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ABSTRACT 
 
This paper proposes a new interactive hybrid non-rigid 
registration framework that combines any intensity-based 
algorithm with a feature-based component, using an 
iterative dual energy minimization. The resulting 
transformation combines both intensity-based and feature-
based deformation fields. The feature matching exploits 
user-placed landmark pairs, and based on saliency and 
similarity measures, optimizes the correspondences in the 
neighborhood of each landmark. A dense feature-based 
deformation field is then generated using a thin-plate spline 
interpolation. Additionally, the framework allows user 
interactivity for live guidance of the algorithm in case of 
errors or inaccuracies. 
We present three experimental results of our hybrid 
approach on lung, pelvis and brain datasets, and show that 
in each case, the registration benefited from the hybrid 
approach as opposed to its intensity component alone. 
 

1. INTRODUCTION 
 
The wide variety of clinical applications of image 
registration has led to several different kinds of algorithms. 
Among them, we can identify two categories: intensity-
based (iconic) and feature-based (geometric). As these 
algorithms use different information and present different 
advantages and drawbacks, we present a hybrid framework 
combining the strengths of both iconic and geometric 
approaches [1, 2, 3]. In addition, we allow a human expert 
to use his knowledge to guide the registration in difficult 
cases, and thus bring interactivity to ensure correct results. 
This leads to a simple interface allowing a physician to 
specify corresponding features on two different images, and 
a framework that integrates this geometric information into 
a given iconic algorithm. As human experts are very 
efficient at defining corresponding regions but generally 
lack enough precision to specify exactly two corresponding 
voxels, we propose to extend the inputted features to 
regions and perform a local region registration at each 
iteration to increase the accuracy of correspondences. We 
present qualitative and quantitative results of our framework 
for monomodal registration of lungs, pelvis and brain. 

2. HYBRID REGISTRATION FRAMEWORK 
 
In [1], in the context of inter-subject brain non-rigid 
registration, an energy equation is introduced for combining 
an intensity-based dense field with landmark-based 
correspondences located on the brain’s sulci: 
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where C1 is a dense intensity-based field, C2 are landmark-
based correspondences, T is the final dense deformation, 
and y is a trade-off coefficient between intensity matching 
and landmark matching. The minimization of this energy is 
done in 3 steps: 
• Minimize w.r. to C1, which leads to a new dense field, 
• Minimize w.r. to C2 via ICP, which gives new matches 

between landmarks that most closely fit T, 
• Minimize w.r. to T to find an optimal and smooth T that 

fits C1 and C2. 
 
The estimated transformation [1, 4] is a weighted average of 
the fitting of intensity and feature points: 
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The minimization of the energy defined in equation (1) and 
the resulting transformation field in equation (2) assume a 
large number of landmarks (typically 2000 points on the 
brain’s sulcus), with unknown correspondences between 
two sets of landmarks. We modify this framework to suit 
the context of a sparse set of user-placed landmarks and 
user-defined correspondences. The ICP computation 
between the two sets of landmarks is now unnecessary, as 
we can place high confidence in the correspondences. 
However, we do not expect a user to be voxel-level precise 
while selecting a landmark, and thus propose to minimize a 
region similarity measure. We also extend the definition of 
C2 from a set of matching features to a dense interpolated 



deformation field. It is possible to incorporate this definition 
modification in the framework described in [1]; However, 
we are interested in this work in using any intensity-based 
algorithm with no modification, and improve it using an 
expert’s knowledge. We thus cannot use directly equation 
(1) as it ties T to each energy minimization. In order to 
compute C1 and C2 fields at each iteration independently of 
T, we propose an iterative dual energy minimization 
formulation. 
 
• Minimize with respect to C1 and C2: 
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With TN being the transformation T at iteration N, T0 being 
an initial null displacement field, SI and SJ defined 
respectively as the set of landmarks on images I and J.  
One practical consideration of using a dual energy 
minimization and removing the constraints on C1 and C2 is 
that it may lead to larger displacements and less stability in 
converging towards a solution compared to the single 
energy formulation; However, in this formulation, C1 and C2 
are still determined by considering the transformation T at 
the previous iteration. As a result, their computation is 
straightforward, and if the time step is small enough 
between iterations, we believe this system will converge to 
the same minimum as a single energy minimization. The 
stability of the proposed minimization scheme is observed 
in our preliminary experiments.  
The major advantage of this approach is being able to 
incorporate any registration algorithm in our framework 
with no modification to its implementation. The framework 
proposed in [1] does not allow this.  
Modifying the approach in [4] for our application yields the 
following transformation, which is a weighted-average of 
the fitting of intensity and feature points: 
 

)](*)[()](*))[(1()( 2211 xCGxxCGxxT λλ +−=    (3) 
 
with G1 and G2 being regularization kernels for each 
deformation field. We define [ ]1,0)( ∈xλ  a confidence map 
across the image defining the trust placed in the intensity-
based deformation versus the feature-based field. We build 
our confidence map by placing 3D normalized Gaussians 
around each feature, with the Gaussian variance defined as 
the distance between a feature and its match: 
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With Ki being a Gaussian of variance  ( )22
iii qp −=σ , α a 

“dimming” parameter that we initially set to πα 2= ,  
H(x) the Heaviside step function, defined at 1)0( =H  , and 
pi and qi respectively the source and destination landmarks. 
This confidence map is updated at each iteration as 
landmark positions evolve (see 2.1). Different confidence 
maps could be built based on prior knowledge or tensor 
imaging, and is reserved for future work. 
A ping-pong effect is theoretically possible between 
iterations, as C1 and C2 could be pulling a same voxel in 
different directions. In our context of interactive registration 
though, it is easy in case of oscillations to increase or 
decrease on-the-fly the influence of a particular landmark, 
or to add or remove landmarks. 
 
2.1. Region-based non-rigid registration 
 
The first step in computing our C2 field is finding optimal 
matches from the user-placed features. Manually placed 
landmarks have the advantage of insuring the quality of the 
correspondence and of benefiting from the knowledge of a 
human expert. Unfortunately, it remains difficult for a 
physician to precisely specify two corresponding points in 
two images. For this reason, we define spherical regions 
around each landmarks as in [5], and register one region 
with respect to the other. The use of regions allows iterative 
searches in the neighborhood of each pair of landmarks for 
optimal correspondences. These new landmark positions 
will drive our feature-based registration. 
We propose here an algorithm based on saliency [6] (a local 
entropy-based information measure) and similarity measures 
to compute optimal correspondences between regions.  
 

Define regions ΩP around landmark p and ΩQ around landmark q 
For every voxel in ΩP: 
 compute saliency A and scale s 
Label p’ the voxel in ΩP with the highest saliency 
Define ΩP’,S as the spherical region of scale s around landmark p’ 
For every voxel in ΩQ: 
 label current voxel as q* 

define ΩQ*,S as the spherical region of scale s around 
landmark q* 
compute similarity measure between ΩQ*,S and ΩP’,S 

Label q’ the voxel in ΩQ with the highest similarity measure 
 
Table 1 – Algorithm to compute new feature positions 
around manually placed landmarks. Original landmarks are 
respectively noted by p and q in images I and J, and newly 
computed landmarks around p and q are noted by p’ and q’. 
 
Strong saliency in a region indicates high uniqueness: a 
salient region in image I can thus be associated with as few 
other regions as possible in image J (ideally only one, which 
defines the exact correspondence). A region with low 



saliency bears more chances of being matched with a similar 
but incorrect region, such as background. 
Saliency features are also well adapted to our landmark 
matching as it is possible to achieve scale, rotation and 
translation invariance. The translational part of the 
transformation is straightforward and is defined as the 
difference between feature centers. The scaling factor can 
also be computed as the ratio of the feature scales. In order 
to achieve rotation invariance, we perform as in [7] a local 
registration in order to estimate the best rotation parameters, 
using gradient descent. This rotation information can then 
be used to modify the deformation field generated around 
that landmark. It is left to future work to define a formal 
way to introduce this new field in our transformation. 
The similarity measure used to compute the quality of a 
correspondence can be chosen depending on the type of 
images used (e.g. mono-modal or multi-modal). In our tests, 
we found the SSD gave the best results as all images are 
monomodal. 
The algorithm presented in Table 1 is visually demonstrated 
in Figure 1. We manually placed landmarks in two pelvis 
images, and then rigidly registered the images. If the 
correspondences were correct, the landmarks would 
perfectly align. Note that this example has been run in 2D 
for presentation purposes, but the implemented algorithm 
performs in 3D, where human precision is much lower. 
 

.   
Figure 1 – Left: manually placed landmarks. Right: 
landmarks after one iteration of our algorithm. The + 
crosses represent the set of landmarks using saliency, and 
the x crosses represent the other set using similarity 
measures to match the + positions. The diamonds show the 
original placement of the x landmarks. 

 
Figure 1 shows that after running one iteration of the 
algorithm, the landmarks are perfectly aligned.  
Once the optimal matching step has been done, we perform 
a thin-plate spline interpolation [8] across the image. This 
yields our dense C2 deformation field. The TPS has been 
chosen as it is very fast to compute with few landmarks 
(only one small matrix to invert), is guaranteed to displace a 
source landmark to its destination, and is always invertible. 
 
 

2.2. Intensity-based non-rigid registration 
 
It is possible to incorporate any intensity-based algorithm in 
our registration framework, and improve its results via user-
input in the form of features. 
In our research, we have successfully used two previously 
developed algorithms [9, 10], with no modification to their 
source code and very fast integration times. Indeed it is only 
necessary to input to the algorithm our two images, the 
current transformation, and collect as an output the C1 
deformation field. The results presented in the next section 
have been generated using an efficient intensity-based non-
rigid registration algorithm [9]. 

 
3. RESULTS 

 
Quantitative tests are provided by computing the SSD and 
SAD over the whole images. All images were initially 
rigidly registered. For the hybrid approach, only about 5-10 
landmarks were used. For all cases, each iteration took less 
than a minute to compute (typically a few seconds). We 
denote in this section the intensity-based approach as IB. 
 
3.1. Lungs dataset (128x128x128 voxels) 
 
For this dataset, the SSD and SAD show only 1% 
improvement using the hybrid method. However, observing 
the images reveals that the IB algorithm was incorrectly 
thinning the tissue separating the lungs. As the phenomenon 
occurred, it was easily possible in the hybrid approach to 
avoid this thinning by inserting a few landmarks between 
iterations. Figure 2 shows results after 3 iterations for both 
approaches, with the landmarks used in the hybrid case. 
 

 
Figure 2 – Results for the lungs datasets. Left: IB, with 
obvious tissue thinning. Right: hybrid with correct tissue. 
Both datasets are fused, one in gray and the other in hot 
colors. We segmented the latter dataset for better 
visualization. 
 
It is here apparent that allowing a physician some 
interactive input during a registration process can not only 
guide the algorithm towards a global minimum, but also 
provide important corrections for anatomical consistency. 
 



3.2. Pelvis dataset (256x256x79 voxels) 
 
Our quantitative tests for the pelvis datasets show equal 
results for both approaches. However, a visual examination 
shows again the IB approach failed to register correctly the 
bladder and fell in a local minimum, while this was avoided 
easily with a few landmarks in the hybrid case. 
 

  
Figure 3 – Results for the pelvis dataset, with a close-up on 
the bladder (segmented). Left: IB. Right: hybrid, with a 
better superimposition of the bladder segmentations. 
 
While a global energy may decrease, important anatomical 
areas in regions of interest might not be correctly registered 
at all in a pure IB approach. Our framework allows a 
physician to emphasize the registration in specific areas. 
 
3.3. Brain dataset (256x256x100 voxels) 
 
In this artificial test, we used a brain dataset, and applied to 
it a generated dense deformation field. This field was 
created by convoluting a sparse set of random deformation 
vectors (spanning 10% of the size of the image) by 3D 
Gaussians. Table 2 summarizes the results. 
 

5 iter. Initial Intensity Feature Hybrid 
SSD 109166 20461 70681 14202 
SAD 165.4 68.2 123 60 

Table 2 – Quantitative results on the brain datasets 
 
It is clear the feature-only approach lacks the overall 
accuracy of an intensity-dependant algorithm. However, 
figure 4 reveals the IB algorithm, while accurate in most 
parts of the image, fell in a local minimum. The hybrid 
approach avoided this minimum and gave correct and 
accurate results with only a few landmarks to guide it. 
 

 
Figure 4 – Results for the brain dataset: Left: intensity-
based after 8 iterations. Right: hybrid after only 5 iterations 

4. DISCUSSION AND FUTURE WORK 
 
While visual results show clear improvements in regions of 
interest, global quantitative results often fail to represent 
those benefits, and don’t emphasize important localized 
corrections. We thus intend to develop a new local measure 
to better show the impact of user-based corrections. We 
should also note that improving the results of a powerful IB 
algorithm such as the one used here is a greater challenge to 
our hybrid approach than using a weaker algorithm. 
We plan to better formalize our energy minimization, and to 
incorporate in our TPS interpolation the rotation and scale 
components of the local region-based registration. We will 
also improve our confidence map using physiological and 
anatomical information. It is possible to extend our 
framework to incorporate any number of registration 
algorithms (as no implementation change is needed), and 
benefit from their own advantages. The resulting “meta-
algorithm” should then yield better results than any 
algorithm alone and could be used for validation purposes. 
Finally, we intend to run more intensive tests using difficult 
datasets, such as multimodal or interpatient images. Indeed, 
the harder the registration, the more effective our hybrid 
approach becomes as human intelligence can guide it. 
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