified the spine shape.

Index Terms— Statistical Shape Analysis, Anatomical Variabil-
ity, Rigid Transforms, Spine, Radiograph, Orthopaedic Treat-
ment, Scoliosis

I. INTRODUCTION

Adolescent idiopathic scoliosis is a disease that causes a
three dimensional deformation of the spine. As suggested
by its name, the cause of the pathology remains unknown.
Furthermore, the shape of a scoliotic spine varies greatly
from a patient to another. Previous statistical studies (such
as [1]–[4]) investigated the outcome of different treatments in
term of the variation of clinical indices used by physicians
to quantity the severity of the deformation. However, the
variability of the spine geometry was not extensively studied.
Two important reasons explain the limited number of studies
interested in the geometric variability of the scoliotic spine: the
availability of significant data and the lack of statistical tools
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Fig. 1. Some examples of scoliotic spine shapes from our patient database

to handle geometric primitives that are not naturally embedded
in vector spaces. In the past, the vast majority of the studies
analyzed the geometry of the spine using indices derived
from the patient’s radiographs or from 3D reconstructions
of his/her spine. Those indices were used to classify the
spines’ curves [5]–[8] and also to compare the outcome of
different orthopaedic treatments [1]–[4], [9]. The most popular
index is certainly the Cobb angle [10], but there are several
other indices such as the orientation of the plane of maximal
deformity or the spine torsion [11]. Those indices have the
advantage of enabling physicians to assess quickly and easily
the severity of the scoliosis. However, they also present many
problems. First of all, most clinical indices are global to the
whole spine and thus do not provide spatial insight about the
local geometry. Furthermore, most of the indices (including
the Cobb angle) are computed on 2D projections, where a
significant part of the curvature could be hidden (since the
deformity is three–dimensional).

To overcome those limitations, some authors investigated
the scoliotic spine geometry or the effect of orthopaedic treat-
ments by measuring the position and orientation of vertebrae.
Those descriptors provide insights that are both local and
geometric. Ghanem et al. [12] proposed a method to compute
vertebrae translation and orientation during a surgery using
an opto-electronic device. Unfortunately, it was a preliminary
study and measures were only performed on a group of
eight patients. Furthermore, translation and orientation were
computed just for the vertebrae adjacent to the apex of the
curvature.

Sawatzky et al. [13] performed a similar study, but their
goal was to find a relation between the number of hooks
installed during a corrective surgery and the position and
orientation of the vertebrae. This study was performed on a
larger group of patients (32), which allowed the computation
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of more advanced statistics. However, only the results for the
apical vertebra were reported in their article.

More recently, Petit et al. [14] compared inter–vertebral
displacements in term of modifications of the center of rotation
for two types of instrumentation used during corrective surg-
eries (Colorado and Cotrel-Dubousset). The patient sample
used was larger than for previously cited studies (82 patients),
which made statistically significant more subtle differences
between the two groups of patients. Furthermore, results for
all vertebrae were reported (not only vertebrae adjacent to the
curve apex). However, the authors did not study extensively
the variability of the displacement of the center of rotation or
of the vertebrae rotations.

One of the common limitations of those studies is that
only mean values of the modifications of the positions or of
the orientations of the vertebrae were extensively studied. An
analysis of the mean spine shape using both orientations and
positions of the vertebrae was never published. Furthermore,
the variability of the spine anatomy was not studied in that
context either.

Unlike surgical treatments, braces effects were never anal-
ysed using the relative positions and orientations of the verte-
brae. Usually, braces effects were analyzed primarily by mea-
suring the Cobb angle (which is only a two–dimensional mea-
sure) of the major curve in the frontal plane [15], [16]. Some
studies tried to take into account the three–dimensional nature
of spine deformity by measuring the curve gravity in both the
frontal and the sagittal plane [17]. However, repeating a 2D
analysis twice is not a substitute for a true three-dimensional
analysis. Finally, three-dimensional analysis of the brace effect
was also conducted [18] by using a set of clinical indices
extracted from three-dimensional reconstructions of the spine.
However, those clinical indices were not independent, which
made effect localization and analysis difficult. Moreover, brace
effect variability itself was not studied.

To overcome all these limitations, we propose to study the
statistical variability of the spine shape and of the spine shape
deformation using local features that describe both the position
and the orientation of the vertebrae (i.e. rigid transformations).
However, mathematical and computational tools need to be de-
veloped because conventional statistical methods usually apply
under the assumption that the embedding space is a vector
space where addition and scalar multiplication are defined.
Unfortunately, this is not the case for rigid transformations.
For example, the conventional mean is not applicable to rigid
transformations since it would involve the addition of the
measures followed by a division by the sample size.

Recently, many researchers have been working towards the
generalization of mathematical tools on Lie groups and Rie-
mannian manifolds. A general framework for the development
of probabilistic and statistical tools on Riemannian manifolds
was recently proposed [19], [20]. Riemannian manifolds are
more general than Lie Groups, thus findings realised on
Riemannian manifolds also apply to Lie groups (and to rigid
transformations by extension). Concepts such as the mean,
covariance and normal distribution have been formalized for
Riemannian manifolds. Many studies were realized more
specifically for the tensors space, because of the develop-

ment of Diffusion Tensor Imaging (for example: [21]–[25]
and references therein). The idea of computing statistics on
manifolds was also used to perform anatomical shape analysis.
For example, this idea can be found in our previous work [26]
where an analysis of the spine shape anatomy based on Lie
groups properties was proposed and in the work of Fletcher et
al. [27] where a generalization of the PCA was introduced and
applied to the analysis of medial axis representations of the
hippocampus. However, a Riemannian approach to the study
of articulated models of the spine shape was never used.

To our knowledge, no previous work reported a variability
analysis of the scoliotic spine shape and of the scoliotic spine
shape deformations using rigid transformations as geometric
descriptors. In that context, the contributions of this paper are:
to introduce a new model of the variability of spine shapes and
of spine shape deformations based on well posed statistics on
a suitable articulated shape model, to suggest a method to
compare the variability between different groups of patients,
to propose a 3D visualization method of this variability and,
last but not least, to present the resulting variability models
computed using large groups of scoliotic patients.

II. MATERIAL AND METHODS

This section presents the material and methods used to
construct and analyze variability models of the spine shape.
We will first describe the method used to create articulated
models representing the spine from pairs of radiographs. The
procedure used to create variability models from samples of
articulated spine shapes will then be presented. Since our
articulated shape models do not naturally belong to a vector
space, conventional statistical methods could not be applied.
However, it is still possible to define distances between artic-
ulated shape models. Therefore, some statistical notions had
to be generalized based on the concept of distance between
primitives. Riemannian geometry offers a good framework
for this purpose. Thus, centrality and dispersion measures
applied to Riemannian manifolds and their specialization to
articulated models will be introduced. Finally, the visualization
and the quantitative comparison of variability models built
from articulated spine shapes will be discussed.

A. Articulated Shape Models of the Spine from Multiple Ra-
diographs

Multi-planar radiography is a simple technique where two
(or more) calibrated radiographs of a patient are taken to com-
pute the 3D position of anatomical landmarks using a stereo-
triangulation algorithm. It is one of the few imaging modalities
that can be used to infer the three-dimensional anatomy of
the spine when the patient is standing up. Furthermore, bi-
planar radiography of scoliotic patients is routinely performed
at Sainte-Justine hospital (Montreal, Canada). Thus, a large
amount of data is available for analysis.

In the case of bi-planar radiography of the spine, six
anatomical landmarks are identified on each vertebra from
T1 (first thoracic vertebra) to L5 (last lumbar vertebra) on a
posterior-anterior and a lateral radiograph. The 3D coordinates
of the landmarks are then computed and the deformation of
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a high-resolution template using dual kriging yields 16 addi-
tional reconstructed landmarks. The accuracy of this method
was previously established to 2.6 mm [28].

Once the landmarks are reconstructed in 3D, we rigidly
registered registered each vertebrae to its first upper neighbour
and the resulting rigid transforms were recorded. By doing
so, the spine is represented by a vector of inter-vertebral
rigid transformations S = [T1, T2, . . . , TN ] (see Fig. 2).
This representation is especially well adapted to an analysis
of the anatomical variability since the inter-vertebral rigid
transformations describe the state of the physical links that are
modified by the pathology and alter the shape of the whole
spine.

Most scoliotic patients are adolescents or pre-adolescents.
Thus, spine length of patients afflicted by scoliosis varies
considerably. In order to factor out that variability source from
the statistical analysis, one could be tempted to normalize
the articulated models. On the one hand, this could be de-
sirable since the global spine size is associated primarily with
patients’ growth and most physicians are more interested in
analyzing the variability linked to the pathology. On the other
hand, the development of many musculoskeletal pathologies,
for instance adolescent idiopathic scoliosis, is tightly linked
with the patient growth process. Thus, normalization could
discard valuable information. Furthermore, preliminary exper-
iments revealed that, with scoliotic patients, the only notable
effect of normalization was found along the axial direction
where the translational variability was almost eliminated (a
reduction ranging from 3.0 mm2 in the thoracic region to 8
mm2 in the lumbar region). In summary, normalization could
be desirable in certain situations, but it did not led to more
probative results in our application. Thus, to preserve the clear
physical interpretation of the variability models we chose not
to normalize the articulated spine models.

The vector S enables a local analysis of the links between
the vertebrae. However, it is sometimes preferable to analyze
the spine shape using absolute instead of relative transfor-
mations. For example, posture analysis is simpler when one
uses absolute transformations. However, it is easy to convert
S into an absolute representation Sabsolute using recursive
compositions (where ◦ is the operator of composition).

Sabsolute = [T1, T1 ◦ T2, . . . , T1 ◦ T2 ◦ . . . ◦ TN ] (1)

The transformations are then expressed in the local coordi-
nate system of the lowest vertebra. The choice of this reference
coordinate system is arbitrary, but it can be changed easily
based on the application needs.

To study spine shape deformations caused by the progres-
sion of the pathology or by a treatment, we need to compute
the “differences” between shape models. This can be realised
once again using a vector of rigid transformations. Let S =
[T1, T2, . . . , TN ] and S′ = [T ′

1, T
′
2, . . . , T

′
N ] be two vectors of

rigid transformations extracted from two different radiological
exams of the same patient (before and after a surgery, for
instance), then another vector of rigid transformations can
be defined with the transformations that turn the elements
of S into the corresponding elements of S′ (see Fig. 2).

WorldVertebra #1Vertebra #2Vertebra #3 ...
T0 T1T2

World
...

T0'T1'T2'
∆T0 =T0' ο T0-1 ∆T1 =T1' ο T1-1∆T2 =T2' οT2-1

Fig. 2. Spine shape and spine shape deformation expressed using rigid
transformations

The resulting vector ∆S will only depend on the difference
between the two 3D spine geometries and not on the anatomy
of the patient.

∆S = [∆T1,∆T2, . . . ∆TN ] with ∆Ti = T ′
i ◦ T−1

i (2)

Since this vector is still a vector of rigid transformations
the analysis performed on S could also be performed on ∆S
to study spine shape modifications.

B. Statistics on Rigid Transforms and Articulated Models

The articulated shape models that are constructed from
stereo-radiographs are vectors of rigid transformations and
there is no addition or scalar multiplication defined between
them. Therefore, conventional statistics do not apply. However,
rigid transformations belong to a Riemannian manifold and
Riemannian geometry concepts can be efficiently applied to
generalize statistical notions to articulated shape models of
the spine.

To use a Riemannian framework, we need to define a
suitable distance and to find the structure of the geodesics
on the manifold. To achieve this task, we introduce two
representations of rigid transformations.

First, a rigid transform is the combination of a rotation R
and a translation t. The action of a rigid transform on a point
is usually written as y = Rx+t where R ∈ SO3 and x, y, t ∈
<3. Thus, a simple representation of a rigid transform would
be T = {R, t}. Using this representation composition and
inversion operations have simple forms (respectively, T1◦T2 =
{R1R2, R1t2 + t1} and T−1 = {RT ,−RT t}).

Another way to represent a rigid transformation is to use
a rotation vector instead of the rotation matrix. The rotation
vector representation is based on the fact that a 3D rotation can
be fully described by an axis of rotation supported by a unit
vector n and an angle of rotation θ. The rotation vector r is
defined as the product of n and θ. So we have a representation
~T = {r, t} = {θn, t}.

The conversion between the two representations is simple
since the rotation vector can be converted into a rotation matrix
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using Rodrigues’ formula (numerical implementation details
can be found in [29]):

R = I + sin(θ).S(n) + (1− cos(θ)).S2(n) (3)

where S(n) =

 0 −nz ny

nz 0 −nx

−ny nx 0


And the inverse map (from a rotation matrix to a rotation

vector) is given by the following equations:

θ = arccos(
Tr(R)− 1

2
) and S(n) =

R−RT

2 sin(θ)
(4)

A left-invariant distance (d(T1, T2) = d(T3 ◦ T1, T3 ◦ T2))
between two rigid transforms can easily be defined from the
rotation vector representation:

d( ~T1, ~T2) = Nλ( ~T2
−1

◦ ~T1) (5)

with : Nλ(~T )2 = Nλ({r, t})2 = ‖r‖2 + ‖λt‖2

The parameter λ is a real number that controls the relative
weight of the translation and rotation in the computation of
the distance. Because the rotation vector and the translation
do not have the same units it can also be understood as a unit
conversion constant. Preliminary experiments showed that our
results are not sensitive the exact value of λ (values ranging
from 0.01 to 1 were assessed). Thus, unless otherwise noted,
λ was set to 0.05 since this value leads to approximatively
equal contributions of the rotation and the translation to the
variance.

To use the Riemannian machinery described in [20], the ex-
ponential map Expx and the logarithmic map Logx associated
with the distance presented at Equation 5 are also needed.
Those two maps connect the manifold itself and its tangent
spaces. They can be understood as the folding (Expx) and
unfolding (Logx) operations that connect the tangent space at
x to the manifold. More formal definitions of those two maps
based on a Riemannian metric can be found in the Appendix.

In the general case, one would have to solve a system
of partial differential equations (see Equation 14 in the Ap-
pendix). However, in our case, there is no interaction between
the translational and rotational part of the rigid transformation
involved in the computation of the norm (more formally, the
local representation of the metric is a block diagonal matrix
formed by the local representation of the metric on rotations
and the local representation of the metric on translations).
Therefore, the geodesics for this distance are the Cartesian
product of the geodesics of the rotation and translation parts
of the rigid transforms.

The geodesics of the translational part are simply straight
lines since translation belongs to a vector space. The rotational
part is slightly more complex. However, because the selected
distance between the rotations is left and right invariant, their
Exp and Log maps correspond to the conversion between a
rotation matrix and the corresponding rotation vector and,
thanks to the Rodrigues’ Formula 3, these computations can
be done very efficiently.

Moreover, Expx(~T ) = ExpId(~x
−1 ◦ ~T ) and Logx(T ) =

LogId(x
−1 ◦ T ) since the distance of Equation 5 is left-

invariant. Finally, ExpId and LogId are the conversions be-
tween the rotation vector and the rotation matrix combined
with a scaled version of the translation vector.

ExpId(~T ) =
R(r)
t

and LogId(T ) =
r(R)
λt

(6)

1) Centrality: The next step to build a variability model is
to define a centrality measure. Because scalar multiplication
and addition are not defined on rigid transformations, the
conventional mean cannot be used. A generalization of the
mean that can be applied to Riemannian manifolds is thus
needed.

It can be observed that the conventional mean (defined
on vector spaces) minimizes the Euclidian distance of the
measures with the mean. Thus, when given a distance, a
generalization of the usual mean can be obtained by defining
the mean as the element µ of a manifold M that minimizes
the sum of the distances with a set of elements x0...N of the
same manifold M.

µ = arg min
x∈M

N∑
i=0

d(x, xi)2 (7)

This generalization of the mean, called the Fréchet mean
[30], is equivalent to the conventional mean for vector spaces
with a Euclidian distance. However, when it is applied to
more general Riemannian manifolds, the mean is no longer
guaranteed to be unique. Indeed, the mean is the result of
a minimisation; therefore more than one minimum can exist.
However, Kendall [31] showed that the Fréchet mean exist and
is unique if the data is sufficiently localized.

The computation of the Fréchet mean directly from the
definition is difficult because of the presence of a minimization
operator. Hopefully, a simple gradient descent procedure can
be used to compute the mean [19]. This procedure is summa-
rized by the following recurrent equation:

µn+1 = Expµn
(

1
N

N∑
i=0

Logµn
(xi)) (8)

The equation is guaranteed to converge. Moreover, in prac-
tice it converges rather quickly (for instance convergence
is generally obtained in less than five iterations for rigid
transformations).

To use Equation 8 one has to initialize the mean to start
the procedure. The initial value can be one of the point of the
set in which the mean is to be computed. Furthermore, more
than one starting point can be tried to test the uniqueness of
the mean and escape local minimums.

2) Dispersion: In addition to the centrality measure given
by the Fréchet mean, a dispersion measure is also needed to
perform most tasks of practical interest. Since the mean is
computed based on the minimisation of the distance between
a set of primitives and the mean, then the variance can be
defined as the expectation of that distance.
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σ2 = E
[
d(µ, x)2

]
=

1
N

N∑
i=0

d(µ, xi)2 (9)

A directional dispersion measure would also be needed in
most cases, because the anatomical variability is expected to be
greater in some directions. The covariance is usually defined
as the expectation of the matricial product of the vectors from
the mean to the elements on which the covariance is computed.
Thus, a similar definition for Riemannian manifolds would be
to compute the expectation in the tangent space of the mean
using the Log map:

Σ = E
[
Logµ(x)T Logµ(x)

]
=

1
N

N∑
i=0

Logµ(xi)T Logµ(xi) (10)

This generalized covariance computed in the tangent space
of the mean and the associated variance are connected since
Tr(Σ) = σ2, which is also the case for the usual vector space
definitions.

3) Extrinsic Approximations: The Riemannian approach
enables a statistical analysis that is intrinsic to the manifold.
Furthermore, it provides a rationale to the choice of algorithms
and representations used to work on rigid transformations.
However, it also leads to an iterative scheme to compute
the mean, while ad hoc but computationally more efficient
methods to average 3D rotations also exist.

These methods are based on the computation of the mean
of an extrinsic representation of 3D rotations. The two most
frequently used are the computation of the mean rotation
matrix (followed by an SVD renormalization) and of the
mean unit quaternion. Theoretically, those methods do not
lead to the same result and are not stable with respect to
a reference frame shift. Nevertheless, simulation experiments
were performed for those two extrinsic methods by Eggert
et al. [32] in a registration context and by Gramkow [33] to
compare the intrinsic mean and those two extrinsic methods.
These simulations showed that the results were similar when
the standard deviation of rotations was less than 40 degrees.
Therefore, if speed is a concern and only small differences
of orientation are expected for a given application, then one
would be justified to approximate the Fréchet mean by a more
computationally efficient approximation.

C. Visualization of the Statistical Models of the Spine

The mean spine shape model is easily visualized by re-
constructing a 3D spine model with standard surface models
of vertebrae separated by the associated mean inter-vertebral
transforms. However, the mean spine shape deformations are
small and a direct visualisation of those would be difficult.
Therefore, the mean spine shape deformations are visualized
by reconstructing a mean model before and after deformation.

The generalized covariance matrix associated with a single
rigid transform is a six by six matrix. Thus, an intuitive visu-
alization of the whole covariance matrix is difficult. However,
the upper left and lower right quarters of this matrix are three

by three tensors and can easily be visualized in 3D using
an ellipsoid. The principal axes of these ellipsoids are the
eigenvectors scaled by the corresponding eigenvalues. The
extent of the first ellipsoid (associated with the rotation) in
a given direction is the angular variability around that axis
and the extent of the second ellipsoid (associated with the
translation) in a given direction is the translational variability
along that direction.

Because, the first tensor is the covariance of the rotation
and the second tensor is the covariance of the translation this
visualisation is quite intuitive and can be understood by people
without strong mathematical backgrounds. The drawback of
this visualisation is that the coupling between the rotation
and the translation is lost during the visualisation process.
However, preliminary tests indicated that, for the specific case
of the spine anatomy and treatment modelling, the amount of
variance explained by this coupling is small compared to those
of the rotation and of the translation.

D. Comparing Statistical Models of the Effect of Orthopaedic
Treatments

In addition to the qualitative visualisation of the variability
models, it would be very interesting to compare two sets of
rigid transformations used to model the spine shape deforma-
tions in order to locate significant “differences”.

It could be observed that, unlike inter-vertebral transfor-
mations, the rigid transformations associated with the effect
of orthopaedic treatments are usually small so the manifold
locally looks like a vector space. This observation enables us
to approximate hypothesis tests on rigid transforms modelling
spine shape deformations with hypothesis tests developed for
vector spaces. More formally, it was shown that a normal
distribution on a Riemannian manifold could be approximated
by a vector space normal distribution if the Ricci curvature
matrix is small compared to the inverse of the covariance [20].

The T 2 test and the Box’s M test are commonly used to
compare the mean and the covariance of multivariate datasets
[34]. Those two tests operate under the assumption that both
datasets have normal distributions. Therefore, if one finds a
tangent space where both datasets can be approximated by
a normal distribution, then it is justified to use those tests.
For that purpose, we performed the T 2 and M tests in the
tangent space of the Fréchet of the union of both datasets.
There is no guarantee that it is the best tangent space to obtain
normal distributions and other choices may be justifiable in
other applications. However, this tangent space is a good
compromise since it minimises the non-linearities associated
with large rotations in both sets. The normality assumption
was tested using Lilliefors tests [35] with a significance level
of 5%. Moreover, hypothesis tests based on the T 2 statistic
often assume that the covariance matrices of the two samples
are equal, which is not always true in our experiments. The
T 2 test described by Nel and Van der Merwe [36] was thus
selected since it is not based on that assumption.

The use of non-parametric tests on distances between the
primitives, like this was done by Terriberry et al. [37] on
medial axis representations of the lateral ventricles, could
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have been a possible alternative to the T 2 test. However,
the statistical power of non-parametric tests based solely on
distances is generally inferior, therefore parametric tests were
preferred.

The variance of the treatment effect is also relevant to
analyze because it is expected to be greater than the one
of the motion observed between two reconstructions without
treatment (if the treatment is efficient). A one-sided test on the
variances was thus performed by applying a rank sum test [35]
to the squared norm of the rigid transformations expressed in
the tangent space of the mean.

In addition to testing for differences between the mean,
covariance and variance, it would also be interesting to test if
post-treatment groups are on average closer to the mean of a
group of healthier patients than pre-treatment groups. It would
be unethical to expose healthy subjects without therapeutic
reasons to ionizing radiation in order to build a healthy
spine model. Thus, it was decided to compare pre-treatment
and post-treatment groups with the mean spine shape of an
healthier group of patients. This healthier group was composed
of patients that were diagnosed with very mild scoliosis (Cobb
angle [10] of less than 30 degrees) and did not receive
any treatment. These patients had a radiographic examination
prescribed for diagnostic purposes; therefore no additional
radiation exposure was needed. The distance between the mean
spine model of this group and another articulated model could
be regarded as a distance to normality. The distance used is
the one described in equation 5 with λ = 0.005 (to limit the
bias introduced by having patient samples with different age
distributions). This distance to normality was then computed
on pre-treatment and post-treatment reconstructions of patients
that received either a Boston brace or a Cotrel-Dubousset in-
strumentation. The differences between pre and post treatment
groups was then tested for statistical significance using a sign
test [35] which can cope with the unknown but asymmetrical
distribution of the differences.

A relatively large number of hypothesis tests were per-
formed in this study, thus false positives could become a
problem and needs to be controlled. The most common
method to control false positives is to control the family
wise error rate (FWER), which is the probability of having
one or more false positives among all the tested hypotheses
(see Shaffer [38] for a review of many methods to control
the FWER). However, the FWER offers an extremely strict
criterion, which is not always appropriate and results in a
drastic reduction of the statistical power of individual tests.
Benjamini and Hochberg [39] proposed an alternative to the
control of the FWER where one controls the accumulation
of false positives relative to the number of significant tests.
However, the original method of Benjamini and Hochberg did
not take into account that an unknown proportion of the tests
can be expected to be significant, which is our case since
orthopedic treatments are expected to have an effect on the
spine shape. Furthermore, their method assumes that all tests
are independent, which might not be true in this case if the
orthopedic treatments altered the patients’ standing posture.
Fernando et al. [40] recently proposed a method to control the
proportion of false positives (PFP) which does not depend on

the correlation structure between the tests and that takes into
account the proportion of true null hypothesis out of all the
tested hypothesis. The numerical values of the PFP will let us
determine if the significance levels chosen are stringent enough
with respect to our tolerance to false positives. The PFP for
a significance level α can be computed using the following
equation:

ˆPFPα =
αkp̂0

Rα
(11)

where k denotes the number of tests performed, Rα the
number of null hypothesis rejected for a level of significance
α and p̂0 the estimated proportion of true null hypothesis.
The value of k, α and Rα are readily available and p̂0 was
estimated based on the distribution of the p-values using the
method described in Mosig et al. [41].

III. RESULTS

The methodology described in the previous sections was
applied to four groups of scoliotic patients of the Montreal’s
Sainte–Justine Hospital. The selection of the patients included
in these groups was based on the availability of the radiographs
needed to compute 3D reconstructions of the spine. The main
characteristics of these groups are the following:

I) A group of 295 scoliotic patients who had biplanar
radiographs at least once.

II) A group of 39 patients who had biplanar radiographs
while wearing a Boston brace and without it on the same
day.

III) A group of 33 patients that had a Cotrel–Dubousset
corrective instrumentation surgically installed and had
biplanar radiographs taken before and after the surgery
(with less than 6 months between the two examinations).

IV) A group of 26 untreated scoliotic patients who had
biplanar radiographs two times within 6 months.

A. Geometric Variability of the Scoliotic Spine Anatomy

A variability model of the scoliotic spine shape anatomy
was computed using the group I. The mean spine shape and
the variability based on relative transformations are illustrated
in Fig. 3, where it can be observed that the mean shape has
curvatures in the lateral and frontal plane. The curvatures in
the lateral plane correspond to healthy kyphosis and lordosis,
but the light curve in the frontal plane is not part of the
normal anatomy of the spine and is caused by scoliosis.
It is also interesting to note that the curve is on the right
side because there is more right thoracic curves than left
thoracic curves among scoliotic patients. The variability is
also inhomogeneous (it varies from a vertebra to another)
and anisotropic (stronger variability in some directions). The
strongest translational variability is found along the axial
direction and one can also observe from Fig. 3 that the
main extension of the rotation vector covariance ellipsoid is
along the anterior-posterior axis, which indicates that the main
rotation variability is around this axis (as it could be expected
for scoliosis).
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Fig. 3. Statistical model of the inter-vertebral poses for group I. From left
to right: mean spine model, rotation and translation covariance. Top: frontal
view. Bottom: sagittal view.

Complementary information can also be extracted from a
model based on absolute positions and orientations of the
vertebrae, as illustrated in Fig. 4 (with the reference coordinate
system fixed to the lowest vertebrae). As it was expected, the
mean of this second model is very similar to the mean of
the model based on the relative positions and orientations.
However, the variabilities are greater, which is normal since
the vertebrae on top are farther away from the reference frame.
Furthermore, the relative contributions to the global variability
of the translational variability in the coronal direction and
of the rotational variability in the sagittal direction are more
important. One could also notice that the rotational variability
is maximal in the middle of the spine (around T10) and not
on the top, which might be the result of patients’ tendency to
keep their head and shoulders straight during the radiological
examination.

B. Geometric Variability of the Spine Shape Deformations

In addition to the analysis of the spine anatomy, the method
described in this document can also be used to analyze
deformations of the spine (for example, the deformations
associated with the outcome of orthopaedic treatments) . To
do so, one could compare the spine shape models computed
for all subjects before and after the deformation (before and
after treatment). However, inter-patient variability would hide
the variability that is intrinsic to the deformation process.
To reduce the effect of the inter-patient variability, the de-

L4
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T10
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T4

T1

L4

L1

T10

T7

T4

T1

Fig. 4. Statistical model of the absolute vertebral poses for group I (with
reference frame at L5). From left to right: mean spine model, rotation and
translation covariance. Top: frontal view. Bottom: sagittal view.

formation is defined as a vector of rigid transformations that
transforms the spine shape before into the spine shape after
deformation for a given patient (see Fig. 2 and Equation 2).
Then, a statistical analysis of these rigid transformations is
performed on each patients group. Two treatments (the Boston
brace and the Cotrel–Dubousset instrumentation) and a control
group (untreated patients) were analyzed that way.

1) Boston Brace: The Boston brace is a treatment that is
prescribed for patients with mild to moderate scoliosis. In
order to validate the brace design and adjustment, biplanar
radiographs of the patients are taken with and without brace.
We thus used those radiographs to construct a statistical model
of the spine shape deformations associated with the brace
without exposing the patients to additional doses of radiation.
This model is illustrated by Fig. 5. It could be observed
from this model that the variability of the Boston brace effect
is more important in the lower part of the thoracic spine
(approximately from T7 to L1, with a maximum at T11).
Moreover, the mean curve in frontal view seems to be reduced
by the treatment. However, the healthy kyphosis and lordosis
found in the sagittal view are also reduced which is not a
desirable effect (from a medical perspective).

2) Cotrel-Dubousset Surgery: The surgical treatment that
was used is the installation of a Cotrel–Dubousset instrumen-
tation. Other types of instrumentations also exist, however the
Cotrel–Dubousset type is the most common in North America
and is the type of surgery for which the highest number of
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Fig. 5. Statistical model of the spine shape deformations associated with the
Boston brace. From left to right: mean shape prior treatment, mean shape with
the brace, rotation and translation covariance of the spine shape deformations.
Top: Frontal view. Bottom: sagittal view

cases were available. The variability model of the effect of
the Cotrel-Dubousset surgery is illustrated at Fig. 6. It comes
with no surprise that the variability of the treatment effect
is greater for the Cotrel-Dubousset surgery than it is for the
brace, since the surgery is a more invasive treatment that is
reserved for severe cases. Furthermore, it is interesting to note
that the variability reaches its maximum at T12, two vertebrae
lower than for the Boston brace. Unlike the Boston brace, the
Cotrel-Dubousset treatment preserved the mean curves in the
sagittal view.

3) Untreated Patients: The spine shape deformation model
computed for the Boston brace and the Cotrel-Dubousset
surgery were influenced by variability sources other than the
treatment itself such as patient posture, growth stage and 3D
reconstruction error. To assess the relative importance of those
sources of variability a group of 26 untreated patients, whom
had two biplanar radiographs examinations with at most six
months between them, were used to analyze the deformation
progression without treatment. The results are illustrated in
Fig. 7. The variability for L5 → L4 was removed from Fig. 7
because it was corrupted by an artifact of the 3D reconstruction
process. As it was expected, the mean spine shapes for the
two examinations are very similar and the variability of the
spine shape deformation appears to be much smaller than the
ones associated with the Boston brace or the Cotrel-Dubousset
surgery.

4) Comparison of the Effect of Treatments between Groups:
The presence of a group of untreated patients enables us to
test for significant effect of a treatment on our centrality and
dispersion measure (respectively the Fréchet mean and the
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Fig. 6. Statistical model of the spine shape deformations associated with
the Cotrel-Dubousset instrumentation. From left to right: mean shape before
surgery, mean shape after surgery, rotation and translation covariance of the
spine shape deformations. Top: Frontal view. Bottom: sagittal view
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Fig. 7. Statistical model of scoliosis progression without treatment. From left
to right: mean shape at the first examination, mean shape at the second exam-
ination, rotation and translation covariance of the spine shape deformations.
Top: Frontal view. Bottom: sagittal view
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generalized covariance).
Since the variances are small and the means are near zero,

the non-linearities linked to the manifold curvature are small,
so the Hotelling’s T 2 test and Box’s M test were used to test
for significant differences between the untreated group and the
two other groups (the null hypothesis being that they are not
different). The results are reported in table I where p-values
lower than 0.01 are marked with a star (“*”), p-values lower
than 0.001 are marked with a two stars and p-values lower
than 0.0001 are marked with a three stars.

The table I shows that the Boston brace has a significant
effect on the mean shape and on the variability for two
different regions of the spine, respectively from T1 to T6
and from T8 to T12. The Cotrel-Dubousset surgery appeared
to have a very sparse effect on the mean shape, however it
has a significant effect on the variability of the spine shape
deformation for all studied vertebral levels.

Table II presents the difference between the distance to
normality before receiving a treatment and after receiving the
treatment. The table II also introduces the significance of this
distance reduction (p-value computed from a one-sided sign
test). The total row is computed by considering the summation
of the distances for all inter-vertebral levels. The reduction
of the distance to normality range from 3% to 34% for the
Cotrel-Dubousset instrumentation and from -12 % to 11 % for
the Boston brace. This table seems to indicate that a Cotrel-
Dubousset instrumentation deforms the spine of the patients
toward the mean shape of the healthier group. However, this
reduction is not significant for many inter-vertebral levels. In
the case of the Boston brace no significant reduction was
found.

The PFP numerical values (Eq. 11) for significance level
of 0.01, 0.001 and 0.0001 (the three significance levels used
in this study) computed from all tests results presented are
respectively of 0.00167, 0.000257 and 0.0000423. This means
that a significance level of 0.01 on individual tests will lead
on average (if we were to repeat this study many times) to 1
false positive for every 600 rejected null hypothesis.

C. Quantification of the Reconstruction Error

The anatomical landmarks reconstruction error induces vari-
ability on inter-vertebral transforms. However, we are inter-
ested in the variability that is intrinsic to the patients. Thus,
we ran computer simulations to assess the relative effect of
reconstruction error on the computed variability.

The 3D reconstruction method used to compute the 3D
coordinates of the anatomical landmarks was previously val-
idated and the mean error on the landmarks reconstruction
was evaluated to 2.6 mm [28]. So, we simulated virtual spine
models with mean reconstruction errors from 0.25 mm to 5
mm and we computed the variabilities of the corresponding
spine shapes and spine shape deformations models.

The augmentation of the simulated error had a linear effect
on the standard deviations of the corresponding rigid trans-
formations. In the case of spine shape model, the standard
deviation of the translational part varied from the 0.1 to 2 mm
and the rotational part varied from 0.2 to 3.9 degrees. The

TABLE II
REDUCTION OF THE DISTANCE TO AN HEALTHIER SPINE SHAPE BETWEEN

PRE AND POST TREATMENT GROUPS AND THE ASSOCIATED SIGNIFICANCE

OF THIS REDUCTION (EXPRESSED AS A P-VALUE). ONE STAR INDICATES A

P-VALUE LOWER THAN 0.01, TWO STARS INDICATES A P-VALUE LOWER

THAN 0.001 AND THREE STARS INDICATES A P-VALUE LOWER THAN

0.0001

Inter-vertebral Cotrel-Dubousset Boston Brace
levels Reduction p-value Reduction p-value

T2 →T1 3.0 % 6.3e–1 3.0 % 5.0e–1
T3 →T2 8.5 % 1.4e–1 -9.6 % 5.0e–1
T4 →T3 27.9 % 4.1e–2 5.2 % 1.0e–1
T5 →T4 24.5 % 2.5e–4 ** 10.6 % 5.5e–2
T6 →T5 13.3 % 8.2e–2 9.3 % 2.7e–2
T7 →T6 24.8 % 8.2e–2 -7.9 % 5.0e–1
T8 →T7 17.4 % 1.5e–1 11.4 % 3.7e–1
T9 →T8 18.2 % 4.1e–2 -6.3 % 5.0e–1
T10→T9 34.4 % 2.5e–4 ** 10.8 % 2.6e–1
T11→T10 9.3 % 4.1e–2 7.6 % 5.0e–1
T12→T11 31.2 % 7.4e–3 * 5.6 % 1.7e–1
L1 →T12 33.7 % 7.4e–3 * 0.5 % 5.0e–1
L2 →L1 24.6 % 8.2e–2 8.4 % 1.0e–1
L3 →L2 20.7 % 8.2e–2 -12.2 % 8.3e–1
L4 →L3 27.7 % 4.1e–2 7.1 % 5.0e–1
Total 23.3 % 2.5e–4 ** 3.3 % 1.0e–1

spine shape deformation model was a little bit more sensitive
to the reconstruction error since the standard deviations of the
translational part varied from 0.1 to 2.5 mm and the rotational
part varied from 0.2 to 5.3 degrees.

In summary, with error levels compatible with the previous
validation studies, all simulated variances are way below the
variabilities observed from scoliotic patients. Therefore, the
observed variabilities are mainly associated sources intrinsic
to the patients and not with 3D reconstruction errors.

IV. DISCUSSION

A. Variability Sources

The models used in this study describe the variability of
the observed 3D spine shape. This variability is partially the
result of the anatomical variability inherent to the pathology,
but other causes were also present.

Scoliosis is very often diagnosed during puberty, thus
growth status is likely to be a significant variability factor.
This was confirmed by the fact that the maximal translational
variability is along the axial direction.

The posture during the acquisition was standardized, but
a certain proportion of the variability might be the result of
small differences between patients’ postures during the stereo-
radiographic exams. Scoliotic patients are however known to
have postural problems, so the variability caused by differ-
ences in the posture and the variability caused by scoliosis
might be hard to discern.

The anatomical landmarks 3D reconstruction error is also a
source of variability. However, the variances simulated from
synthetic data with a controlled 3D reconstruction error are
well below the variabilities computed from real patients. The
observed variabilities are thus mainly associated with spine
geometry and not with 3D reconstruction errors.
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TABLE I
STATISTICAL SIGNIFICANCE (EXPRESSED USING P-VALUES) OF THE DIFFERENCE BETWEEN THE MEANS AND THE COVARIANCE MATRICES OF A

CONTROL GROUP (IV), A GROUP OF PATIENTS WEARING A BOSTON BRACE (II) AND A GROUP THAT HAD A COTREL-DUBOUSSET INSTRUMENTATION

SURGICALLY INSTALLED (III). P-VALUES FOR INTER-VERTEBRAL LEVELS MARKED WITH A γ SHOULD BE INTERPRETED WITH CAUTION SINCE THE

NORMALITY TEST FAILED. ONE STAR INDICATES A P-VALUE LOWER THAN 0.01, TWO STARS INDICATES A P-VALUE LOWER THAN 0.001 AND THREE

STARS INDICATES A P-VALUE LOWER THAN 0.0001

Inter-vertebral IV vs II IV vs III
levels Mean Covariance Variance Mean Covariance Variance

T2 →T1 2.3e–4 ** 1.1e–1 3.7e–2 4.7e–3 * 3.8e–4 ** 4.5e–2
T3 →T2 2.4e–3 * 5.6e–2 1.1e–1 1.9e–3 * 6.3e–3 * 1.1e–3 *
T4 →T3 9.5e–9 *** 1.4e–2 4.0e–1 6.0e–4 γ ** 3.8e–8 γ *** 1.5e–3 *
T5 →T4 2.2e–3 γ * 1.8e–1 γ 7.4e–1 1.3e–1 1.1e–3 * 6.6e–3 *
T6 →T5 6.1e–3 * 1.7e–1 1.1e–1 7.2e–1 5.4e–6 *** 1.5e–6 ***
T7 →T6 1.3e–2 1.3e–1 1.4e–2 4.9e–1 7.3e–4 ** 1.2e–4 **
T8 →T7 6.0e–2 4.3e–2 2.4e–2 1.1e–2 8.1e–4 ** 5.9e–3 *
T9 →T8 4.9e–1 7.5e–6 *** 1.1e–5 *** 1.6e–1 1.5e–7 *** 3.7e–6 ***
T10→T9 2.4e–1 5.2e–4 ** 5.1e–4 ** 2.0e–2 1.5e–10 *** 6.8e–6 ***
T11→T10 3.7e–1 γ 2.3e–5 γ *** 1.3e–4 ** 1.3e–1 2.2e–7 *** 8.6e–7 ***
T12→T11 8.2e–1 γ 4.4e–6 γ *** 3.3e–5 *** 8.4e–2 1.0e–9 *** 1.4e–6 ***
L1 →T12 6.8e–1 5.3e–4 ** 1.5e–3 * 3.1e–1 5.8e–11 *** 2.5e–5 ***
L2 →L1 9.3e–1 2.9e–1 2.4e–2 1.9e–1 2.1e–8 *** 3.8e–5 ***
L3 →L2 2.7e–2 2.9e–1 1.4e–1 4.5e–5 *** 2.3e–6 *** 4.8e–5 ***
L4 →L3 2.6e–2 7.3e–2 2.0e–2 4.1e–2 1.0e–3 * 1.4e–2

B. Individual Vertebrae Positions and Orientations Variability

The inter-vertebral poses variability model illustrated in Fig.
3 showed that the main rotational variability was found on the
anterior-posterior axis. This was expected since orthopaedists
routinely use the anterior-posterior radiograph to compute the
Cobb angle (which is used to estimate scoliosis severity).
Furthermore, the main translational variability was found in
the axial direction which makes sense since the elongation
of the spine that characterizes the growth process could be
described using axial translations.

It was also noted that the relative contributions of the
translational variability in the coronal direction and of the
rotational variability in the sagittal direction are larger when
absolute positions and orientations are considered. This greater
variability along the natural flexion/extension motion axis
of the spine tend to confirm that absolute positions and
orientations are more suitable to analyse posture and motion,
while relative positions and orientations are more adapted to
the analysis of the anatomical variability.

Furthermore, there is also a significant proportion of the
variability along all the degrees of freedom (DOF) of the
inter-vertebral transforms. Thus, all the six DOF of the rigid
transforms are needed to capture the variability of the spine
shape. Practical implications of this improved knowledge of
the variability include the design of new orthopaedic treat-
ments (either braces or surgical instrumentations) that achieve
a better balance between geometric correction and patient
freedom of motion.

The representation of the spine shape as an articulated object
is intuitive and the obtained results proved that anatomical
insights can be gained that way. The Riemannian framework
that was used to build the variability model naturally leads
to the use of the rotation and of translation vector in the
computation of the mean shape and of its variability. This
representation was one of the keys to an intuitive visualization
of both the mean spine shape and the variability around that

mean shape.

C. Effect of Orthopaedic Treatments
A visual comparison between the variability models associ-

ated with group II, III and IV (see Figs. 6, 5 and 7) revealed
that the mean spine shape of treated patients seems closer to a
healthy spine shape than the untreated patients. Furthermore,
the variability of the spine shape deformations linked to a
treatment appeared to be greater than the one linked to the
progression of the disease. The variability associated with the
Boston brace also appeared to be smaller than the variability
associated with the Cotrel-Dubousset instrumentation.

More interestingly, the difference between the mean shape
and the difference between the variability are not uniform.
Table I clearly states that the Boston brace has a significant
effect on the mean shape and on the variability for two
different regions of the spine, respectively from T1 to T6
and from T8 to T12. This suggest a systematic effect of the
Boston brace on the geometry of the upper-thoracic spine of
all patients treated with it regardless of strength and shape of
the curvature caused by scoliosis. It also suggest that severe
scoliotic cases were submitted to larger corrections in the
lower-thoracic segment of the spine than mild cases which lead
to larger variabilities. Therefore, this difference suggests that
most of the therapeutic effect of the Boston brace is localized
in the region from T8 to L1. The effect of the Cotrel-Dubousset
appeared to have a very sparse effect on the mean shape.
However it has a significant effect on the variability associated
with all the inter-vertebral transforms. This greater variability
might explains the sparsity of the significant results obtained
on the mean shape since a greater variability generally results
in a reduction of the statistical power of tests performed on the
mean. These results strongly indicate that not only the mean
shapes but also the shape variabilities have to be analysed
when two groups of patients are compared.

The Table II as a whole suggests that a surgical correction
of scoliosis using a Cotrel-Dubousset instrumentation deforms
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the spine towards a more “normal” spine shape, while the
Boston brace has only a small effect on the distance to
normality. This situation is understandable since a surgical
intervention aims at correcting the deformity while a brace
primarily goal is to stop the evolution of the deformity by
applying subtle structural modifications.

Unfortunately, few of the distance differences associated
with individual inter-vertebral level were found to be signif-
icant. A larger patient sample would be necessary to draw
stronger conclusions from an analysis of these distances.
The statistical tests performed directly on the centrality and
dispersion measures (presented at Table I) seemed to be more
powerful with the number of patients available and did not
require a sample of healthy patients.

Moreover, surgical correction objectives are to optimally
correct the spine deformity to obtain a spinal shape as
“normal” as possible while instrumenting and fusing the
least amount of vertebrae and avoiding complications. These
contradictory objectives lead to a large variability among
the spinal instrumentation configurations used by experienced
surgeons [42]. Furthermore, what orthopedists usually defines
as “normal” is not based on a statistical model of the spine
geometry but on their clinical experience. More specifically,
orthopedists usually try to obtain a straight spine in the frontal
view with level shoulders and the trunk centered over the
pelvis, a thoracic kyphosis between 20 and 40 degrees and a
lumbar lordosis between 30 and 50 degrees in the sagittal view.
The distance measure used to create the Table II approximate
the correction objectives but do not take into account factors
that are extrinsic to the spine geometry (shoulders and pelvis
position, post-operative mobility, instrumentation strategies,
etc. ). Thus, the Table II is an indication that the proposed vari-
ability model can efficiently capture the geometric component
of orthopedic correction of scoliosis, but the distance used to
create it should not be used to clinically evaluate treatment
outcomes.

In the context of the comparison of two corrective instru-
mentation of scoliosis, Petit et al. [14] published a comparison
between modifications of the centers of rotations. Their results
are compatible with ours although centers of rotation are not
explicitly used here. However, only the means were compared
in the study of Petit et al., while it is now clear that the
variability should also be analyzed in this context.

V. CONCLUSION

A method to quantitatively analyze the variability of the
spine shape was presented in this paper. The proposed method
is based on the decomposition of the subjects’ spine shape into
instances of an articulated shape model. This articulated shape
model uses rigid transformations to describe the state of the
link between each vertebra. Then, the use of a Riemannian
framework enabled us to compute relevant statistics from this
articulated shape model. In addition to the spine shape, a
model to analyze and compare the effects of orthopaedic
treatments on the spine geometry was also proposed and a
visualization method of the variability models was developed
as well. Finally, a comprehensive study of the scoliotic spine

shape variability and of the treatment effect variability for
two well established treatments of scoliosis were presented
(the Cotrel-Dubousset surgical instrumentation and the Boston
brace).

Experimental findings included the observation that the
variabilities of inter-vertebral transformations were inhomoge-
neous (lumbar vertebrae were more variable than for the tho-
racic ones) and anisotropic (with maximal rotational variability
around the anterior-posterior axis and maximal translational
variability in the axial direction). Furthermore, brace and
surgery were found to have a significant effect on the Fréchet
mean and on the generalized covariance. These significant
differences were observed in specific regions of the spine
where the treatments actually modified the spine geometry.
The therapeutic effects of orthopaedic treatments could thus
be precisely localized.

In this study the correlations between the motions of non-
adjacent vertebrae were not analyzed. In that context, one of
the future directions for our work will be to study the global
motions of the spine using joint covariances. Moreover, it
would be interesting to see if a global model could be linked
to clinically used surgical classifications of the deformities or
if one could use a global model to study curve progression.

The proposed method is not limited to the spine and could
easily be extended to other bony structures (elbows, knees or
fingers for instance). Moreover, the variability model could be
used to constraint a deformation field like Little et al. [43] did
or to incorporate statistics in the registration process as it was
recently proposed by Commowick et al. [44].

In conclusion, this study suggests that medically relevant
knowledge about the spine shape and its deformations can
be obtained by studying articulated shape models. From an
orthopaedist’s point of view, these findings could be used
to optimize treatment strategies and diagnostic methods. For
example, better braces (or surgical instrumentations) could be
designed by exploiting the strong anatomical variability in the
coronal plane and the localisation of their effects on the spine
geometry could be analyzed more easily.

APPENDIX

A Riemannian manifold M is a manifold possessing a
metric that can be expressed as a smoothly varying inner
product 〈·|·〉x in the tangent spaces TxM for all points x ∈M.
A local representation of this Riemannian metric is given by
the positive definite matrix G(x) = [gij(x)] when the inner
product between two vectors v and w of the tangent space
TxM is written as 〈v|w〉x = vT · G(x) · w. The norm of a
vector v ∈ TxM is given by ‖v‖ =

√
〈v|v〉 and the length

of any smooth curve γ(t) on M can then be computed by
integrating the norm of the tangent vector γ̇(t) along the curve:

L(γ) =
∫ t2

t1

‖γ̇‖dt =
∫ t2

t1

√
〈γ̇(t)|γ̇(t)〉dt (12)

In order to compute the distance between two points (say
x1 and x2) of a connected Riemannian manifold, we have
to take the minimum length computed among all the smooth
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curves starting from x1 and ending at x2. Thus, the distance
d(x1, x2) between those two points is:

d(x1, x2) = arg min
γ

L(γ) (13)

where γ(0) = x1 and γ(1) = x2.
The distance minimising curves γ between any two points

of the manifold are called geodesics. Calculus of variations
shows that the geodesics are the curves satisfying the following
differential system (using Einstein summation convention).

γ̈ + Γi
jkγ̇j γ̇k = 0 (14)

Γi
jk =

1
2
gim

(
∂

∂xk
gmj +

∂

∂xj
gmk −

∂

∂xm
gjk

)
(15)

Where Γi
jk are the Christoffel symbols and

[
gij(x)

]
is the

inverse of the local representation of the metric [gij(x)].
Geodesic curves are unique in the sense that there is one and

only one geodesic γx,v starting from x ∈ M with a tangent
vector v ∈ TxM at t = 0. Using the geodesics, it is possible
to define a diffeomorphism between a neighbourhood of 0 ∈
TxM and x ∈M called the exponential map.

The exponential map at x ∈ M maps each vector v of the
tangent plane TxM to the point of the manifold reached by
following the geodesic γx,v in a unit time. In other words,
if we have γ(x,v)(1) = y, then Expx(v) = y. The inverse
mapping is noted Logx(y) = v. Moreover the distance with
respect to the deployment point is simply given by the norm
of the result of the logarithmic map (which is also the norm
of the tangent vector in TxM). Thus:

dist(x, y) = ‖Logx(y)‖ (16)

The Expx and Logx maps can be thought as the folding and
unfolding operations that connect the tangent space at x and
the manifold.
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