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Abstract

We describe in this paper a novel kind of geometrical transformations, named poly-
rigid and polyaffine. These transformations efficiently code for locally rigid or affine
deformations with a small number of intuitive parameters. They can describe com-
pactly large rigid or affine movements, unlike most free-form deformation classes.
Very flexible, this tool can be readily adapted to a large variety of situations, simply
by tuning the number of rigid or affine components and the number of parameters
describing their regions of influence.

The displacement of each spatial position is defined by a continuous trajectory
that follows a differential equation which averages the influence of each rigid or
affine component. We show that the resulting transformations are diffeomorphisms,
smooth with respect to their parameters. We devise a new and flexible numerical
scheme to allow a trade-off between computational efficiency and closeness to the
ideal diffeomorphism. Our algorithms are implemented within the Insight Toolkit,
whose generic programming style offers rich facilities for prototyping. In this context,
we derive an effective optimization strategy of the transformations which demon-
strates that this new tool is highly suitable for inference.

The whole framework is exemplified successfully with the registration of histolog-
ical slices. This choice is challenging, because these data often present locally rigid
deformations added during their acquisition, and can also present a loss of matter,
which makes their registration even more difficult.

Powerful and flexible, this new tool opens up large perspectives, in non-rigid 3D
rigid registration as well as in shape statistics.
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Non-rigid registration, Histological slices, Image registration.
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1 Introduction

To motivate the introduction of a new type of geometrical transformation, let
us focus on the registration of medical images, and more precisely on the types
of geometrical transformations they are based on.

The registration of medical images is in general a difficult problem, and numer-
ous methods and tools have been already devised to address this task (Maintz
and Viergever, 1998). At the beginning of the spectrum, we have simple para-
metric transformations such as rigid or affine transformations, which have a
very small number of degrees of freedom, and can be efficiently used for intra-
patient registration. Other types of transformations, such as those parame-
terized via B-Splines (Rueckert et al., 1999), Thin-Plate-Splines (Bookstein,
1999), finite elements mechanical models (Ferrant et al., 1999) or more general
deformable models can have an arbitrary number of degrees of freedom and
be used for both inter-subject or intra-subject registration. At the end of the
spectrum, deformation fields defining a displacement at every voxel exhibit the
highest number of degrees of freedom (Thirion, 1998; Cachier, 2002; Cachier
et al., 2003; Chefd’hotel et al., 2002; Hermosillo et al., 2002), and can be used
for inter-subject registration.

Each of the above transformations has its particular domain of application.
However, in the case of anatomical structures incorporating rigid elements
(such as bone articulations, or structures which are subject to simple local
deformations, like histological slices), we believe that none of them is fully ap-
propriate. Rigid and affine transformations clearly don’t have enough degrees
of freedom. On the contrary, deformation fields have too many and thus can
be easily misled by local minima of the similarity criterion. For the existing in-
termediate transformations, e.g. B-Splines (Rueckert et al., 1999), the degrees
of freedom of the transformation are not really adapted since many control
points are required to reconstruct several locally rigid behaviors, especially
when rotations are substantial.

Our goal in this paper is to define new parametric transformations that exhibit
a locally rigid or affine behavior, and that can be efficiently implemented.
Also, a very desirable property is invertibility, which is not guaranteed in the
approaches based on splines or other interpolation techniques, except in the
case of the Geodesic Interpolating Splines (Camion and Younes, 2001), which
are limited to the interpolation of a sparse set of displacements.
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An approach was proposed in Little et al. (1996) to smoothly interpolate a
deformation outside independent rigidly moving regions. This computation-
ally efficient approach is unfortunately “parameterized” by the motion and
the arbitrarily complex shape of each rigidly-moving region. As a consequence,
it is not straightforward to use this model for inference (i.e. non-rigid regis-
tration). Moreover, the invertibility of the interpolated transformation is not
always ensured. This interpolation method is used in Pitiot et al. (2003), which
deals with the registration of histological slices. This is a pivotal issue for the
fusion of MR images and histological slices, which is a promising technique for
building precise atlases of brain structures (Ourselin et al., 2001a; Bardinet
et al., 2002).

Our idea is to use simple fuzzy regions defined by very few parameters: mainly
the position of the center, a typical radius of influence and the associated rigid
or affine transformation. We show in Section 2 that a simple average of the
displacement induced by each region leads to invertibility problems. Thus, we
develop an infinitesimal approach where the displacement is obtained by the
integration of the average speed. To address the implementation efficiency, we
investigate in section 3 several numerical schemes. The result is a new fam-
ily of invertible and fully parametric transformations that we called polyrigid
and polyaffine transformations. The Insight Toolkit (ITK) is a very attractive
framework for the implementation of these new transformations, since it pro-
vides a base class for all parametric transformations and powerful registration
tools that greatly facilitate the rapid development of new algorithms. We de-
scribe also in Section 3 how Polyrigid Transformations are implemented within
this framework. One can find the code relative to the experiments conducted
in this paper on the Internet 1 . We show in Sec. 4 that this new general tool
is well-suited for the non-rigid registration of articulated-like object. This is
exemplified on 2D histological slices. In Section 5, we also present preliminary
results that show how polyrigid transformations can be refined to describe
precisely regions of influence of a complex shape.

2 Theory of Polyrigid and Polyaffine Transformations

2.1 Regions of Influence and Interpolation of Sparse Data

2.1.1 Simple Parameterization of Regions of Influence

In order to model transformations having several distinct rigid behaviors in
different regions, it is necessary to define how each component of the global

1 ftp://ftp-sop.inria.fr/epidaure/Softs/Arsigny/ITK PolyTransfoSRC
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transformation is anchored geometrically. One could of course choose to have
regions of influence of arbitrary shape, like in Little et al. (1996), but this is not
convenient for inference. Having a reduced number of parameters describing
the shape and extent of each region of influence allows for simple optimiza-
tion of these parameters, which is a highly desirable feature for registration
purposes.

We propose here a Gaussian model for regions of influence: to each region we
have an anchor point a ∈ Rn, and in addition we also have two other parame-
ters, a typical distance σ and a parameter p such that the influence of the i-th
component is described by a “weight” wi(x) = pi G(ai,σi)(x) where G(ai,σi) is
the Gaussian of mean ai and of standard deviation σi. Thus, instead of using
regions in which the transformation is purely rigid like in Little et al. (1996),
we propose “fuzzy” regions, which makes the transitions or interpolations be-
tween the regions straightforward to handle.

In order to obtain a global transformation from several weighted compo-
nents, the classical way of mixing each local behavior is given in Sheppard
(1968), which simply amounts to averaging the displacements according to
the weights:

T (x) =

∑
i wi(x) Ti(x)∑

i wi(x)
. (1)

Here, the transformations (Ti)i∈1···N are rigid transformations. They are pa-
rameterized by the rotation matrixes (Ri) and the translations (ti). Their
action on a point is given by:

∀x ∈ Rn, Ti(x) = Ri x + ti.

2.1.2 Weaknesses of the Classical Averaging

The transformation obtained via (1) is smooth, both with respect to spatial
coordinates and its parameters. Nonetheless, it has several major drawbacks:

• Its invertibility is not guaranteed, and indeed will not be assured in many
cases, for example if the displacements are large.

• In the favorable case where the inverse exists, it has in general no simple
form and has to be estimated by an ad hoc technique, for instance using
a general deformation field, which is iteratively optimized to obtain the
inverse

• Is the behavior of this direct averaging procedure really qualitatively
satisfactory? In Fig. 1, an example shows that in the case of a mixture
of rotations, points do not in general turn around the centers of the
rotations. On the contrary the approach proposed here has this property.
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Fig. 1. Simple averaging (left) versus proposed approach (right) . Here, the
polyrigid transformation has two rotation components, which have exactly opposite
angles. We consider in this figure the various trajectories of points originally in
the segment joining the two centers. These trajectories are constituted by all the
final positions of the initial points as we progressively increase the angle of rotation
from 0 to 2π radians. On top, the two relative weights p1 and p2 are equal whereas
on the bottom that of the left component is substantially higher than the other,
hence the greater influence of the transformation anchored in the left. The form of
trajectories show that points moving under the action of a polyrigid transformation
do turn around the centers of rotations of the transformation. This property is not
verified in the case of the classical averaging.

These reasons have led us to develop a new kind of averaging procedure tack-
ling the above-mentioned problems.

2.2 A Framework with ODEs

2.2.1 Invertibility and ODEs

The challenge facing us at this point is the following: how to mix several
transformations according to some weight functions in an invertible way? A
classical way of obtaining invertible and smooth transformations is to use
ordinary differential equations (ODEs). We refer the reader to Tenenbaum
and Pollard (1985) for the following classical results on ODEs. A particle
governed by an ODE follows an equation of the form:

ẋ(s) = V (x, s).
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The flow associated to this ODE is the function that maps to a given starting
position x0 the position Φ(x0, s) reached at time s by the particle following
the evolution prescribed by the ODE. In other words, the trajectory x(s) =
Φ(x0, s) is a solution of ẋ(s) = V (x, s).

If V is smooth (for instance C1) with respect to x (spatial coordinates) and s
(time), and if the solution x(s) is defined for all time, then the flow Φ(x, s)
associated to the ODE defines a family of diffeomorphisms. More precisely, for
each s ∈ R, we have that x 7→ Φ(x, s) is a diffeomorphism of Rn in Rn. Our
approach is based on this key result.

2.2.2 The Case of Rigid Transformations

From the classical results of linear algebra, it is obvious that a rigid trans-
formation is invertible, and its inverse is simply obtained by inverting the
rotation part and adapting the translation component in the appropriate way.
But another viewpoint can be used to prove the invertibility, using ODEs.
More precisely, we can associate to a rigid transformation the following ODE,
where the nature of the Ai matrix is explained just below:

ẋ(s) = Vi(x, s) = ti + Ai (x− s ti) for s ∈ [0, 1]. (2)

This is obtained by differentiating the trajectory equation x(s) = s ti +
exp(sAi) x(0). At time 0, we start with the initial position and the image
for the rigid transformation is obtained at time 1. Since Vi is smooth and
trajectories are defined for all time, the above-mentioned result applies.

In Eq. (2), we denote by Ai one of the logarithms of the rotation matrix Ri,
which verifies the equality: exp(Ai) = Ri where exp is the matrix exponential.
Since Ri is a rotation, it always has a real logarithm, which is a skew matrix.
For example, let in 3D r = (rx, ry, rz)

T be a rotation vector associated to a
rotation R. We can then define a skew matrix A associated to r that is a
logarithm of R with the relation:

A =




0 −rz ry

rz 0 −rx

−ry rx 0




.

2.2.3 A Continuous Averaging Procedure with ODEs

In order to ensure the invertibility of our averaged transformation, let us define
a new ODE. The idea is simply to average according to weights the speed

6



vectors associated to each component, instead of averaging the final results:

ẋ(s) = V (x, s) =

∑
i wi(x) Vi(x, s)∑

i wi(x)
(3)

Ideally, we would like to define our averaged transformation as T (x) = Φ(x, 1),
where Φ is the flow associated to the ODE (3).

This means that each component will influence the motion of a particle accord-
ingly with the weights modeling its influence in space. The result obtained at
time 1 is the image of initial position x under the action of the average trans-
formation.

2.3 Theoretical Properties of Polyrigid Transformations

2.3.1 Life-Span of a Solution to an ODE

As mentioned before, in order to define our average transformation, it is nec-
essary to prove that the position at time 1 exists, whatever the initial position
may be. For an arbitrary ODE, the existence is not always ensured, however
smooth the speed function V may be. Consider for instance, the 1D evolution

ẏ(s) = V (y) = y2.

Its solution with an initial position y0 is y(s) = 1
1/y0−s

. Thus, we see that for

1/y0 > 0, the life-span of the solution only extends between −∞ and 1/y0, and
if 1/y0 < 1, then the position at time 1 is absolutely undefined, the particle
having gone to infinity before that!

2.3.2 Existence and Invertibility of Polyrigid Transformations

Since in Eq. (3) V (x, s) is C∞ with respect to spatial position and time, it only
remains to be proved that the evolution does not lead to explosion towards
infinity before time 1.

Theorem 1. All solutions of Eq. (3) have an infinite life-span, i.e. they are
defined for all time, whatever the rigid transformations may be. The poly-
rigid transformations defined via T (x) = Φ(x, 1) are thus well-defined and
diffeormorphic.

Proof. There exists three positive constants C1, C2 and C3 such that:
‖V (x, s)‖2 ≤ C1 + C2|s|+ C3‖x‖. For instance, take C1 = maxi ‖ti‖2 and C2 =
maxi ‖Aiti‖2 and C3 = maxi ‖Ai‖2 where ‖Ai‖2 refers to the Frobenius norm
of matrix Ai, equal here to the L2 norm of the associated rotation vector.
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This yields via a classical bounding that ∀s, ‖Φ(x, s)‖ ≤ eC3|s|(‖Φ(x, 0)‖ +
(1 − e−C3|s|)(C1/C3 + |s|C2/C3)), which suffices to prove the result because
it shows that the position of the particle evolving with Eq. (3) is contained
within a sphere whose radius grows exponentially this time. Thus, for any
finite time, Φ(x, s) is at a finite distance of the initial solution x. According
to the previous results from the classical ODE theory (Section 2.2.1), we have
that T (x) = Φ(x, s) is a diffeomorphism.

A simple inverse. The inverse of the transformation is obtained here in a
simple fashion: it suffices to go back in time! The skew matrix is changed into
its opposite, the translation also and s becomes 1 − s. The inverse transfor-
mation thus takes here a simple form.

2.3.3 Differentiability with Respect to the Parameters

We have just seen that any given system of rigid transformations can be aver-
aged so as to yield a diffeomorphism. But, what smoothness can be guaranteed
with respect to the parameters? Differentiability is crucial so as to enable sim-
ple optimization of the transformation in a registration framework. We have
the following result:

Theorem 2. Polyrigid transformation are C∞ with respect to all parameters.

Proof. This comes from the differentiability of the flow of an ODE. In-
deed, let us define the new ODE ż(s) = W (z, s) where z = (x, p), x being
the spatial coordinates of a particle and p the parameters of the polyrigid
transformation written in a vectorial fashion, and where the speed vector
W (z, s) = (V (x, s), 0). Thus, x evolves according to (3) and that p does not
change as time goes by. W is C∞ and the solutions are defined for all time
since those of (3) are. This implies the differentiability of the flow associated to
this ODE, which is exactly the differentiability of the polyrigid transformation
with respect to its parameters.

2.4 Extension to Polyaffine Transformations

2.4.1 A Simple Extension via the Real Logarithm

One can wonder to what extent it is possible to use the framework presented
above to work with locally affine transformations. This can be done in a direct
way if each affine transformation (Mi, ti) has a linear part Mi that admits a
real logarithm, i.e., if there exists a n × n real square matrix Ai such that
exp(Ai) = Mi. Then, we can adopt all coordinates of Ai as new scalar param-
eters to work with, and all the results of this section hold for this other type
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of transformation, that we could call polyaffine.

Unfortunately, not all real invertible matrices Mi have a real logarithm. Even
among real matrices with a positive determinant, this is not true. This is unsat-
isfactory, because compositions of a dilatation and a rotation are deformations
that are essential to the affine generalization of polyrigid transformations.

2.4.2 The general extension

In order to define polyaffine transformations, what we basically need is simply
a smooth trajectory from the identity to any given affine transformation. By
differentiating with respect to time we want to obtain a simple ODE. To define
such an evolution, we have the following general result: any element of a real
connected Lie Groups is equal to the product of two exponentials (Wüstner,
2003). Indeed, in the linear part of affine transformations, the singular value
decomposition yields that Mi = exp(Ai) exp(Si) with Ai and Si respectively
skew and symmetric matrices. An equivalent of Eq. (2) for polyaffine trans-
formations is thus:

ẋ(s) = ti + (Ai + exp(sAi) Si exp(−sAi)) (x− s ti). (4)

All results mentioned above still hold in this case and hence we can define
general polyaffine transformation, smooth both w.r.t. spatial coordinates and
parameters. But other parameterization could be chosen: we can also write
Mi = exp(S̃i) exp(Ai) by regrouping the factors of the SVD differently, where
S̃i 6= Si in general. Several extensions are possible and will be investigated in
future work.

2.5 Summary of the properties of Polyrigid Transformations

In this section, we defined a new class of transformations, modeling a mixture
of rigid transformations, whose influence is geometrically anchored in a simple
way. These transformations are diffeomorphisms and smooth with respect to
all of their parameters. The following tables summarize the various parame-
ters of the transformations (Table 1), and the number of scalar parameters
obtained in 2 dimensions or 3 dimensions (Table 2), where a comparison is be
made with B-Splines.
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Region parameters Deformation parameters

Anchor points: (ai) Rotation vectors: (ri)

Standard deviations: (σi) Translation vectors: (ti)

Relative weights: (pi)
Table 1
The two types of parameters of polyrigid transformations.

Num. regions DOF in 2D Equivalent B-Spline DOF in 3D Equivalent B-Spline

2 13 3 control points 21 3 c.p.

3 20 5 c.p. 32 5 c.p.

4 27 6 c.p. 43 7 c.p.

N 7N − 1 7N−1
4 c.p. 11N − 1 11N−1

6 c.p.
Table 2
Number of parameters (DOF) of polyrigids with different number of components,
and comparison with the number of control points of the equivalent spline (in term
of degrees of freedom).

3 Implementation of Polyrigid Transformations

3.1 Discretization Schemes

Since in the general case there does not exist a closed form for the position of a
point moving under the action of a polyrigid transformation, it is a necessity to
resort to a numerical scheme to integrate the ODE defining the transformation.
In other words, the trajectory of a point moving via (3) has to be sampled:
a number of intermediate points N and a rule for obtaining the successive
positions (xi)i∈0···N have to be chosen, so that the curve defined by the points
converges toward the real continuous curve given by the ODE.

In our domain of application, i.e. medical imaging, we have an additional
constraint, due to the volume of data much must be processed in common
applications. Thus, the numerical scheme should be as computationally inex-
pensive as possible. This is all the more true here that we will use in Section 4
the first and second derivatives of the numerical scheme to optimize the trans-
formation parameters during registration, which forbids the use of classical
schemes such as Runge-Kutta’s.
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3.1.1 The Consistent First Order Scheme

The consistence of a numerical scheme is a crucial notion. It is a condition that
must be verified to ensure the convergence towards the continuous solution
when the time step goes to zero. It simply means that when we take the
Taylor expansion of the solution of the ODE with respect to time around
zero, a numerical scheme must have the same expansion up to a certain order.
We say also that a scheme is of a certain order when the coefficients of its
Taylor series vanish after that order.

The consistent first order scheme is simply given in the following way: we
define the operators T

1/N
1 and T

k/N
1 by:





T
1/N
1 (x, s) = x + 1

N
V (x, s).

T
k/N
1 (x) = T

1/N
1 (., (k − 1)/N) ◦ · · · ◦ T

1/N
1︸ ︷︷ ︸(x, 0).

k compositions

(5)

The points (xi) are obtained recursively using:





x0 = x.

for 1 ≤ k ≤ N : xk = T
1/N
1 (xk−1, (k − 1)/N) = T

k/N
1 (x0).

(6)

This simply means that starting at x0, we jump from xk−1 to xk by adding
1/N times the speed vector V (xk−1, (k − 1)/N).

3.1.2 An Efficient Second Order Scheme

The scheme described above is not really satisfactory. In the case of a single
rigid component, the approximation makes points move along a diverging spi-
ral instead of a circle (if the transformation is a rotation). This is regrettable,
and a simple way of suppressing this approximation is to use the following
second-order scheme using new operators T

1/N
2 and T

k/N
2 :





T
1/N
2 (x, s) = x +

∑
i
wi(x)( 1

N
ti+(exp(Ai/N)−Id)(x−sti))∑

i
wi(x)

.

T
k/N
2 (x) = T

1/N
2 (., (k − 1)/N) ◦ · · · ◦ T

1/N
2︸ ︷︷ ︸(x, 0)

k compositions

.
(7)

Instead of averaging the speed vectors of each component, we average instead
the displacements that would be observed if each component was acting alone
during a small interval of time of length 1/N . This scheme is first-order consis-
tent, but not second-order consistent (it captures only part of the second-order
terms). But it is exact in the case of a single component, and its convergence is
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much faster than the first one as shown in figure 2. Furthermore, the diverging
spiral phenomenon observed for the first scheme disappears.
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Fig. 2. First scheme (on the left) versus second scheme (on the right).
From top to bottom: discretization levels of 3, 5, 7 and 20. As in figure 1, various
trajectories are displayed, these trajectories being obtained when the two opposite
rotations see their angle increase progressively between 0 and 2π. Here, the rotation
on the left has a larger relative weight than that on the right, which lessens the
influence of the latter.
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3.1.3 Derivatives of the Transformation

Computing the derivatives of the transformation with respect to its parameters
is necessary to use a gradient descent approach. Let us consider for instance
a simple registration strategy, where we want to register two images I and J
with the sum of square differences (SSD) criterion. This does not imply that
our approach is restricted to that particular case: one could obviously compute
the derivatives for other criteria. We take two images, J and I, and we want to
register J onto I using the inverse of a polyrigid transformation Tp. p are the
parameters of the transformation. In this case, the criterion to be minimized
is:

S(I, J ◦ Tp) =
∫

Ω
‖I(x)− J ◦ Tp(x)‖2 dx.

The gradient of S with respect to p is the following:

∂S

∂p
(I, J ◦ Tp) = 2

∫

Ω
(J ◦ Tp(x)− I(x)).(∇J ◦ Tp)(x).

∂Tp

∂p
(x) dx.

In the last equation, the symbol “.” denotes the matrix product. In order to
compute the derivatives of the transformation with respect to the parameters,
we simply computed the derivatives of each of the schemes. This is done again
with a recursive formulation:

∂T
k
N

p (x)

∂p
=

∂T
1
N

p

(
·, k−1

N

)

∂p

(
T

k−1
N

p (x)
)

+
∂T

1
N

p

(
·, k−1

N

)

∂x

(
T

k−1
N

p (x)
)

.
∂T

k−1
N

p (x)

∂p
.

For a first-order gradient descent, only the above gradient is necessary. But for
a second-order gradient descent, we will also need the second-order derivative:

∂2S
∂p2 (I, J ◦ Tp) = 2

{
∂Tp

∂p
(x)T .(∇J ◦ Tp)(x)T .(∇J ◦ Tp)(x).∂Tp

∂p
(x)

+(J ◦ Tp(x)− I(x))∂Tp

∂p
(x)T .(∂2J

∂x2 ◦ Tp(x)).∂Tp

∂p
(x)

+(J ◦ Tp(x)− I(x))∂Tp

∂p
(x). ∂2Tp

∂p2(x)

}
.

(8)

A useful approximation is obtained by keeping only the first term of this
equation. It has the nice property of being symmetric positive, and is a good
approximation of the Hessian as long as that the difference of intensities (J ◦
Tp(x)−I(x)) is small. Therefore, the more we will be close to a “good” solution,
the more valid this approximation is. For detailed formulas, we refer the reader
to Appendix A.
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3.2 Implementation with the Insight Toolkit

In order implement these new transformations, we chose to use the framework
of the Insight Toolkit 2 , which is a rich and rapidly developing set of tools
dedicated to the segmentation and registration of medical images. Thanks to
the generic nature of its programming style, it was the ideal choice to develop
our new approach quickly.

The polyrigid transformations were implemented as a new transformation
class: PolyRigidTransform<TScalarType,Dimension,Dimension>. It is tem-
plated by the dimension of the space, and thus can be used in both 2D and
3D applications. Its testing and the development of related registration algo-
rithms were greatly facilitated by ITK, since it provides many tools that can
be applied to any ITK transformation.

Figure 3 shows the registration framework chosen by ITK. The experiments
presented in next section are carried out using our new class of transforma-
tion, the SSD similarity criterion (called here a “metric”), with a bilinear
interpolation.

For the first-order gradient descent, we used the already implemented ITK
optimizer itk::RegularStepGradientDescentOptimizer, in which the step
of the gradient is reduced if the change of direction is too abrupt. This prevents
the algorithm from going systematically too far in the direction of the gradient.

For the second-order gradient descent, we have implemented our own opti-
mizer. This enabled us to adapt completely the optimization to the registration
strategy studied in Section 4. Fig. 4 presents the new ITK classes designed to
this effect. In order to take into account the information given by an approx-
imation of the Hessian, we chose to modify the itk::ImageToImageMetric

class, which provides access only to the first derivative of the similarity mea-
sure. Other classes were also modified, in order to perform a registration
procedure making use of the Hessian, which is handled by the new class
ImageRegistrationMethodWithHessian.

2 http://www.itk.org
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Fig. 3. ITK’s registration framework.

Transformation

Optimizer

Registration method

Metric

itk::CostFunction

SingleValuedCostFunctionWithHessian

ImageToImageMetricWithHessian<TFixedImage,TMovingImage>

MeanSquaresImageToImageMetricForGaussNewtonGD<TFixedImage,TMovingImage>

itk::ProcessObject

RegistrationMethodWithHessian<TFixedImage,TMovingImage>

itk::NonLinearOptimizer

SingleValuedNonLinearOptimizerWithHessian

PrivateLevenbergMarquardtBaseOptimizer

PrivateLevenbergMarquardtOptimizer

itk::Transformation<TScalarType,NInputDimension,NOutputDimesion>

iPolyRigidTransformation<TScalarType,Dimesion,Dimension>

Fig. 4. Implemented classes (boxes with a single rectangle) and their re-
lations to each other and existing ITK classes (boxes with two nested
rectangles). A hollow triangle at the end of an arrow stands for inheritance and
and simple lines for dependence (conventions of the UML 1.3 standard). The classes
belong to four different “families”: that of the registration method, metric, optimizer
and transformation. For more clarity, these groups have been put into boxes.

4 Registration of Histological Slices

4.1 Object of the Study and Experimental Setup

In order to demonstrate the feasibility and power of polyrigid transformations
for registration purposes, we present in this section some preliminary results on
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the registration of histological slices (Fig. 5). These images are acquired in such
a way that locally rigid or even affine deformations are frequently introduced
locally during the acquisition process. E.g., a gyrus has been rotated in the
top left corner in Fig. 5. The aim of this study is to show that simple polyrigid
transformations can substantially and naturally reduce the impact of such non-
linear deformations, while preserving the anatomical differences, i.e. without
introducing unrealistic deformations.

The slices studied in this paper have been kindly provided by P. Thompson
and A. Pitiot from the LONI (UCLA), and are consecutive myelin-stained
histological sections (or autoradiographs). Stemming from a human brain, it
is during three steps that the artificial deformations of a locally rigid nature
are introduced. These steps are the cutting process, the successive chemical
treatments, and the glass mounting step. The dimensions of the slices are 226
by 384 pixels. The registration of these slices has an additional difficulty: the
absence of matter in the lower-left-hand corner of the second slice. Many non-
rigid registration algorithms are misled by such a defect because they will try
to correct it, and in so doing they introduce irrelevant artificial deformations.
During the acquisition process, the calibration of the optical setup remained
unchanged. Therefore, the assumption that the various structures present in
the images have the same grey level is valid, and we can safely use the sum of
square differences criterion.

In figure 5, we see the results obtained with classical robust rigid and affine
registration procedures Ourselin et al. (2001b). These methods are not able to
register properly the rotated gyrus and at the same time all other gyri. This
defect is due to the lack of degrees of freedom in these linear transformations.
In the affine case, it is also due to the fact that the extra degrees of freedom,
modeling dilatations and shearing, are not used to model the actual deforma-
tions appearing in the image. This suggests to use transformations with more
degrees of freedom, and if possible, degrees of freedom that are adapted to the
real deformations observed. This is precisely what polyrigid transformations
are aiming at for this application.

During the experiments, the initialization used is the following:

• All rigid components are initially set to the identity.
• Anchor points are sampled on a regular grid, except in the first experi-

ment of Section 4.2, where a manual initialization is done.
• Initial relative weights are all equal.
• (σi) are initialized at a high value, here 40, so that the influence of all

regions extends in a good half of the images.

Four rigid components are used in the experiments. This number is a good
compromise between the necessity of having enough degrees of freedom to reg-
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Fig. 5. Histological slices (on the left) and Images of absolute differences
for affine (third starting from the left) and rigid (on the right) regis-
trations. The whiter the grey level, the worse the registration is locally. We see
in both cases that in many places, the edges of the gyri have not been registered
precisely, because of the influence of the rotated gyrus in the top left corner and also
because some other (smaller) non-linear deformations have taken place. We see also
on the left that in order to register better the rotated gyrus, the affine registration
gives poorer results for many edges than the rigid registration. Indeed, this better
registration of the gyrus has been obtained at the cost of a dilatation of the slice,
which in this situation is not appropriate.

ister correctly the slices and the obvious risk of introducing too many degrees
of freedom, which results in large unrealistic deformations. This is precisely
what occurs when more components are used. All in all, these four components
are parameterized by 27 scalar parameters, which is the equivalent of only 6
control points for the B-splines (24 scalar parameters).

The second numerical scheme is used here, since it outperforms the other. The
level of discretization is chosen very low, i.e. almost all results are obtained us-
ing no intermediary point between the starting position and the final position
of a point. The deformed grids of Figures 7, 10 and 11 show that the obtained
transformations are invertible (no self-intersection). However, if we had to use
the inverse transformation, a few intermediate points would probably be nec-
essary to ensure a good accuracy. In fact, determining the optimal number
of points to sample the trajectories is still an open question that needs to be
addressed, as in many diffeomorphic registration algorithms. In our case, we
observed that increasing the number of discretization points used leads to very
similar results, which shows that such a precision was not necessary here. But
for other applications, if discontinuities appear or if it is necessary to use also
the inverse transformation, then a finer discretization is of course essential.
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4.2 Limitations of the First-Order Gradient Descent

A simple way to minimize the similarity criterion between the images is to
use a first-order gradient descent, i.e. to make the parameters evolve in the
steepest direction of descent, which is given by the gradient. Unfortunately,
this approach cannot be directly used for our model. The partial derivatives in
the gradient show differences of several orders of magnitudes! Qualitatively we
have ‖∂Tp/∂ri‖ À ‖∂Tp/∂ti‖ À other derivatives. This implies that the clas-
sical gradient descent will make rotations evolve enormously, the translations
a little, and the other parameters almost not.

For rotations and translations, the difference of magnitude of their respective
partial derivative can be intuitively understood in the following way: for a
small variation of the angle of rotation, points far away from the center of
rotation will move proportionally to their distance to the center of rotation.
In other words, the further away from the center, the higher will be the varia-
tion in position, and a small variation can result in a large one at a distance.
On the other hand, a variation in translation will affect all the points uni-
formly, and a small variation always yields a small modification in position.
Therefore, we tend to have large partial derivative with respect to rotations
as compared to partial derivatives with respect to translations. This difficulty
is often encountered in situations where parameters of different natures are to
be optimized simultaneously.

A simple remedy is to renormalize the amplitudes of the partial derivatives.
Typically, dividing the amplitude of the rotation partial derivative by a factor
1000 is needed to obtain the optimization at least of both rotations and trans-
lations. Fig. 6 shows the behavior of the registration as the scaling evolves.

As we see in the deformed grid of Fig. 7, the final transformation is notably
non-linear. But the anchor points have not moved from their initial position,
which does not allow for an accurate registration in the upper left-hand corner.
We can see in Fig. 8 that the edges were much better registered than with
using a robust rigid transformation. But the incapacity to optimize the regions
of influence thwarted the better registration of the upper-left-hand corner.

Of course, one could think of estimating a relevant renormalization for each
type of parameter. This could be done by computing some kind of average
amplitude for each partial derivative, and them dividing the derivatives by
that value so as to obtain values of approximately the same amplitude. But
this renormalization would have to be carried out for each pair of images to be
registered. It would surely not be efficient for all iterations, and it is not so clear
why all partial derivatives should have approximately the same amplitude. In
the case of a pure translation, forcing the rotation vectors to evolve would not
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Fig. 6. SSD criterion evolution for a polyrigid registration with a sim-
ple first order gradient descent. The only modification to the gradient was
the rescaling of the rotation partial derivative, which is much larger in magnitude
than the others. The figure shows the SSD evolution during registration for three
values of the rotation scaling: 100, 300 and 1000. Thus, we see that an important
rescaling (at least of a factor 300) is necessary to improve the registration process,
which is otherwise inefficient. The registration results only in the optimization of the
rotations, the other parameters hardly evolving during the registration procedure.

be convenient! This calls for some type of adaptive renormalizing method.

4.3 Registration Results using a Levenberg-Marquardt Algorithm

To renormalize the partial derivatives in an adaptive way, a simple idea is
to perform a second-order gradient descent scheme. The renormalization is
handled by multiplying the gradient by the inverse of a matrix reflecting the
second variations of the criterion. Here, this matrix is the approximation of
the Hessian described in Section 3. The computation of this positive matrix
term (in the sense of quadratic forms) can be done only at the expense of a
very little cost, since it only requires the knowledge of the transformation’s
gradient and of the images intensities.

In order to perform an efficient 2nd-order gradient descent, the Levenberg-
Marquardt algorithm (LM) was used (see Bazaraa et al. (1993), pages 312-
314). At each iteration, a trust indicator is updated, which tunes the gradi-
ent descent between a simple first-order gradient descent and a quasi Gauss-
Newton descent based on the truncated Hessian. This way, we obtain naturally
a renormalization of the various parameters and also a faster convergence, es-
pecially when we are close to the minimum.

Figures 8 and 9 show that the Levenberg-Marquardt performs much better
than a first-order descent, both quantitatively and qualitatively. Three major

19



Fig. 7. Polyrigid registration result with a simple first-order gradient de-
scent. From left to right and from top to bottom: (1) The deformed image. (2) The
image of absolute difference between the deformed image and the fixed image. (3) A
representation of the regions of influence: a grey level is attributed to each region,
and this color is displayed if and only if the local weight of the region represents
more than 90 percents of the total weight. The anchor points are represented here
by small squares. (4) A regular grid deformed like the deformed image. (5) An image
of the regions of influence, a grey level being displayed if and only if its associated
weight is the largest one. (6) An image of the regions of influence displaying at each
point the weighted average of the grey levels according to the local weights. Thus,
we see that a non-linear deformation has been obtained, as show the curved lines of
the initially regular grid. The defect of this registration is that anchor points have
not moved from their initial positions.
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Fig. 8. Rigid (on the left) versus polyrigid registration with a simple
first-order gradient descent and a rescaling for rotations (on the mid-
dle) and Levenberg-Marquardt second-order descent(on the right). This
demonstrates that the absence of matter in the lower left-hand corner has thwarted
the polyrigid registration algorithm. In the case of the simple first-order gradient
descent, most edges have been very finely registered, much better than in the rigid
case. Nonetheless, we see that the gyrus lying in the upper left-hand corner still
has not been completely correctly registered, because of the incapacity of the algo-
rithm to optimize the region parameters, which have small derivatives in magnitude.
On the contrary, on the right, the Levenberg-Marquardt method has allowed the
algorithm to register the previously rotated gyrus. The result is much better quali-
tatively than for the first order descent, and edges are much more finely registered
than in the rigid case. However, some amount of unnatural deformations has been
added at the vertical frontier between the gyrus and the rest of the slice. This
phenomenon is due to the simple forms of the respective rigid regions.

local rigid transformations have been correctly identified. The edges have been
very finely registered as compared to rigid registration, as we see in Figure
8. This good result is obtained in spite of a very crude initialization which
proves the robustness of the proposed registration algorithm. The only re-
maining problem is the large deformations occurring at the vertical frontier
between the originally rotated gyrus and the other gyri. This is partly due to
the simple spherical form chosen for the regions of influence, and partly to the
discontinuity that originally made the gyrus rotate. The polyrigid deforma-
tions are smooth transformations and therefore they cannot properly model
discontinuous deformations.

4.4 Alternating Optimization

The renormalizing process via a second-order approach can be avoided by
simply optimizing the parameters alternatively. Moreover, with more than 4
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Fig. 9. SSD criterion evolution for a polyrigid registration with a Leven-
berg-Marquardt (LM) versus a simple first-order optimization scheme.
This shows that using a second-order descent has greatly enhanced the final results
quantitatively, and also qualitatively as is shown is the next figures.

rigid components, the renormalization introduced in the second-order descent
is no longer sufficient: the same defects as in the first-order gradient descent
appear again.

As a consequence, we introduce here a strategy optimizing alternatively the
various parameters. There is no single way of optimizing alternatively the pa-
rameters, and it is theoretically difficult to decide which parameters to group,
and how many iterations of optimization are to be used for each group at each
iteration of the global optimization. Our tests led us to optimize on the one
hand the deformation parameters and on the other the region parameters, one
iteration at a time for each. We also use here a Levenberg-Marquardt strategy
for each group, to speed up the convergence. This yields a stable and efficient
optimization algorithm.

Fig. 10 shows the result of the registration. We can clearly see that the reg-
istration process has identified and satisfactorily estimated at least three in-
dependent rigid behavior. At the same time, the deliberate simplicity of the
regions of influence forbids a precise description of the frontiers between the
regions. At this point of the registration process, we could resort to a classical
non-rigid registration algorithm to make the registration more precise in this
sector. But more simply, we can make use of the flexibility of polyrigid trans-
formations by refining the parameters describing the regions of influence, as
is shown in the next section of this report.
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Fig. 10. Polyrigid alternating LM registration. The gyrus has been as correctly
registered as can be. Due to the Gaussian model, the vertical frontier on the left
of it has a circular form, which results in some unnatural deformations. These
deformations are marginal but nonetheless non-negligible. However, only 4 rigid
components (i.e. 27 scalar parameters) have been necessary here to register very
finely most of the slices, without being disturbed by the lack of matter in the
lower-left-hand corner of one the registered slice.

5 Preliminary Results with more Complex Regions

5.1 The Shape of the Regions of Influence.

The assumption that each fuzzy region can be accurately described by a simple
Gaussian weight can be too strong in certain cases. But generally speaking,
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we can be very flexible with the weights because the only limitation is to keep
the weights (strictly) positive and smooth with respect to spatial coordinates
and parameters. Therefore very complex regions can be used, the simplest way
being to use mixtures of simple probability distributions. But other solutions
could be used, such as introducing explicitly an pre-defined shape for a region.
More precisely, if R is a region, we can define an associated weight with w(x) =
1R?Gσ(x). 1R is simply the function returning 1 if x ∈ G and 0 elsewhere. Gσ is
a Gaussian of standard deviation σ, that smoothes 1R through a convolution.
Thus, combinations of pre-defined regions and simply parameterized regions
provides quite a rich framework for modeling an application-specific polyrigid
transformation.

We present here preliminary results in which we have simply increased the
number of anchor points per region. Therefore, regions are modeled via a
mixture of Gaussian. This more general form for the weights wi(x) can be
written as follows:

wi(x) = pi

ni∑

j=1

G(aj
i ,σj

i )(x).

In other terms, each component i has its own number ni of anchor points
(aj

i )j∈1···ni
, which all have their specific standard deviation σj

i .

5.2 Results Obtained with Three Anchor Points

In order to see whether we can obtain better results than in the previous
section, we present here the results with three anchor points per region. One
could think of refining progressively the number of points, and this is a issue
that will be addressed in future work. The present experiment simply consists
in making the whole registration proceed with three anchor points, using the
most efficient optimization algorithm presented in this report, i.e. the alter-
nating LM strategy.

The experimental setup is identical, except for anchor points, which are ini-
tialized on the vertices of equilateral triangles placed on a regular grid.

We obtain here much better results, as show Fig. 11. The frontier that was
lacking in precision is substantially refined here, introducing less artificial de-
formations. However, some amount of unrealistic deformation remains. That
was to be expected, since it was because of a rift that the gyrus rotated.
To proceed further, it would be necessary to make a distinction between the
empty background and matter. A possibility would be to add this knowledge
in the weights defining the influence of each region, for instance with a geodesic
distance. The weight of a region would then be all the stronger as the current
point is close in some geodesic sense. This would result in a different smooth-
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ing. The influence of a region close spatially but separated from the current
point by a rift of empty background would be seriously lessened. As a conse-
quence, the frontiers between the regions would be more realistic, since they
would bear more resemblance with the rifts where they appear.

6 Conclusion and Perspectives

We present in this paper a novel and innovative type of geometrical transfor-
mation, the polyrigid and polyaffine transformations. These transformations
have several rigid or affine components, which means that a given number of
fuzzy regions are defined, on which the global transformation is mostly rigid
or affine. The parameters coding the transformation are simple and intuitive,
and provide a compact representation for locally rigid or affine movements.

In a rigorous mathematical framework, we show that these transformations
are smooth and invertible. We design a new and efficient numerical scheme
for the practical implementation in any dimension in the polyrigid case, and
devise a complete optimization strategy for its use in the non-rigid registration
of medical images (Sec. 4).

Polyrigid transformations are exemplified successfully on the 2D registration
of histological slices. Most non-linear artifacts generated during the acquisi-
tion process of the slices have been corrected, and it remains only a residual
deformation due to the smoothness of polyrigid transformations. For this spe-
cific application, further developments would be needed to model the tearing
process that has taken place, which is discontinuous by nature.

As shown in Sec. 5, there are many ways of adapting the polyrigid transfor-
mations to new applications, by modifying the shape and parameterization of
the regions of influence. In order to make the polyrigid transformations more
accurate, it should also be possible to define adaptive strategies progressively
refine the shape of regions where it is necessary.

We will investigate in future work the application of this new tool to 3D reg-
istration. In the human body, many structures present articulations between
rigid structures, which suggests the use of transformations incorporating all
these rigid movements. A possibility would be to use several components of
elongated shape in order to model articulated regions, plus another one mod-
eling the transformation of the background. Such a model has the advantage
of accurately describing very complex and non-rigid movements with a limited
but adequate number of degrees of freedom.

We have also presented in Sec. 2 the extension of our framework to polyaffine
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Fig. 11. Polyrigid alternating LM registration with 3 anchors points per
region. The result is quite satisfactory: thanks to the Gaussian mixture model, a
realistic frontier has been automatically inferred which brings the originally rotated
gyrus into a precise registration. All edges have been correctly registered. Few ar-
tificial deformations are introduced, thanks to the fact that we have only used four
different regions having independent rigid motions. As the deformations of the regu-
lar grid show, the transformation is still invertible. It should also be noted that this
result has been obtained with a fully automatic and crude initialization, and with-
out resorting to a multi-resolution framework. This demonstrates the robustness of
the registration algorithm.
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transformations. We believe it is possible to use such an extension in the
field of shape statistics. More precisely, one could model the variability of
the shape around its mean via the statistical analysis of these variations in a
certain space of transformations. By choosing as adequately as possible this
space of deformations, a model with a limited number of parameters could be
derived. Polyaffine transformations are in our opinion a good candidate for
doing so, because they can take into account both local rotations, translations
or swellings.

In the same vein, another application would be the building of new anatomi-
cal atlases, in the case of dataset presenting rigid by part deformations. Using
adapted transformations to establish correspondences between the various in-
stances would surely lead to more accurate results. In the case of local swellings
or shearings, it would be interesting to compare the performances of these new
transformations to those obtained for example with B-Splines, for an equal
number of degrees of freedom.
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A First Derivative of Polyrigid Transformations

Here, we will only focus in 3D on the derivatives of the second scheme, which
is the most efficient.

A.1 Differentiation with Respect to Parameters

Let us denote:

M
1/N
i (x, s) =

1

N
ti + (exp(Ai/N)− Id) (x− sti).

This is the modification “proposed” by the i-th component at a given time s
and point x for the second scheme. Conversely, let us write the real modifica-
tion:

M1/N(x, s) =

∑
i wi(x)( 1

N
ti + (exp(Ai/N)− Id) (x− sti))∑

i wi(x)
.
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Then let pi be a parameter of a rigid transformation Tp, and more specifi-
cally a parameter of the i-th component. When we compute the derivative of
T

1/N
2 (x, s) with respect to pi, we get the following simplification:

∂T
1/N
2 (x, s)

∂pi

=
∂

∂pi

∑
j wj(x)

(
1
N

tj + (exp(Aj/N)− Id)(x− stj)
)

∑
j wj(x)

=
∂wi

∂pi
(x)M

1/N
i (x, s)

∑
j wj(x)

+
wi(x) ∂

∂pi
M

1/N
i (x, s)

∑
j wj(x)

−



∑
j wj(x)M

1/N
j (x, s)

∑
j wj(x)







∂
∂pi

(
∑

j wj(x))
∑

j wj(x)




=
∂wi

∂pi
(x)

∑
j wj(x)

(
M

1/N
i (x, s)−M1/N(x, s)

)
+

wi(x)∑
i wi(x)

∂

∂pi

M
1/N
i (x, s).

Then, it only remains to see what form take the derivatives of the modifications
and of the weights. If we assume that weights have a Gaussian expression as
follows:

wi(x) = pi

(2πσ2
i )n/2 exp

(
−‖x−ai‖2

2σ2
i .

)
. (A.1)

Then, we obtain:





∂

∂ai

(wi(x)) = −wi(x)

σ2
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(ai − x)T .
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)
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∂

∂pi

(wi(x)) =
1

(2πσ2
i )

n/2
exp

(
−‖x− ai‖2

2σ2
i

)
.

(A.2)

For derivatives of the modifications, we have:

∂

∂ti
M

1/N
i (x, s) =

1

N
Id− s (exp(Ai/N)− Id) . (A.3)

It remains to be seen how one can differentiate (exp(Ai/N)− Id) with respect
to the rotation vector ri.
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A.2 Differentiation with Respect to the Rotation vector

The computation of the derivative of a matrix exponential of a matrix function
has no simple form as in the case of scalars. Indeed, when we take M(p) =
exp(A(p)), we do not have in general ∂

∂p
M(p) = { ∂

∂p
A(p)}M(p). This comes

from the non-commutation of A(p) and ∂
∂p

A(p), which is a sufficient condition
for differentiating in a simple way the exponential.

Let us denote Bx, By, Bz the following matrices:

Bx =




0 0 0

0 0 −1

0 1 0




, By =




0 0 1

0 0 0

−1 0 0




, Bz =




0 −1 0

1 0 0

0 0 0




.

We have the following result:

∀a ∈ {x, y, z}, ∂

∂ra

exp (A/N) =
∑

n>0

1

n!Nn

n∑

i=1

Ai−1 Ba An−i.

This simply stems from the differentiation of each term of the series defining
the exponential.

A.3 Spatial Derivatives

Finally, let us consider the spatial derivative of our scheme, which one must
also compute in order to obtain the derivative of the transformation with
respect to its parameters. We have:

∂T 1/N
p (x, s)

∂x
=

1

N

∑
i( M

1/N
i (x, s) ∂wi(x)

∂x
+ wi(x) ∂
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M
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i (x, s))

∑
i wi(x)

−(
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i wi(x) M
1/N
i (x, s))(

∑
i

∂wi(x)
∂x

)

(
∑

i wi(x))2

=
1

N

∑
i( M

1/N
i (x, s) ∂wi(x)

∂x
+ wi(x)(e

Ai
N − Id))

∑
i wi(x)

−M1/N(x, s)
(
∑

i
∂wi(x)

∂x
)

(
∑

i wi(x))
.

(A.4)

And finally, the spatial derivative of the weights is given by:

29



∂wi(x)

∂x
=

∂

∂x

(
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(2πσ2
i )

n/2
exp

(
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i

))

=
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− 1
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)
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)

= −wi(x)

σ2
i

(x− ai)
T .

(A.5)
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