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ABSTRACT

We present a method to analyse the variability of the spine
shape using rigid transforms. The spine was expressed as a
set of rigid transforms that superpose local coordinates sys-
tems of neighbouring vertebrae. Those transforms were com-
puted from anatomical landmarks reconstructed in 3D using
two radiographs. Since rigid transforms do not belong to a
vector space, conventional mean and covariance could not
be applied. The Fréchet means and a generalized covariance
computed in the exponential chart of the Fréchet mean were
used instead. Those statistics were computed for each inter-
vertebral transforms of a group of 307 untreated scoliotic pa-
tients. The variability of inter-vertebral transforms was found
to be inhomogeneous (lumbar vertebrae were more variable
than the thoracic ones) and anisotropic (with maximal rota-
tional variability in the coronal plane and maximal transla-
tional variability in the axial direction).

1. INTRODUCTION

The shape of a healthy spine does not vary much from a healthy
subject to another. However, there are pathological conditions
that can induce a deformation of the spine. Such conditions
greatly increase the variability of the spine shape. Idiopathic
scoliosis is one of those conditions; it is generally diagnosed
soon in the adolescence and its cause remains unknown.

In order to understand the disease and to document the
morphology of the scoliotic spine, studies were conducted
about the positions and orientations of vertebrae in scoliotic
patients. For instance, Ghanem et al. [1] and Sawatzky et al.
[2] studied the position and orientation of the vertebrae next
to the spinal curve apex using optoelectronic measurements
during a surgery. Petit et al. [3] studied the inter-vertebral
rigid transforms modifications using radiographs taken be-
fore and after a corrective surgery. Those studies were mainly
concerned with mean positions and orientations and did not
study the variability of the spine shape. However, the vari-
ability is important because it is likely to be greater in some
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directions which might offer insights about the progression
mechanisms of the disease and lead to the development of
better orthopaedic treatments. Furthermore, the integration of
a variability model of the whole spine would improve 2D-3D
registration algorithms. Currently most methods use statisti-
cal models of isolated vertebrae [4] or ad hoc symbolic con-
straints on the whole spine shape [5]. A variability model
(mean and dispersion) of the whole spine shape would allow
2D-3D registration algorithms to better cope with the aperture
problem that limits the precision of those methods.

However, there are practical and theoretical limitations
that had prevented variability studies of the spine. First of all,
in order to compute statistics and to generalize those on the
population of scoliotic patients, it is necessary to use a large
sample of patients. Moreover, the 3D measurements have to
be taken while the patient assumes his “natural” standing pos-
ture (because a large proportion of the deformation would be
lost if the patient has to lie down [6]). Finally, mathemati-
cal and computational tools need to be developed to properly
study the geometric variability of the spine because conven-
tional statistical methods usually apply only in vector spaces,
while rigid transforms naturally belong to a Lie group.

The contributions for this paper are: to introduce a new
model of the variability for spine shapes based on statistics
on Lie groups, to propose a 3D visualization method of this
variability and, last but not least, to present the resulting vari-
ability model computed using a large group of scoliotic pa-
tients.

2. MATERIAL AND METHODS

2.1. Inter-Vertebral Transforms Computation from
Bi-Planar Radiographs

Multi-planar radiography is a simple technique where two (or
more) calibrated radiographs of a patient are taken to calcu-
late the 3D coordinates of anatomical landmarks using a tri-
angulation algorithm. It is one of the few imaging modalities
that can be used to digitize the three-dimensional anatomy
of the spine when the patient is standing up. Furthermore, bi-
planar radiography of scoliotic patients is routinely performed
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Fig. 1. The spine expressed as a rigid models assembly

at Sainte-Justine hospital. Thus, a sufficient amount of data is
available for analysis.

In the case of bi-planar radiography of the spine, six anatom-
ical landmarks are identified on each vertebra from T1 (first
thoracic vertebra) to L5 (last lumbar vertebra) on a posterior-
anterior and a lateral radiograph. The 3D coordinates of the
landmarks are then triangulated. Moreover, the deformation
of a high-resolution template using dual kriging yields 16 ad-
ditional reconstructed landmarks. The accuracy of this method
was previously established to 2.6mm [7].

Once the landmarks are reconstructed in 3D, each verte-
bra is rigidly registered to its first upper neighbour and the re-
sulting rigid transforms are recorded. By doing so, the spine
is represented by a set of rigid transforms (see the figure 1).
It is this set of inter-vertebral transforms that will be used to
compute the mean and covariance of the spine shape.

2.2. Centrality and Dispersion Measures in Lie Groups

Scalar multiplication and addition are not defined on rigid
transforms therefore traditional mean and covariance cannot
be computed. However, Riemannian geometry can be used
to generalized those concepts. This approach was previously
used to perform PCA on m-reps (medial axis representations)
[8] and to propose a framework for probability and statistics
on Riemannian manifolds [9]. It turns out that the generali-
sation of the classical mean and covariance can be computed
if one knows the exponential and logarithmic map associated
with a Riemannian metric on a manifold. This framework can
be applied to rigid transforms since they belong to a Lie group
(which is differentiable manifold).

2.2.1. Fréchet means

When given a distance, a generalization of the usual mean
can be obtained by defining the mean as the element µ of a
manifold M that minimizes the sum of the distances with a
set of elements x0...N of the same manifold M.

µ = arg min
x∈M

N∑
i=0

d(x, xi)2

This generalization of the mean, called the Fréchet mean,
can be computed using a simple iterative scheme on a Lie
group provided with a left invariant distance. This procedure
is obtained by performing gradient descent on the distance
sum and is expressed by the following recurrent equation :

µn+1 = µnExp(
1
N

N∑
i=0

Log(µ−1
n xi)) (1)

The functions Exp and Log are respectively the exponen-
tial map and the log map associated with the distance d(x, y).
The exponential map projects an element of the tangent plane
TxM on the manifoldM and the log map is the inverse func-
tion.

2.2.2. Generalized Variance and Covariance

The variance (as it is usually defined on vector spaces) is
the expectation of the L2 norm of the difference between the
mean and the measures. An intuitive generalization of the
variance on Riemannian manifolds is thus given by the ex-
pectation of a distance.

σ2 =
1
N

N∑
i=0

d(µ, xi)2 (2)

In addition to the variance, we would like to have a disper-
sion measure that is directional because the anatomical vari-
ability is expected to be greater in some directions. The co-
variance is usually defined as the expectation of the matri-
cial product of the vectors from the mean to the elements on
which the covariance is computed. A similar definition for
Lie groups would be to compute the expectation in the tan-
gent plane of the mean using the log map.

Σ =
1
N

N∑
i=0

Log(µ−1x)Log(µ−1x)T (3)

2.2.3. The case of Rigid Transforms

A rigid transform is the combination of a rotation and a trans-
lation. The action of a rigid transform on a point is usually
written as y = Rx + t where R ∈ SO3 and x, y, t ∈ <3.
Thus, a simple representation of a rigid transform would be



T = {R, t}. Using this representation composition and in-
version operations have simple forms (respectively, T1 ◦T2 =
{R1R2, R1t2 + t1} and T−1 = {RT ,−RT t}).

Another way to represent a rigid transformation is to use
a rotation vector instead of the rotation matrix. The rotation
vector representation is based on the fact that a 3D rotation
can be fully described by an axis of rotation supported by a
unit vector n and an angle of rotation θ. The rotation vector r
is defined as the product of n and θ. So we have a representa-
tion ~T = {r, t} = {θn, t} that we called the rigid vector.

The conversion between the two representations is sim-
ple since the rotation vector can be converted into a rotation
matrix using the Rodrigues equation :

R = I + sin(θ).Sn + (1− cos(θ)).Sn
2

with : Sn =

 0 −nz ny

nz 0 nx

−ny nx 0


And the inverse map (from a rotation matrix to a rotation

vector) is given by the following equations :

θ = arccos(
Tr(R)− 1

2
) and Sn =

R−RT

2 sin(θ)
(4)

Using the rotation vector representation, we can easily de-
fine a left-invariant distance between two rigid transforma-
tions.

d( ~T1, ~T2) = Nλ( ~T2
−1
◦ ~T1) (5)

with : Nλ(~T )2 = Nλ({r, t})2 = ‖r‖2 + ‖λt‖2

The parameter λ is a real number that controls the relative
weight of the translation and rotation. Because the rotation
vector and the translation do not have the same units it can be
though as a unit conversion constant.

It can be demonstrated that the exponential and log map
associated with the distance of equation 5 are the mappings
(up to a scale) between the rigid vector and the combination
of the rotation matrix and the translation vector [10].

Exp(~T ) =
R(r)
λ−1t

and Log(T ) =
r(R)
λt

Using the functions Exp and Log defined on rigid trans-
forms it is possible to use equations 1 and 3 to compute the
mean and covariance of the rigid transformations resulting
from the registration of neighbouring vertebrae.

The generalized covariance matrix associated with a rigid
transform is a six by six matrix. Thus, an intuitive visual-
ization of the whole covariance matrix is difficult. However,
the upper left and lower right quarters of this matrix are three
by three tensors and can easily be visualized in 3D using an

Fig. 2. Statistical spine model. From left to right: mean spine
model, rotation and translation covariance. Top: frontal view.
Bottom: sagittal view.

ellipsoid. The principal axes of these ellipsoids are the eigen-
vectors scaled by the corresponding eigenvalues. The extent
of the first ellipsoid (associated with the rotation) in a given
direction is then the angular variability in the plane perpen-
dicular to the chosen direction and the extent of the second
ellipsoid (associated with the translation) in a given direction
is the translational variability along that direction.

Because, the first tensor is the covariance of the rotation
and the second tensor is the covariance of the translation this
visualisation is quite intuitive and can be understood by peo-
ple without strong mathematical backgrounds (such as physi-
cians). The price of this visualisation is that the coupling be-
tween the rotation and the translation is lost during the visu-
alisation process. In spite of that, preliminary tests indicated
that, for the specific case of the inter-vertebral transforms, the
amount of variance explained by this coupling is small com-
pared to the one of the rotation and of the translation.

3. RESULTS AND DISCUSSION

3.1. Statistical Model of Scoliotics Patients

The method described in the previous section was applied to
a group of 307 scoliotic patients of the Sainte-Justine Hospi-



tal. The selection of the patients of this group was based on
the availability of the radiographs and on the absence of an
underlying neuromuscular disease. The age, sex and growth
stage were not used in the selection. The variability observed
is predominantly associated with anatomical variability but it
also includes variability caused by other factors such as pos-
ture and landmarks reconstruction error.

The mean spine shape and the variability are illustrated
by figure 2, where it can be observed that the mean shape has
curvatures in the lateral and frontal plane. The curvatures in
the lateral plane correspond to healthy kyphosis and lordisis,
but the light curve in the frontal plane is not part of the nor-
mal anatomy of the spine and is caused by scoliosis. It is also
interesting to note that the curve is on the right side because
there is more right thoracic curves than left thoracic curves
among scoliotic patients. The variability is also inhomoge-
neous (it varies from a vertebra to another) and anisotropic
(stronger variability in some directions). The strongest trans-
lational variability is found along the axial direction and one
can also observe from figure 2 that the main extension of
the rotation vector covariance ellipsoid is along the antero-
posterior axis, which indicates that the main rotation variabil-
ity is around this axis (as it could be expected for scoliotis).

3.2. Propagation of the Landmark Reconstruction Error

The anatomical landmarks reconstruction error induces vari-
ability on inter-vertebral transforms. However, we are only
interested in the variability that is intrinsic to the patients.
Therefore, we ran computer simulations to assess the relative
effect of reconstruction error on the computed variability.

The 3D reconstruction method used to compute the 3D
coordinates of the anatomical landmarks was previously eval-
uated and the mean squared error on the landmarks recon-
struction was evaluated to 2.6 mm [7]. So, we simulated
virtual spine models with this mean squared error and we
computed the variance (see equation 2) of the resulting inter-
vertebral transforms. We found a variance of 1.66 mm2 in
translation (setting λ →∞) and 2.0 x 10 −3 rad2 in rotation
(λ = 0). Both simulated variances are well below the vari-
ability computed for scoliotic patients therefore the observed
variability is mainly associated with spine geometry and not
with the imaging system.

4. CONCLUSION

We presented a method to compute and visualize the geomet-
ric variability of the spine. We also successfully applied our
method to a group of scoliotic patients. To our knowledge, it
is the first time that experimental results quantifying the inter-
vertebral transforms variability are published. Results pre-
sented in this paper suggest that highly relevant information
about the geometry of the spine can be obtained by studying
the variability using rigid transformations. From a medical

perspective, this could lead to the optimisation of treatment
strategies or diagnostic methods (by taking advantage of the
strong variability in the coronal plane, for example).

Furthermore, the development of a variability model, like
the one presented in this paper, offers many ways to improve
image analysis algorithms because a priori insights could be
easily introduced in the form of a variability model. Future
directions include the analysis of global motions of the spine
using joint covariance, the development of temporal variabil-
ity models to assess the evolution of the pathology or the ef-
fect of orthopaedic treatments (such as braces and surgeries)
and the integration of this model in registration algorithms.
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