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Abstract Tracking soft tissues in medical images using non-
linear image registration algorithms requires methods that
are fast and provide spatial transformations consistent with
the biological characteristics of the tissues. LogDemons al-
gorithm is a fast non-linear registration method that com-
putes diffeomorphic transformations parameterised by sta-
tionary velocity fields. Although computationally efficient,
its use for tissue tracking has been limited because of its ad-
hoc Gaussian regularisation, which hampers the implemen-
tation of more biologically motivated regularisations. In this
work, we improve the logDemons by integrating elasticity
and incompressibility for soft-tissue tracking. To that end,
a mathematical justification of demons Gaussian regulari-
sation is proposed. Building on this result, we replace the
Gaussian smoothing by an efficient elastic-like regulariser
based on isotropic differential quadratic forms of vector fields.
The registration energy functional is finally minimised un-
der the divergence-free constraint to get incompressible de-
formations. As the elastic regulariser and the constraint are
linear, the method remains computationally tractable and
easy to implement. Tests on synthetic incompressible defor-
mations showed that our approach outperforms the original
logDemons in terms of elastic incompressible deformation
recovery without reducing the image matching accuracy. As
an application, we applied the proposed algorithm to esti-
mate 3D myocardium strain on clinical cine MRI of two
adult patients. Results showed that incompressibility con-
straint improves the cardiac motion recovery when com-
pared to the ground truth provided by 3D tagged MRI.
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1 Introduction

Tissue tracking in sequences of medical images is an impor-
tant task in many clinical applications, either for disease di-
agnosis or therapy guidance. However there is no easy way
to achieve this, even with user input. A standard approach is
to use non-linear image registration to estimate dense spatial
transformations between images. For instance, cardiac mo-
tion is estimated by non-linearly co-registering the frames of
a cardiac sequence, yielding a dense displacement field that
quantifies the myocardium motion (Bistoquet et al, 2008).

In practice, non-linear image registration is performed
by minimising a dissimilarity criterion between the images
to register up to a regularisation term that models prior knowl-
edge about the spatial transformations. For clinical appli-
cations, the impenetrability of matter must be ensured, i.e.
transformations must be smooth one-to-one mappings. In
addition, the transformations must be consistent with the
properties of the tissue to track, such as elasticity and in-
compressibility. This is all the more important if the esti-
mated deformations are used to analyse anatomical changes
between different time points (Ashburner et al, 1998). How-
ever, adding these constraints to image registration algorithms
are often achieved at the price of computational complexity.
In this paper, an efficient non-linear registration algorithm
based on the fast demons approach is proposed for tracking
elastic and incompressible soft tissues.
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1.1 Diffeomorphic Non-Linear Image Registration

With the recent advances in computational anatomy, math-
ematical frameworks based on diffeomorphic deformations
have been developed to estimate one-to-one differentiable
mappings between the images to register. One of the most
successful method is to encode deformations using B-splines.
Diffeomorphic deformation is ensured by limiting the mo-
tion to 40% of the distance between knots (Rueckert et al,
2006) but this injectivity condition on spline transforma-
tions (Choi and Lee, 2000) prevents from accessing diffeo-
mophisms with very large deformations.

Another approach is to parameterise the transformations
by velocity fields according to the Lagrange transport equa-
tion (Arnold, 1989). When the velocity fields vary over time,
large diffeomorphic deformations can be estimated using the
Large Deformation Diffeomorphic Metric Mappings (LD-
DMM) (Miller et al, 2002; Beg et al, 2005). Nonetheless,
complex partial differential equations must be solved to in-
tegrate the velocity field over time along a geodesic path,
resulting in high computational cost.

This limitation can be tackled using stationary velocity
fields, which are integrated very efficiently through expo-
nential maps (Arsigny et al, 2006a; Bossa et al, 2007; Her-
nandez et al, 2009). Although such a parameterisation can-
not capture all the diffeomorphisms, the stationarity of the
velocity appears to be appropriate for biological deforma-
tions from an empirical point of view (see Ashburner (2007);
Vercauteren et al (2008, 2009); Peyrat et al (2009); Yeo et al
(2009); Hernandez et al (2009); Lorenzi et al (2010) for in-
stance). In particular, Hernandez et al (2009) showed that
there are no significant differences between time-varying
and stationary velocity fields when registering brain MRI.

Among the methods based on stationary velocities, log-
Demons (Vercauteren et al, 2008) is an efficient non-linear
registration algorithm based on the demons optimisation (Thirion,
1998). Two images are registered by alternating an opti-
misation step, which updates the stationary velocity field
in a voxel-wise manner, and a Gaussian smoothing step,
which models a diffusion motion. LogDemons algorithm is
appealing as it ensures diffeomorphic mappings, it enables
to work on velocities and transformations simultaneously
and its complexity is linear in the number of voxels. How-
ever, the diffusion prior may not be appropriate for tracking
biological tissues as it has no physical meaning. If mathe-
matical justifications of demons optimisation step have been
provided (Cachier et al, 2003; Vercauteren et al, 2009), the-
oretical foundations of the Gaussian regularisation still has
to be consolidated (Pennec et al, 1999; Modersitzki, 2004;
Cahill et al, 2009). This paper presents a mathematical jus-
tification of demons Gaussian regularisation which enables
to estimate elastic and incompressible deformations.

1.2 Elastic Non-Linear Image Registration

First introduced by Broit (1981), elastic registration algo-
rithms consist in regularising the transformations with the
linear elasticity equation, also known as the Lamé equa-
tion. Although computationally efficient, these regularisers
are suitable for small displacements only as they can yield
deformation overlaps and discontinuities in their derivatives
(Modersitzki, 2004). Techniques based on smooth elastic
body splines have been developed (Rueckert et al, 1999;
Sorzano et al, 2005). Yet, they are computationally demand-
ing and diffeomorphic mappings are ensured through ad-hoc
penalisation of the registration energy (Rueckert et al, 2006;
DeCraene et al, 2009), which makes the computation of the
inverse transformation critical. Cachier and Ayache (2004)
demonstrated that the linear Lamé equation is actually a spe-
cific first order isotropic differential quadratic form (IDQF)
of the transformation. High order IDQF can be designed, re-
sulting in elastic-like regularisation of any order of smooth-
ness. Cachier and Ayache (2004) also conjectured a sepa-
rable elastic-like vector filter that behaves like an IDQF of
infinite order. This filter has been used in demons algorithms
in place of the Gaussian kernel (Cachier and Ayache, 2004;
Mansi et al, 2009). However, its link with IDQF energies is
not clear. In this paper we investigate how this filter relates
to the IDQF to rigorously integrate it in the logDemons reg-
ularisation energy.

1.3 Incompressible Non-Linear Image Registration

Incompressible deformations cannot be recovered with elas-
tic regularisers alone; explicit constraints must be added.
A transformation is volume-preserving if its Jacobian de-
terminant equals one. This constraint is non-linear and re-
quires ad-hoc numerical schemes that are computationally
demanding (Rohlfing et al, 2003; Haber and Modersitzki,
2004). Bistoquet et al (2008) proposed to use the linear ap-
proximation of that constraint, i.e. the divergence of the dis-
placements is null. However, volume drifts appear when de-
formations become large, which the authors controlled by
penalising the energy functional.

When estimating fluid motion, incompressibility is satis-
fied if the velocity is divergence-free. Building up on this ob-
servation, countless optical flow techniques (Horn and Schunck,
1981) based on the continuity equation and the divergence-
free constraint have been developed to estimate incompress-
ible fluid motion from 3D images (see (Heitz et al, 2009)
and reference therein). Song and Leahy (1991) and Gorce
et al (1997) applied this approach to estimate 3D cardiac ve-
locity from 4D CT images. Cuzol et al (2007) combined the
optical flow algorithm with the Helmholtz decomposition to
estimate 2D fluid motion parameterised by divergence-free
and curl-free parameter maps. Saddi et al (2007) constrained
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a fluid registration algorithm to be incompressible by pro-
jecting the update velocities onto the space of divergence-
free vector fields using Helmholtz decomposition. All these
techniques showed satisfying results and demonstrated that
incompressibility constraints can improve the estimation of
incompressible fluid motion. However, the fluid model may
not be suitable for tracking elastic biological tissues: the in-
compressibility condition on the transformation is usually
preferred for biological applications.

Interestingly, one can demonstrate that diffeomorphisms
parameterised by divergence-free velocity fields through the
transport equation are incompressible (Evans, 1998). Hin-
kle et al (2009) for instance used this property to recon-
struct images of incompressible organ with LDDMM and
divergence-free time varying velocity fields. In this paper
we rely on this property to integrate the incompressibility
constraint in the logDemons algorithm.

1.4 Model-Based Non-Linear Image Registration

For tracking biological tissues, some authors have proposed
to guide non-linear registration algorithms with biomechan-
ical models that incorporate more details about the underly-
ing tissues and improve the previously described linear elas-
ticity regularisers. These approaches have been successfully
applied in cardiac motion estimation (Papademetris et al,
2000; Sinusas et al, 2001; Veress et al, 2005; Phatak et al,
2009; Sundar et al, 2009a) and brain shift estimation (Fer-
rant et al, 2001; Clatz et al, 2005). However, the underlying
models often rely on physical parameters that are difficult to
determine for a given patient. Besides, such models may not
apply anymore in pathological cases. Finally, they require
meshing the space domain by unstructured grids in order
to solve complex partial differential equations. For all these
reasons we prefer here a purely image-driven algorithm.

1.5 Aim and Paper Organisation

This paper proposes a consistent and efficient framework
for elastic incompressible non-linear registration based on
the logDemons algorithm. Contrary to our previous work
(Mansi et al, 2009), this approach operates entirely in the
log-domain. The constraint is strong and is applied directly
in the demons minimisation space. After a brief introduction
to the logDemons algorithm (Sec. 2), we propose a mathe-
matical justification of demons Gaussian regularisation that
enables to adapt the algorithm to other transformation mod-
els (Sec. 3). We then replace that regulariser with multi-
order IDQF whose minimiser is exactly computed with Cachier
and Ayache (2004) elastic-like vector filter. Finally, strong
incompressibility is ensured by constraining the stationary
velocity fields that parameterise the transformations to be

divergence-free (Sec. 4). Our method, hereafter termed iLog-
Demons, is mathematically consistent as all its elements and
parameters are controlled. The proposed demons framework
results in the following advantages with respect to previous
techniques: i) the elastic regulariser and the incompressibil-
ity constraint are linear, yielding low computational over-
head, ii) they are rigorously integrated in the demons en-
ergy functional, yielding closed form minimisers that can
be easily disabled by the user and applied to subdomains
of the images, and iii) the incompressibility constraint is
strongly enforced: no volume drifts appear. Sec. 5 reports
results on synthetic datasets with known ground truth. As a
clinical application, we employed the iLogDemons to esti-
mate myocardium motion and strain on clinical cine MR im-
ages of the heart of two adult patients with heart failure. In
both experiments, the iLogDemons improved the recovery
of incompressible transformations compared with the origi-
nal logDemons.

2 Background: Log-Domain Diffeomorphic Demons

Proposed by (Vercauteren et al, 2008), log-domain diffeo-
morphic demons algorithm, hereafter termed logDemons, is
an efficient non-linear registration algorithm based on the
demons approach (Thirion, 1998). Given a reference image
R and a template image T defined over the domain Ω ⊂
Rd (typically d = 3), logDemons estimates a dense spatial
transformation φ : Ω → Rd that best aligns T to R. This is
achieved by alternating an optimisation step, which updates
the transformation in a voxel-wise manner, and a regularisa-
tion step, which traditionally consists in Gaussian smooth-
ing. Cachier et al (2003) justified the demons algorithm by
the alternate minimisation of the energy functional:

E (φ ,φc) =
‖R−T ◦φc‖2

L2

λ 2
i

+
dist(φc,φ)

λ 2
x

+
‖∇φ‖2

L2

λ 2
d

(1)

φ is the dense spatial transformation to estimate. φc : Ω →
Rd is an intermediate transformation, called correspondences,
that matches the two images under an uncertainty controlled
by λ 2

x without considering the regularity of the transforma-
tion. The first term of (1) is the similarity criterion or data-
term. It measures how R and T ◦ φc are similar. λ 2

i relates
to the noise in the images. The last term of (1) is the reg-
ulariser whose strength is controlled by λ 2

d . It ensures the
spatial smoothness of the transformation φ , here by penal-
ising large gradients, and models prior knowledge about the
transformation to recover. The second term of (1) couples
the correspondences φc with the smooth transformation φ .
This term unifies in a common mathematical framework the
optimisation step, which amounts to minimising E (φ ,φc)
with respect to φc, and the regularisation step, which con-
sists in minimising E (φ ,φc) with respect to φ .
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In logDemons, the registration energy (1) is adapted to
estimate spatial transformations that are parameterised by
stationary velocity fields v : Ω → Rd through the exponen-
tial map φ = exp(v). Such transformations belong to the
subspace of diffeomorphisms G generated by the one-parameter
subgroups of diffeomorphisms. The space of velocities V is
the log-domain. As v is stationary, exp(v) is efficiently com-
puted using the “scaling-and-squaring” algorithm proposed
by Arsigny et al (2006a) (Appendix A). Alternatively, φ can
be defined as the solution of the Lagrange transport equa-
tion: ∂φ(x, t)/∂ t = v(φ(x, t)), φ(x,0) = x. With φ = exp(v)
and φc = exp(vc), the logDemons energy writes in the log-
domain:

E (v,vc) =
1

λ 2
i
‖R−T ◦ exp(vc)‖2

L2
+

1
λ 2

x
‖ log(exp(−v) ◦ exp(vc))‖2

L2
+

1
λ 2

d
‖∇v‖2

L2

(2)

The optimisation step minimises E (v,vc) with respect to
vc. The correspondence field φc is modelled with the diffeo-
morphic update rule φc = exp(vc) = φ ◦ exp(δv), where φ

is the current estimate of the transformation to recover and
δv is an unknown small update velocity field, the so-called
demons force. Using Gauss-Newton algorithm and an effi-
cient second-order minimisation (ESM) scheme yields:

δv(x) =− R(x)−T ◦ φ(x)
‖J(x)‖2 +λ 2

i /λ 2
x

J(x) (3)

where J(x) is the symmetric gradient J(x)= (∇R(x)+∇(T ◦
φ)(x))/2. In practice, δv is smoothed with a slight Gaussian
kernel Gσ f l (Vercauteren et al, 2008) to ensure the result-
ing transformation remains diffeomorphic. This smoothing
is commonly referred to as fluid-like, viscous regularisation.

In virtue of the update rule φc = φ ◦ exp(δv) = exp(v)◦
exp(δv), we can apply the Baker-Campbell-Hausdorff (BCH)
formula to estimate the correspondence velocity vc without
computing the logarithm of the updated correspondences φc.
The BCH formula gives an approximation of the velocity
field vc = Z(v,δv) such that exp(vc) = exp(v)◦exp(δv). As
shown in (Vercauteren et al, 2008), the first order approxi-
mation is sufficient for image registration purposes:

vc = Z(v,δv)

= v+δv+1/2[v,δv]+1/12[v, [v,δv]]+O(‖δv‖2)
(4)

In the previous equation, the Lie bracket [·, ·] is defined by
[v,δv] = (∇v)δv−(∇δv)v. Although it is not clear whether
theoretically the space G is a BCH-Lie group (Glockner,
2006), BCH composition of diffeomorphisms of G has ex-
perimentally shown promising results in terms of image reg-
istration and statistics on diffeomorphisms (Bossa et al, 2007;
Vercauteren et al, 2008).

Once vc is calculated, (2) is minimised with respect to
v. In practice, this step is performed by smoothing vc with a

Gaussian kernel Gσel . The next section investigates how σel
relates to the regularisation weight λd . The main steps of the
algorithm are reported in the pseudo-code (Algorithm 1).

Algorithm 1 LogDemons Registration
Require: Stationary velocity field v0. {Usually v0 = 0, i.e. φ 0 = Id}.
1: loop {over n until convergence}
2: Compute the update velocity: δvn given vn−1 (3).
3: Fluid-like regularisation: δvn← Gσ f l ?δvn, Gσ f l is a Gaussian

kernel.
4: Compute the correspondence velocity: vn

c ← Z(vn−1,δvn) (4).
5: Diffusion-like regularisation: vn←Gσel ?vn

c , Gσel is a Gaussian
kernel.

6: Update the warped image T ◦φ n = T ◦ exp(vn)
7: end loop
8: return v, φ = exp(v) and φ−1 = exp(−v).

About LogDemons Parameters LogDemons is controlled by
four parameters: the image noise λ 2

i , the uncertainty on the
correspondences λ 2

x and the regularisation strengths σ2
f l and

σ2
el . The noise in the images is estimated at every voxel by

λ 2
i (x) = |R(x)−T ◦φ(x)|2 (Cachier et al, 1999; Vercauteren

et al, 2009). As in Thirion demons, such an estimator nor-
malises δv to prevent too strong updates that would ham-
per the stability of the algorithm. In particular, building on
(Cachier et al, 1999), Vercauteren et al (2009) demonstrated
that the maximum amplitude of the update velocity δv is
upper bounded by λx/2. λx thus controls the maximum up-
date length per iteration. More global noise estimators fail
to limit the update velocities, which can become large and
ultimately yield non diffeomorphic transformations (Mansi,
2010). σ2

f l controls the strength of the fluid-like regulari-
sation. In practice, σ2

f l = 0.5 is recommended. Finally, σ2
el

controls the regularisation strength, as we shall discuss in
the next section. It has to be stressed that in this article, the
three parameters λ 2

x , σ2
f l and σ2

el are explicitly decoupled as
in (Cachier et al, 2003; Vercauteren et al, 2008) in contrast
to other formulations of demons where λ 2

x is implicit.

3 Insights into LogDemons Regularisation: From
Diffusion to Elastic-Like Regularisation

3.1 Insights into LogDemons Gaussian Regularisation

A consistent mathematical formulation of the Gaussian-based
logDemons regularisation is required to adapt the algorithm
to other transformation models. In scale-space theory, the
diffusion equation is the Euler-Lagrange equation of a func-
tional with L2 image distance and Tikhonov regularisation
(Nielsen et al, 1994). Now, minimising the registration en-
ergy (2) with respect to v amounts to minimising the regu-
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larisation energy:

Ereg(v) =
1

λ 2
x
‖ log(exp(−v) ◦ exp(vc))‖2

L2
+

1
λ 2

d
‖∇v‖2 (5)

Linearising the first term of (5) according to the zeroth order
approximation of BCH formula (log(exp(−v) ◦ exp(vc))≈
vc−v (4)) and replacing the second term with the Tikhonov
regulariser enables one to formulate the logDemons regular-
isation as a Tikhonov problem:

Ereg(v) =
1

λ 2
x
‖vc−v‖2

L2
+
∫

Ω

+∞

∑
k=1

∂i1..ik vik+1 ∂i1..ik vik+1

λ 2
x λ 2k

d k!
(6)

This formulation will enable us to integrate more advanced
regularisers. ∂ik..il denotes the composition of the spatial deriva-
tives ∂ik ..∂il , i j ∈ [[1,d]] ∀ j ∈ [[k, l]]. vik is the ithk component
of v. A simplified Einstein notation has been used: indices
that are repeated twice in a product are summed all over their
range (e.g. vivi = v2

1 + v2
2 + v2

3 if v : R3 → R3). The second
term has been divided by λ 2

x to simplify the calculations and
the regularisation weight λ 2

d is now function of the derivative
orders to preserve the shape of the impulse response related
to the regulariser (Nielsen et al, 1994).

The minimisation of (6) is classically performed in the
Fourier space (Nielsen et al, 1994; Cachier and Ayache, 2004).
The velocity v is obtained by smoothing vc with the Gaus-

sian kernel Gσel = 1/
√

2πσ2
el

d
exp(−xT x/(2σ2

el)), with σ2
el =

2/λ 2
d . The demons regularisation is the exact minimiser of

the regularisation energy (6). It is now clear how the width
σ2

el of the Gaussian kernel relates to the strength of the regu-
larisation λ 2

d . The higher σ2
el , the lower λ 2

d and the stronger
the regularisation. It has to be noted that the derivation of (6)
with respect to v implies that all the spatial derivatives of
v vanish at the boundaries ∂Ω of Ω . Gaussian smoothing
must be performed accordingly by extending the image pe-
riodically for instance or by ensuring that the moving struc-
ture stays far from the image boundaries.

3.2 Elastic-Like LogDemons

We can now directly integrate an elastic regularisation in
the logDemons framework. To preserve demons computa-
tional efficiency, we build a regulariser based on multi-order
isotropic differential quadratic forms (IDQF) whose min-
imiser is exactly computed using the separable elastic-like
kernel filter proposed by (Cachier and Ayache, 2004). With
the simplified Einstein convention, the kth-order IDQF of a
vector field v is defined by:

Qk
el(v) = αk∂i1..ik vik+1∂i1..ik vik+1 +βk∂i1..ik vik+1∂ik+1i2..ik vi1

αk and βk are scalar coefficients of R, αk ≥ 0 and βk ≥−αk
to ensure the positiveness of Qk

el . With αk = 1/k!, the first

term of Qk
el is the kth term of the previous Tikhonov regu-

lariser (6). Elasticity is thus modelled by the second term of
Qk

el . We define the elastic regularisation as:

Ereg(v) =
1

λ 2
x
‖vc−v‖2

L2
+
∫

Ω

+∞

∑
k=1

Qk
el(v)

λ 2k
d λ 2

x
(7)

From the functional derivatives:

∂v(∂i1..ik vik+1∂i1..ik vik+1) = (−1)k
∆

kv

∂v(∂i1..ik vik+1∂ik+1i2..ik vi1) = (−1)k
∆

k−1
∇∇

T v

it follows the optimal condition:

v+
∞

∑
k=1

(−1)k

λ 2k
d

[
αk4kv+βk4k−1

∇∇
T v
]

= vc (8)

which is solved in the Fourier domain. Note that when k = 1,
the energy becomes the first-order Lamé elastic equation.
Let v̂(w) = F(v(x)) be the Fourier transform of the veloc-
ity field v(x), w is the frequency variable. According to the
identities

F
(
4kv(x)

)
= (−1)k (wT w

)k v̂(w)

F(4k−1
∇∇

T v(x)) = (−1)k(wT w)k−1wwT v̂(w)

(8) is transformed as:
(

1+
∞

∑
k=1

αk(wT w)k

λ 2k
d

)
︸ ︷︷ ︸

A

Id+

(
∞

∑
k=1

βk(wT w)k−1

λ 2k
d

)
︸ ︷︷ ︸

B

wwT

 v̂(w)= v̂c(w)

Since A and B are scalars, we can apply Sherman-Morrison
inversion formula, which yields the closed form solution:

v̂(w) =
[

1
A

Id− 1
A

(
B

A+BwT w

)
wwT

]
︸ ︷︷ ︸

M

v̂c(w)

The optimal velocity field v is therefore obtained by filter-
ing in the Fourier domain the correspondence velocity vc
with the filter M. Computational efficiency can be greatly
improved by choosing the coefficients αk and βk such that M
is separable. If αk = 1/k!, A is the Gaussian kernel found in
the previous section. One can demonstrate (see Appendix B)
that if βk is defined by β0 = 0, βk = ∑

k
i=1 γ i λ 2i

d /(k− i)! ∀k≥
1 and γ ∈ R, then the second term of the filter M is propor-
tional to the Hessian of the Gaussian kernel exp(wT w/λ 2

d ).
With σ2

el = 2/λ 2
d and γ = σ2

elκ/(κ +1) we retrieve the elastic-
like separable vector filter proposed by Cachier and Ayache
(2004):

v =
(

Gσel Id+
σ2

elκ

1+κ
H Gσel

)
?vc = Gσel ,κ ?vc (9)
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H Gσel (x) is the Hessian of the Gaussian kernel Gσel and
Gσel ,κ is the elastic-like vector filter. When κ = 0, Gσel ,κ=0
is the Gaussian filter and the elastic regularisation energy (7)
is exactly the diffusion energy (6). It is therefore straightfor-
ward to switch the regulariser.

As for the diffusion regularisation, σ2
el controls the strength

of the regularisation. The elastic parameter κ behaves like
the Poisson ratio ν of the theory of elasticity by controlling
the cross-effects of the smoothing between the vector com-
ponents. Cachier and Ayache (2004) showed that the higher
κ , the more incompressible the deformation. This property
still holds here even though Gσel ,κ acts on velocities and
not on deformations. The stationary velocities v are param-
eters of the deformations, their norm is directly related to
the length of the deformations through

∫ 1
0 ‖v(t)‖2

V dt1/2 =
‖v(t = 0)‖2

V , where V is the space of velocities. Smoothing
v(t = 0) thus amounts to smoothing φ . This is very different
from fluid registration which regularises the infinitesimal in-
crements i.e., the instant velocities v(t).

Elastic-like regularisation may not be sufficient to re-
cover locally incompressible deformations. κ only controls
incompressibility at a global scale as it is a global parameter.
Furthermore, perfect incompressibility would be reached only
when κ → ∞. As a result, hard constraints must be used
when strong incompressibility is required.

4 Incompressible LogDemons

A transformation φ is locally incompressible if its Jacobian
determinant |∇φ | equals one. This non-linear constraint how-
ever is computationally demanding. For diffeomorphic trans-
formations one can show that the condition on fluid mo-
tion holds: Integrating divergence-free velocities over time
yields incompressible deformations (Evans, 1998). Making
logDemons incompressible is thus achieved by constraining
the velocity field v to be divergence-free. This only alters
the regularisation step as the optimisation stage optimises
E (v,vc) with respect to the correspondence velocity vc.

Helmholtz decomposition states that any velocity v that
vanishes at infinity can be uniquely decomposed in the sum
of a divergence-free field and a curl-free field. Using varia-
tional calculus and Lagrangian multipliers, Simard and Mail-
loux (1988) demonstrated that the Helmholtz decomposition
projects v onto the space of divergence-free vector field in
the L2-norm sense. In this work, we employ a similar tech-
nique to constrain the registration to be divergence-free. We
want to minimise (7) under the constraint ∇ · v = 0. Let p
be the Lagrangian multiplier associated to that constraint. p
is a scalar field with compact support Ω . Minimisers of (7)
(or (6) if κ = 0) under the divergence-free constraint are op-

tima of the Lagrange function:

Preg(v, p) =
1

λ 2
x
‖vc−v‖2

L2
+
∫

Ω

+∞

∑
k=1

Qk
el

λ 2
x λ 2k

d

− 2
λ 2

x

∫
Ω

p ∇ ·v
(10)

Calculating the Gâteaux derivatives of (10) yields the two
optimal conditions:

∇ · v = 0 (11)

v+
∞

∑
k=1

(−1)k

λ 2k
d

(αk4kv+βk4k−1
∇∇

T v) = vc−∇p (12)

with p = 0 at the boundaries ∂Ω of the image domain. The
optimal velocity field v is therefore computed by smoothing
the right hand side of the previous equation, g = vc−∇p,
with the kernel Gσel ,κ . To compute g, we take the divergence
of (12) under the optimal condition ∇ ·v = 0. This yields the
Poisson equation under 0-Dirichlet boundary conditions:

∆ p = ∇ ·vc (13)

p can thus be computed independently of v by solving (13).
This is exactly the Helmholtz decomposition of vc. g = vc−
∇p is the L2 projection of vc to the space of divergence-free
vector fields, as ∇ ·g = ∇ ·vc−∆ p = 0. ∇p is the orthogo-
nal curl-free component. Ensuring divergence-free velocity
fields thus consists in i) projecting the correspondence ve-
locity onto the space of divergence-free vector fields and ii)
smoothing the result.

With this approach, the incompressibility constraint can
be applied within a subdomain Γ ⊂Ω by defining p∈H1

0 (Γ ),
p = 0 on Ω/Γ . This may be useful for tracking incom-
pressible tissues localised in space, like the cardiac mus-
cle. However, particular care must be taken at the domain
boundaries ∂Γ . Although Gaussian smoothing theoretically
preserves vector field divergence, in practice unconstrained
velocities close to ∂Γ may leak inside the incompressible
domain due to the Gaussian convolution, ultimately result-
ing in volume drifts. Yet, Gaussian filter and vector deriva-
tives commute for well-designed filters such as Deriche re-
cursive filters (Deriche, 1993). We therefore replace the the-
oretical “project-and-smooth” strategy by a “smooth-and-
project” approach that preserves the divergence close to ∂Γ .
To further limit numerical instabilities, a smooth domain
transition is implemented in a narrow band around Γ by
diffusing the pressure field p using the heat-transfer equa-
tion (Evans, 1998). The main steps of the proposed algo-
rithm, henceforth termed iLogDemons, are summarised in
(Algorithm 2). Note that incompressibility can be easily dis-
abled by skipping the steps 6 and 7 of the algorithm.
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Algorithm 2 iLogDemons: Incompressible Elastic-Like
LogDemons Registration
Require: Stationary velocity field v0. {Usually v0 = 0 i.e. φ 0 = Id}.
1: loop {over n until convergence}
2: Compute the update velocity: δvn given vn−1 (3).
3: Fluid-like regularisation: δvn← Gσ f l ?δvn, Gσ f l is a Gaussian

kernel.
4: Compute the correspondence velocity: vn

c ← Z(vn−1,δvn) (4).
5: Elastic-like regularisation: vn← Gσel ,κ ?vn

c (9)
6: Solve: ∆ p = ∇ ·vn with 0-Dirichlet boundary conditions (13)
7: Project the velocity field: vn← vn−∇p.
8: Update the warped image T ◦φ n = T ◦ exp(vn)
9: end loop

10: return v, φ = exp(v) and φ−1 = exp(−v).

About the Divergence-Free Update Velocity One could also
constrain the correspondence field φc to be incompressible
in order to find the optimal image matching that satisfies
the constraint (see Appendix C). When the transformation
φ is incompressible, it follows from the diffeomorphic up-
date rule φc← φ ◦exp(δv) that φc is incompressible if δv is
divergence-free. Yet, from a theoretical perspective, adding
such a constraint to the iLogDemons would have little effect
on the result. In theory, constraining v to be divergence-free
amounts to projecting vc to the space of divergence-free vec-
tor fields. φc is therefore incompressible. Since the composi-
tion of two continuous incompressible fields is incompress-
ible, exp(δv) is also incompressible and δv is divergence-
free. When the zeroth order BCH approximation is used to
compute vc, the linearity of the projector yields the same
conclusion. The two approaches are hence equivalent. None-
theless, small differences may arise in practice due to the
numerical approximations (scaling-and-squaring, numerical
accuracy of the composition, etc.) We will experimentally
evaluate when it is necessary to add such a constraint.

Numerical Implementation The algorithm was implemented
in ITK from the open source implementation of the log-
Demons (Dru and Vercauteren, 2009). The Poisson equation
(13) is solved using finite differences on the regular image
grid (Simard and Mailloux (1988), PETSc library). Contrary
to Fourier-based techniques (Hinkle et al, 2009), the direct
resolution can be performed on an incompressible domain Γ

of arbitrary shape by rasterising it on the image grid. More
sophisticated finite elements approaches could also be used.
Image gradients are computed with periodic boundary con-
ditions (Dru and Vercauteren, 2009) and the Gaussian filters
are implemented with ITK recursive filters (Deriche, 1993).

5 Experiments and Results

Three experiments were performed to evaluate how much
iLogDemons improves the recovery of incompressible de-
formations with respect to the original logDemons.

1. We first tested on synthetic datasets the ability of the
elastic regularisation alone to estimate random incom-
pressible deformations.

2. We then tested extensively the incompressibility con-
straint on large analytic incompressible transformations
to quantify the improvements with respect to logDemons.

3. We finally applied the iLogDemons to estimate left ven-
tricular myocardium motion from multi-slice short axis
cine magnetic resonance images (cMRI). The results were
compared with logDemons using tagged MRI (tMRI)
measurements as reference.

In the following, logDemons refers to the unconstrained
logDemons algorithm, either with diffusion or elastic-like
regularisation (Algorithm 1). iLogDemons refers to the pro-
posed incompressible logDemons algorithm, where the ve-
locities v are constrained to be divergence-free (Algorithm 2).
We also evaluated the fully constrained iLogDemons, where
both the update velocities δv and the velocity v are divergence-
free. This algorithm is called i2LogDemons. The software
developed for these experiments will be available at http://www-
sop.inria.fr/asclepios/software.php.

5.1 Global Incompressibility Recovery Using Elastic
Regularisation

As we have seen, elastic regulariser theoretically provides
more incompressible deformation fields, controlled by the
global parameter κ . Here, we experimentally test how much
this feature alone (no incompressibility constraint) can help
in recovering random incompressible deformation fields.

5.1.1 Illustration on Translated Cubes

We first tested the elastic-like regularisation on a toy ex-
ample to have an intuition of the results. Two translated
black-and-white small cubes were co-registered using the
diffusion (σ2

el = 1,κ = 0) and the elastic-like (σ2
el = 1, κ =

0.5 and κ = 100) regularisation. As illustrated in Fig. 1,
the elastic-like regularisation yielded deformations globally
more incompressible as it distributed the smoothing across
the deformation components, thus reducing the compres-
sions around the cube. We also observed that increasing κ

yielded deformations closer to the true translation by bet-
ter preserving the volume. Although this may not seem as
accurate as with the linear elastic energy, the proposed regu-
lariser prevents overlaps and ensures smooth spatial deriva-
tives of the transformations, which is of particular impor-
tance when estimating the myocardium strain for instance.
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Difusion Registraton

Incompressible Registraton

Registraton of
translated cubes

Jacobian Determinant

0.60 1.401.00

Elastc Registraton, κ=0.5 Elastc Registraton, κ=100

Fig. 1 Registration of two translated cubes using diffusion log-
Demons, elastic-like logDemons and iLogDemons. At similar grey
level RMSE, elastic-like regularisation yielded stiffer deformations
(the higher κ , the stiffer) but only iLogDemons provided an incom-
pressible deformation close to the true translation.

5.1.2 Quantitative Evaluation on Random Incompressible
Deformations

The impact of the elastic-like regularisation on the estima-
tion of incompressible deformations was quantified on syn-
thetic data sets generated as follows. A 3D isotropic Steady-
State Free Precession (SSFP) MR image of the heart (53×
60× 60 slices, 1mm3 voxel spacing), henceforth called test
image, was warped by 50 random incompressible deforma-
tion fields. Warped and test images were then altered with
a slight Gaussian noise (SD= 3, range of grey level intensi-
ties: [0 : 198]) (Fig. 2A-B).

The random deformation fields were generated by inte-
grating divergence-free velocity fields. Each voxel was as-
signed a random velocity according to a Gaussian distribu-
tion with high standard deviation to get large displacements
and large strains (SD= 5000mm/s). The resulting veloc-
ity field was smoothed with a Gaussian kernel (SD= 3mm)
and its L2-norm was normalised to 2mm. We then made it
divergence-free using Helmholtz decomposition and inte-
grated the result with the “scaling-and-squaring” algorithm
(Appendix A) to get the final incompressible deformation
(Fig. 2C). The average L2-norm of the deformation fields
was 1.83±0.77mm (mean ± standard deviation SD). Their
Jacobian determinant was very close to the incompressibil-

ity condition |∇φ | = 1 (0.99± 0.03, Fig. 2D). We verified
with this procedure that “scaling-and-squaring” divergence
free velocity fields do yield near incompressible deforma-
tions. Indeed, directly integrating the original non divergence-
free velocities yielded deformations with similar L2-norm
(1.91± 0.99mm) but that did not preserve volume (|∇φ | =
1 ± 0.53)

A- Test Image B- Warped Image

C- Deformation Field D- Jacobian Determinant

Fig. 2 Synthetic 3D image warped with a random incompressible de-
formation field (represented by a warped grid).

We registered the 50 warped images to the test image
with and without elastic regularisation. The following regis-
tration parameters were used, σ2

f l = 1, σ2
el = 1 and λx = 1,

and no multi-resolution scheme was used as we aimed at
comparing two methods rather than pure performance. The
number of demons iterations was fixed to 50. Several elastic
parameter values were tested: κ = {0,0.1,0.5,1,2,10,100}.
Registration accuracy was measured using the distance to
the true deformation field (DTF) and the relative mean squared
error of image intensities (RMSE) defined by:

DTF(φ ,φre f ) = ‖φ −φre f ‖L2

RMSE(T,R ◦ φ) = ‖T −R ◦ φ‖2 /‖T −R‖2

For both indices, the lower the value, the better. Variations
in registration performances were quantified using the coef-
ficients of variation ν = sd/mean of RMSE, DTF and Ja-
cobian determinant. Low ν values mean little impact of the
elastic regularisation on a particular metric.

The results showed that deformation field recovery and
image matching accuracy did not change significantly by in-
creasing κ (νDTF ≈ 1.6%, νRMSE ≈ 8.5%, Fig. 3). However,
increasing κ largely reduced the standard deviation of the
Jacobian determinant (νstd(Jac.) ≈ 36%) while its mean was
close to one (νmean(Jac.) ≈ 0.18%). The elastic regularisation
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thus improved global incompressibility of the deformation,
as observed in the toy example (Fig. 1), but it did not change
the local accuracy of the registration. A strong constraint is
needed to recover locally incompressible deformations.

Fig. 3 Effect of elastic-like regularisation on registration perfor-
mances. These curves show that elastic-like regularisation, controlled
by the parameter κ , does not affect registration accuracy (low variation
of distance to true field, left panel) while it significantly decreases Ja-
cobian determinant standard deviation (right panel). The deformation
is globally more incompressible.

5.2 Local Incompressibility Recovery Using
Volume-Preserving Constraint

We now evaluate how much the incompressibility constraint,
without elastic regularisation, can recover locally but strong
volume-preserving deformation fields.

5.2.1 Illustration on Translated Cubes

As for the elastic regularisation, we first tested the incom-
pressibility constraint on the small cubes to get an intuition
of the results. Elastic regularisation was disabled (σ2

el = 1,
κ = 0) and the incompressibility constraint was enabled.
As one can see in Fig. 1, the incompressibility constraint
prevented the compressions around the cubes. The recov-
ered translation was qualitatively better than the displace-
ments estimated using the diffusion and the elastic registra-
tion methods.

5.2.2 Quantitative Evaluation on Analytic Incompressible
Whirls

We quantified the previous qualitative observation on syn-
thetic data generated by warping the test image with ana-
lytic whirl transformations (Fig. 4). We decided not to use
the previous synthetic dataset to avoid any bias as the de-
formations were generated using divergence free velocities,
like the proposed constraint. Furthermore, analytic whirls
enable to work on much larger but still volume-preserving
deformations.

Eight volume preserving whirl transformations were cre-
ated as in (Saddi et al, 2007). The voxel O at the centre of the
image domain was the centre of the whirl. All the voxels P
that were outside the sphere of radius R and centred in O did
not move. The voxels P inside the sphere were rotated with
respect to O with an angle α(P) = α0(1− dist(P,O)/R)2.
The strength of the deformation was controlled by the whirl
angle α0, spanning from 10◦ to 80◦. Within the whirl do-
main, the L2-norm varied from 0.52mm to 4.78mm but the
Jacobian determinant remained close to one (worst value:
|φα0=80◦ |= 1±0.04).

Test Image Whirl (α0 = 50◦) Warped Images

Fig. 4 Synthetic 3D image warped with an analytic whirl transforma-
tion (represented by a warped grid).

The 8 images T warped using the whirl transformations
φα0 were registered to the test image R using LogDemons
and iLogDemons (λx = 1, σ2

el = 1, σ2
f l = 1,κ = 0, num-

ber of iterations fixed to 150 to ensure convergence at any
whirl angle). RMSE, Jacobian determinant and DTF are re-
ported in Fig. 5. As expected, the deformation fields esti-
mated with iLogDemons were almost incompressible. Jaco-
bian determinants were always equal to 1± 0.02 indepen-
dently of the strength of the whirl to recover. Image match-
ing accuracy was not affected by the incompressibility con-
straint, showing only 0.6% decrease. The higher RMSE at
small whirl angles is due to the relative nature of that met-
ric. In those cases, the images are already fairly close to each
other and slight image matching errors yield larger RMSE.
Most importantly, iLogDemons significantly improved the
accuracy of the recovered deformation fields. Means and
standard deviations of DTF were systematically lower (aver-
age improvements of 29% and 36% respectively). The larger
the deformation, the more significant the improvement while
RMSE stayed comparable. This experiment demonstrated
the importance of the transformation model. As illustrated
in Fig. 6, regions with homogeneous grey levels provided
few information to accurately estimate the whirl. With the
iLogDemons, the incompressibility constraint helped the al-
gorithm by ensuring that the estimated deformation is of the
same type as the true field. This feature is particularly in-
teresting for clinical applications, where deformations must
be reliably estimated from ill-textured images. In particular,
we observed than iLogDemons provided significantly more
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accurate results that the original algorithm in images with
very large slice thicknesses (see Appendix D for results on
synthetic data).
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Fig. 5 Results of the registration of whirl datasets. With similar im-
age matching performances (similar RMSE of image intensities, top-
left panel), iLogDemons provided more incompressible deformations
(Jacobian determinant closer to one, top-right panel, mean ± SD are
displayed) and outperformed LogDemons in terms of deformation field
accuracy (lower DTF, bottom panel, mean ± SD are displayed). Con-
straining the update velocity to be divergence-free (i2LogDemons) did
not improve the results significantly.

We also investigated whether the performances were im-
proved using i2LogDemons, which also enforces the update
velocity field to be divergence-free (Appendix C). Results,
reported in Fig. 5, were in agreement with the theoretical
considerations (Sec. 4). Relevant differences only appeared
at large deformations (α0 ≥ 70◦). Finally, it should be noted
that all these observations continue to hold with λx = 2,4
and on random incompressible fields (experiments not re-
ported here), supporting robustness to parameters.

To conclude, the experiments on synthetic data showed
that i) elastic regularisation provides deformation fields with
better global incompressibility but does not significantly im-
prove the local accuracy of the registration; ii) the proposed
incompressibility constraint provides almost incompressible
deformations and improves the recovery of volume preserv-
ing deformations. Both contributions are therefore comple-
mentary and can be used jointly to obtain smooth, globally
and locally incompressible deformation fields. In the next
section we evaluate the proposed algorithm in a concrete
clinical application.

Test Image True Whirl

LogDemons iLogDemons

Amplitude

Fig. 6 Streamlines of true and estimated whirl deformations (whirl
angle α0 = 60◦). Colours encode deformation amplitude in mm. iLog-
Demons better estimated the whirl transformation in regions with poor
texture (yellow arrow), providing more accurate motion and deforma-
tion amplitude.

5.3 Application to Cardiac Deformation Recovery

As a feasibility study, we applied iLogDemons to estimate
the 3D strain of the left-ventricular cardiac muscle, the my-
ocardium, from standard anatomical cine MR images (cMRI)
of the heart (Fig. 7). Widely available in clinical routine,
these images have good in-plane and temporal resolutions.
However, they only show the apparent motion of the heart as
no texture is present within the myocardium. Combined with
their large slice thickness, accurate estimation of cardiac
motion from cMRI is challenging. During the cardiac cy-
cle, it has been reported that the volume of the heart muscle
does not vary significantly (≈ 5% of volume variation (Glass
et al, 1991)). It is therefore reasonable to use incompressibil-
ity constraints to estimate cardiac motion (Bistoquet et al,
2008). We thus applied iLogDemons to estimate the 3D my-
ocardium strain on cMRI of two adult patients with heart
failure. Results were compared with those obtained using
logDemons and the ground truth provided by tagged MRI.

Image Acquisition and Preparation Anatomical cMRI were
acquired in the short axis view with multiple breath-holds
(Achieva, Philips Medical System, 30 time frames, 1.4mm2

isotropic in-plane resolution, 10mm slice thickness). For the
first patient, 3D tagged MR images (tMRI) were acquired
during the same exam (CSPAMM encoding, 23 time frames,
1.0mm3 isotropic resolution, tag size ≈ 7mm, Fig. 9 left
panel). No manual tracking of the tag grids was available
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Image Domain Ω

Incompressible
Domain Γ

Short-Axis View (In-Plane) Long-Axis View (Through-Plane)

Incompressible Domain Γ

Lef
Ventricle

Lef
Ventricle

Right
Ventricle

Right
Ventricle

Fig. 7 Short-axis cine-MRI of patient 1. Incompressibility is ensured
only within the myocardium (outlined in yellow). Note the lack of con-
sistent texture within the myocardium even in the in-plane image (left
panel) and the coarse through plane resolution (right panel).

as this task is extremely difficult due to the 3D nature of the
motion. For the second patient, 2D tMRI were acquired in
the short axis view (23 time frames, 1.1mm2 in-plane reso-
lution, 18mm slice thickness, tag size≈ 6mm). For this case,
manual tracking of the tag grids was performed by an expert
in the short axis view. All images fully covered both ventri-
cles. The two cMRI and the 3D tMRI presented no slice mis-
alignments. The tMRI were spatially and temporally aligned
to the cMRI using DICOM information. Finally, the dense
transformations were defined on an isotropic sampling grid
adjusted to the image dimensions to cope with the large slice
thickness that can introduce high frequencies in the transfor-
mations, resulting in numerical instabilities and lower regis-
tration accuracy. In practice, this amounts to linearly resam-
pling the cMRI to get isotropic voxels.

Tracking Protocol Because the transformations provided by
demons algorithm are resampling fields, myocardium mo-
tion was estimated by recursively registering all the frames
of the cardiac sequence to the end-diastole (ED) time frame
as in (Mansi et al, 2009) (Fig. 8), when the heart is at rest po-
sition. Registration parameters were fixed: λx = 1, σ2

el = 2,
σ2

f l = 0.5. A 2-level multi-resolution scheme was used and
registration was stopped as soon as RMSE stopped decreas-
ing. For iLogDemons, elastic regularisation (κ = 1) was ap-
plied everywhere in the images whereas the incompress-
ibility constraint was applied only within the myocardium
as the volume of surrounding structures like blood pools
vary (Fig. 7). Thanks to the backward strategy, myocardium
region had to be defined only at the ED time frame. Fi-
nally, the 3D displacements and strains were projected onto
the radial, circumferential and longitudinal directions as de-
fined in (Moore et al, 2000) (Fig. 9, right panel). Strains
were computed using the 3D Lagrangian finite strain tensor
E(x) = 1

2

[
∇u(x)+∇uT (x)+∇uT (x)∇u(x)

]
, where u(x) is

the displacement at x.

Comparison with 3D tMRI In a first stage, we estimated the
cardiac motion of patient 1 by tracking the heart in the 3D
tMRI using both iLogDemons and logDemons. We verified
that iLogDemons preserved the volume of the myocardium
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Fig. 8 Recursive tracking algorithm. Knowing the velocity vIn−1→I0
(green): 1) Estimate vIn→In−1 (blue). 2) Concatenate vIn→In−1 and
vIn−1→I0 (grey) using BCH formula (4). 3) Estimate vIn→I0 using 2)
as initialisation (red).

Basal
Longitudinal

Radial

Circumferental

Mid

Apical

Fig. 9 Left panel: 3D tMRI of patient 1. Right panel: Definition of
cardiac motion directions and heart regions.

below the values reported in the literature during the en-
tire cardiac cycle (average volume variation: 2%, max.: 6%)
contrary to logDemons (average volume variation: 26%, max.:
32%) (Fig. 10). We also observed that the incompressibility
constraint reduced the deviations of the estimated displace-
ments throughout the cardiac cycle despite the simple track-
ing procedure.

For visual assessment, we applied the estimated defor-
mations to virtual planes manually positioned at ED (Fig. 11).
Realistic deformations consistent with the tag grids were ob-
tained with both algorithms. The similar performances be-
tween logDemons and iLogDemons, quantified by the low
L2-distance between recovered deformation fields (Table 1),
is justified by the fact that the tag grids provided enough tex-
ture information within the myocardium to guide the regis-
tration. As no ground truth was available, we considered the
displacements estimated on the 3D tMRI using iLogDemons
as reference.

Table 1 L2-distances averaged over the cardiac cycle between esti-
mated displacements. Values to be compared with the tag size (6mm).
Tracking cardiac motion on tMRI with logDemons and iLogDemons
yielded globally small differences. When tracking the heart on cMRI,
iLogDemons improved the results, the incompressibility constraint
coped with the lack of myocardial texture and the large slice thickness.

Method L2-distance (mean ± sd, max)
iLogDemons (tMRI) reference
logDemons (tMRI) 1.7±0.71mm,3.2mm
logDemons (cMRI) 3.2±0.92mm,4.6mm
ilogDemons (cMRI) 2.8±0.72mm,4.0mm

We then estimated the 3D motion of the heart from the
cMRI and compared the results with the reference tMRI de-
formation. Visual assessment of the warped virtual planes
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Jacobian Determinant, Patient 1, tMRI Jacobian Determinant, Patient 1, cMRI Jacobian Determinant, Patient 2, cMRI

Fig. 10 Jacobian Determinant of Myocardium Motion. Curves represent mean (plain lines)± standard deviation (dashed lines). Incompress-
ibility constraint significantly decreased volume variations during the cardiac cycle. One can observe that the constraint also controlled the volume
deviation at the end of the cycle.

Radial Strain in % Circumferential Strain in % Longitudinal Strain in %

Fig. 12 Myocardium strains computed from cMRI and 3D tMRI of patient 1. Mean and standard deviation computed over the entire left
ventricle. iLogDemons better estimated circumferential and longitudinal strains despite the lack of image information and the large slice thickness.

showed that the incompressibility constraint did help in re-
covering longitudinal and circumferential displacements de-
spite the large slice thickness and the lack of texture fea-
tures within the myocardium (Fig. 11, blue and red curves,
Table 1). Estimated longitudinal and circumferential strains
confirmed this finding (Fig. 12). Values obtained using iLog-
Demons were much closer to the reference (86% of im-
provement for the radial strain, 89% for the circumferen-
tial strain and 64% for the longitudinal strain). The ampli-
tude of the radial strain was more plausible and the tempo-
ral variation patterns of the circumferential and longitudinal
strains were consistent with the clinical literature (Moore
et al, 2000). Note that logDemons exhibited an incorrect
lengthening in both longitudinal and circumferential direc-
tions at the beginning of the cardiac contraction. Further-
more, the variability in strain measurements is significantly
reduced using iLogDemons, which suggests that the esti-
mated motion is globally more consistent.

Comparison with Manual Tracking We then estimated the
cardiac motion of the second patient using logDemons and
iLogDemons on cMRI and compared the results with man-
ual tracking of 2D tag grids. As with the previous patient,
iLogDemons controlled myocardium volume variations all
along the cardiac cycle compared to logDemons (average

Short-Axis (In-Plane Motion) Long-Axis (Through-Plane Motion)

Fig. 11 Close-up of the tMRI of patient 1 at end-systole. The virtual
tag planes were warped with the deformation estimated on the tMRI
using iLogDemons (green) and with those estimated on the cMRI using
logDemons (red) and iLogDemons (blue). The green planes show that
the motion estimated on tMRI using iLogDemons was similar to the
MRI tags. From the blue and red planes one can see that iLogDemons
better estimated myocardium motion even in cMRI.

volume variation: 7%, max.: 10%, and 42%, max.: 54% re-
spectively, Fig. 10). Point-wise motion comparison between
cMRI and manual tracking was not possible due to a non-
perfect tMRI-to-cMRI alignment because of tMRI slice mis-
alignment and patient motion between scans. We thus com-
pared the regional displacements averaged over 12 heart zones
(6 basal and 6 mid-ventricular regions). Note that the slice
misalignments of the tMRI did not affect the evaluation as
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the measurements were exclusively 2D. For fair comparison,
we transformed the 3D displacements estimated from the
cMRI to apparent 2D displacements by warping the short-
axis displacement (XY-plane) along the through plane mo-
tion (Z-direction). The results showed that iLogDemons, in
this patient, improved the accuracy of the recovered mo-
tion. The amplitude of the radial displacement was closer to
the ground truth (global error with respect to tag displace-
ments from 2.4± 2.4mm to 1.2± 1.6mm, about the voxel
size, Fig. 13). Note that logDemons already estimated re-
alistic radial motion patterns, yet over-estimated, as the ap-
parent cardiac displacements in cMRI are radial to the LV
boundaries. The circumferential motion provided by iLog-
Demons was more realistic than the one estimated using log-
Demons, yet still under-estimated (global error from 2.3±
1.7mm to 3.5± 2.0mm, Fig. 14). The sign and dynamics of
the average circumferential displacement were correctly re-
covered for every region except for regions 8 and 12, whereas
logDemons failed to estimate the circumferential motion of
most of the regions (arrows A and B in Fig. 14). The in-
compressibility constraint assisted the registration algorithm
by redistributing the apparent radial displacement across the
other direction to preserve myocardium volume.

Computation Time For the first patient, the frame-by-frame
registration took 129s with logDemons (4.8s per iterations),
296s with iLogDemons (10.9s per iterations) and 1311s
with i2LogDemons (48.6s per iterations) on a MacPro 2
× 3.2GHz Quad-Core Intel Xeon, 16GB of RAM, mono-
core execution. The incompressibility was ensured on about
97000 voxels (≈ 4% of the image size 171×61×83). iLog-
Demons was about 2 times slower than logDemons but with
still reasonable computational time although the algorithm
was not at all optimised. i2LogDemons was too computa-
tionally intensive while yielding no significant improvement
due to the repeated building, preconditioning and resolution
of the linear system (the results are not reported here for the
sake of clarity). In iLogDemons, the linear system was built
and preconditioned only once, at the beginning of the reg-
istration. Similar computation times were obtained for the
second patient. Computational performances could be im-
proved using Fourier-based methods (Hinkle et al, 2009) or
optimised multi-grid system resolution (Saddi et al, 2007).

6 Discussion and Conclusion

In this article, we presented a method for elastic incompress-
ible diffeomorphic registration based on the logDemons al-
gorithm proposed by Vercauteren et al (2008). We first es-
tablished that logDemons Gaussian regularisation minimises
an infinite order Tikhonov regulariser. Our formulation con-
stitutes a well-posed formulation of demons algorithm with
controlled parameters. An important theoretical condition

on the coupling term ‖ log(φ−1 ◦ φc)‖2 appeared. One must
be able to linearise this term such that the regularisation
energy is written as a least-square problem to justify the
Gaussian regularisation. Equipped with a closed form ex-
pression of demons regularisation, we adapted it to elastic
registration by replacing the Tikhonov regulariser with the
infinite sum of isotropic differential quadratic forms whose
minimiser is exactly computed by convolution with the sep-
arable elastic-like vector filter proposed by Cachier and Ay-
ache (2004). We then enforced the algorithm to provide in-
compressible deformations by constraining the search space
of the stationary velocities to the space of divergence-free
vector fields. In practice, this is achieved by adding a new
term to the deformation field estimated by the logDemons.
The constraint can therefore be enabled/disabled by the user,
so no ad-hoc minimisation scheme is required. Compared
with traditional methods, our approach is well posed, pro-
vides diffeomorphic transformations; introduces only one
extra parameter, the elastic parameter κ; and can be applied
within a localised area of the image only.

The synthetic experiments demonstrated that the pro-
posed elastic-like regulariser provides realistic elastic de-
formations with infinite order of smoothness. Contrary to
more traditional approaches based on the linear Lamé equa-
tion (Modersitzki, 2004), our method relies on separable
vector filters that can be implemented using efficient Gaus-
sian filters (Deriche, 1993). As it relies on a kernel, our
technique may recall spline-based elastic registration algo-
rithms (Sorzano et al, 2005). However, the transformation
provided by the iLogDemons are diffeomorphic and com-
puted everywhere in the image.

In this paper, we used isotropic elastic regularisation to
estimate myocardium deformation. Because the cardiac mus-
cle is anisotropic, the regulariser may not be adequate. Yet,
designing efficient anisotropic smoothing is not straightfor-
ward and, in that case, it is all the more challenging due to
the spatial variation of the cardiac anisotropy. We thus de-
cided to use isotropic filters for the sake of efficiency but
thanks to the proposed regularisation framework, more ad-
vanced anisotropic regularisation could be investigated in
the future.

The synthetic experiments also supported the proposed
incompressibility constraint. We showed that deformations
parameterised by stationary divergence-free velocities are
very close to incompressibility despite the approximations
and the numerical accuracy. The linearity of the divergence
allows efficient implementation of the constraint, in contrast
to previous approaches based on the non-linear determinant
constraint that were fairly time consuming (Rohlfing et al,
2003; Haber and Modersitzki, 2004). In all our experiments,
the Jacobian determinant of the estimated deformations re-
mained close to one independently of the strength of the de-
formations. We also showed that the i2LogDemons, which



14

Manual on tMRI iLogDemons on cMRI LogDemons on cMRI

B
as

al
R

eg
io

ns

R
ad

ia
lD

is
pl

ac
em

en
ti

n
m

m

0 200 400 600 800
−14

−12

−10

−8

−6

−4

−2

0

2

Time in ms

D
is

p
la

c
e

m
e

n
t 

in
 m

m

 

 

1

2

3

4

5

6

0 200 400 600 800
−14

−12

−10

−8

−6

−4

−2

0

2

Time in ms

D
is

p
la

c
e

m
e

n
t 

in
 m

m

 

 

1

2

3

4

5

6

0 200 400 600 800
−14

−12

−10

−8

−6

−4

−2

0

2

Time in ms

D
is

p
la

c
e

m
e

n
t 

in
 m

m

 

 

1

2

3

4

5

6

M
id

-V
en

tr
ic

ul
ar

R
eg

io
ns

R
ad

ia
lD

is
pl

ac
em

en
ti

n
m

m

0 200 400 600 800

−8

−6

−4

−2

0

2

4

Time in ms

D
is

p
la

c
e

m
e

n
t 

in
 m

m

 

 

7

8

9

10

11

12

0 200 400 600 800

−8

−6

−4

−2

0

2

4

Time in ms

D
is

p
la

c
e

m
e

n
t 

in
 m

m

 

 

7

8

9

10

11

12

0 200 400 600 800

−8

−6

−4

−2

0

2

4

Time in ms

D
is

p
la

c
e

m
e

n
t 

in
 m

m

 

 

7

8

9

10

11

12

Fig. 13 Regional basal and mid-ventricular radial displacements of patient 2 (in mm, colours represent the LV regions). Compared with the
radial displacements measured by an expert on tMRI (left panels), the displacements estimated on cMRI using iLogDemons (mid panel) had more
realistic amplitudes compared with those estimated with logDemons (right panels). Note that both algorithms recovered realistic radial motion
patterns over the cardiac cycle as the image gradients of the cMRI are sufficient to estimate the thickening of the heart.
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B
as

al
R

eg
io

ns

C
ir

cu
m

fe
re

nt
ia

lD
is

pl
.i

n
m

m

0 200 400 600 800

−2

0

2

4

6

Time in ms

D
is

p
la

c
e

m
e

n
t 

in
 m

m

 

 

1

2

3

4

5

6

A

B

0 200 400 600 800

−2

0

2

4

6

Time in ms

D
is

p
la

c
e

m
e

n
t 

in
 m

m

 

 

1

2

3

4

5

6

A

B

0 200 400 600 800

−2

0

2

4

6

Time in ms

D
is

p
la

c
e

m
e

n
t 

in
 m

m

 

 

1

2

3

4

5

6

A

B

M
id

-V
en

tr
ic

ul
ar

R
eg

io
ns

C
ir

cu
m

fe
re

nt
ia

lD
is

pl
.i

n
m

m

0 200 400 600 800

−2

0

2

4

6

Time in ms

D
is

p
la

c
e

m
e

n
t 

in
 m

m

 

 

7

8

9

10

11

12

A

B

0 200 400 600 800

−2

0

2

4

6

Time in ms

D
is

p
la

c
e

m
e

n
t 

in
 m

m

 

 

7

8

9

10

11

12

A

B

0 200 400 600 800

−2

0

2

4

6

Time in ms

D
is

p
la

c
e

m
e

n
t 

in
 m

m

 

 

7

8

9

10

11

12

B

A

Fig. 14 Regional basal and mid-ventricular circumferential displacements of patient 2 (in mm, colours represent the LV regions). Limited by
the lack of consistent texture information, the circumferential displacements estimated on cMRI using logDemons (right panel) and iLogDemons
(mid panel) were globally under-estimated compared to tMRI tracking (left panel). Yet, iLogDemons displacements presented more realistic
patterns, as highlighted by the sign of the displacements of zones 9-10 (A) and zones 7-12 (B) for instance (positive values: counter-clockwise
motion).

also constrains the update velocities to be divergence-free,
does not significantly improve the recovery of incompress-
ible deformations.

Elastic incompressible registration has numerous clini-
cal applications, from the registration of breast images (Rohlf-
ing et al, 2003) to the tracking of the heart (Bistoquet et al,
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2008). In this article, we presented how our approach could
be used to estimate 3D myocardium strain from 3D tMRI
and standard cMRI of the heart. We observed that enforc-
ing incompressible elasticity significantly increased the re-
alism and the accuracy of the estimated displacements and
strains. Recovered deformation fields were closer to those
computed automatically or manually from tMRI. The possi-
bility to apply the incompressibility constraint in a limited
domain of the image has been crucial for this experiment, as
only the myocardium is incompressible. Blood pool volume
must vary to ensure correct registration. Moreover, as the
myocardium region is relatively small, little computational
overhead is added to the logDemons algorithm.

However, some theoretical aspects still need to be con-
solidated. When the incompressibility constraint is applied
within a limited subdomain of the image, smooth transitions
are ensured by artificially diffusing the Lagrangian pressure
field p. Intuitively, this technique would be equivalent to
using a mask of the incompressible domain with smooth
transitions. Experiments supported this approach as no nu-
merical instabilities appeared. However, a rigorous formu-
lation that explicitly integrates the mask into the registra-
tion energy functional would enable more efficient numeri-
cal schemes.

A second theoretical aspect to investigate is the fluid-
like, viscous Gaussian regularisation of the update velocities
δv. Intuitively, this intermediate regularisation controls the
regularity of the log-domain, which must be smooth enough
to ensure that the integrated transformations are diffeomor-
phisms (DoCarmo, 1992). Although this step is optional, its
use greatly contributes to the stability of the algorithm: A
slight smoothing of the update velocities is recommended. It
would be interesting however to develop a theoretical proof
of this intuition to implement more sophisticated regularisa-
tion schemes, by endowing the space of velocity fields with
a kernel norm for instance (Hernandez et al, 2009).

Numerically, our approach is relatively simple to imple-
ment as it is based on Gaussian filters and it requires solv-
ing a linear system with constant stiffness matrix. In this
work the Poisson equation was solved in the space domain
to be able to constrain incompressibility in regions of ar-
bitrary shapes, which would have been difficult to achieve
with Fourier techniques. Nevertheless, elastic-like divergence-
free filters implemented in the Fourier domain could be more
efficient for whole-domain incompressibility constraint (Hin-
kle et al, 2009).

In the presented cases and in non reported experiments,
no significant effects of the numerical boundary conditions
could be observed on the estimated deformations. Yet, nu-
merical instabilities may appear when deformations are strong
close to the image boundaries. In these cases, special care
should be taken by decreasing the maximum step length λx
for instance. From a theoretical point of view, a more rig-

orous implementation of the boundary conditions could be
more efficient. Techniques that control the numerical stabil-
ity automatically (Mansi, 2010) could also be integrated.

As additional future directions, it would be worthwhile
to integrate our approach into registration methods based on
time-varying velocity fields (Beg et al, 2005; Hinkle et al,
2009). In that respect, it would be interesting to quantita-
tively evaluate the impact of the stationarity of the velocity
on the estimated deformations, although we did not observe
any limitations of the algorithm due to that assumption in
our experiments. From a clinical point of view, more so-
phisticated tracking strategies can be investigated to make
the estimation of the myocardium motion more robust (Bis-
toquet et al, 2008; Sundar et al, 2009b). Current work aims
to quantitatively validate the algorithm on MRI, 3D US and
CT images of healthy subjects and patients suffering from
severe congenital heart diseases and heart failure.
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A Time-Integration of Stationary Velocity Fields

Arsigny et al (2006a) devised an efficient way to compute the exponen-
tial map of a stationary velocity field φ = exp(v) by observing that, in
virtue of the properties of one-parameter subgroups ( t 7→ exp(tv)), we
have ∀n∈N,exp(v) = exp(v/n)n. If n is large enough, exp(v/n) can be
approximated by v/n (scaling), which is then composed log2(n) times
to get the exponential (squaring). The pseudo-code of the algorithm is:

Algorithm 3 Scaling-and-Squaring Algorithm
Require: Velocity field v
1: Choose n such that ‖v/2n‖ ≤ 0.5
2: Explicit first-order integration: u← v/2n

3: loop {n times}
4: u← u◦u
5: end loop
6: return Displacement field u

B IDQF Parameters for Separable Vector Filters

As described in Sec. 3.2, logDemons elastic-like regularisation is ob-
tained by solving in the Fourier domain the optimal condition:


(

1+
∞

∑
k=1

αk(wT w)k

λ 2k
d

)
︸ ︷︷ ︸

A

Id+

(
∞

∑
k=1

βk(wT w)k−1

λ 2k
d

)
︸ ︷︷ ︸

B

wwT

 v̂(w)= v̂c(w)
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Sherman-Morrison inversion Lemma gives:

v̂(w) =
[

1
A

Id− 1
A

(
B

A+BwT w

)
wwT

]
︸ ︷︷ ︸

M

v̂c(w)

We seek αk and βk such that the filter M is separable to preserve
demons computational efficiency. αk = 1/k! yields A = exp(wT w/λ 2

d ).
As a result, if B/(A + BwT w) is a scalar γ ∈ R, the inverse Fourier
transform of the second term of M is the Hessian of F−1(γ exp(−wT w/λ 2

d )).
The idea thus consists in finding the coefficients βk such that B/(A +
BwT w) = γ . With β0 = 0, this writes:

∞

∑
k=0

βk+1

λ
2(k+1)
d

(wT w)k =
∞

∑
k=0

γ

(
1

λ 2k
d k!

+
βk

λ 2k
d

)(
wT w

)k

This equation defines a recursive relationship between the βk’s:
β0 = 0

βk+1 = γ

(
λ 2

d
k!

+βk

)
∀k ≥ 1

from which we deduce the closed form:

βk =
k

∑
i=1

γ i λ 2i
d

(k− i)!

The proof of this relationship is achieved by recurrence. The previous
formula is verified for k = 1. We assume it to be true for k and we verify
it still holds for k + 1. To this end, we replace βk by the conjectured
formula in the recursive expression of βk+1:

βk+1 = λ
2
d γ

(
1
k!

+
k

∑
i=1

γ i λ 2i
d

(k− i)!

)
=

γ λ 2
d

k!
+

k

∑
i=1

γ i+1 λ
2(i+1)
d

(k− i)!

=
γ λ 2

d
k!

+
k+1

∑
i=2

γ i λ 2i
d

(k− (i−1))!
=

k+1

∑
i=1

γ i λ 2i
d

(k +1− i)!

which proves the result. With these coefficients, the filter M writes:

v̂(w) =
(
exp(−wT w/λ

2
d ) Id− γ wwT exp(−wT w/λ

2
d )
)
? v̂c(w)

which becomes in the space domain (∆ is the Hessian operator and d
is the dimension of the image domain Ω )

v(x) =
√

λ 2
d /(4π)

d
exp(−4λ

2
d xT x)?vc(x)

+ γ ∆

(√
λ 2

d /(4π)
d

exp(−4λ
2
d xT x)

)
?vc(x)

Defining σ2
el = 2/λ 2

d and γ = σ2
elκ/(1+κ) yields (9).

C Demons Update Velocity under the Divergence-Free
Constraint

Divergence-free update velocities are computed by minimising the con-
strained optimisation energy:

Ecor(δv) =
1

λ 2
i
‖R−T ◦φ ◦ exp(δv)‖2

L2
+

1
λ 2

x
‖ log(φ−1 ◦φ ◦ exp(δv)‖2

L2

∇ ·δv = 0

Let p(x) be a scalar field with compact support. The Lagrangian func-
tion Pcorr(δv, p) related to the constrained correspondence energy

Ecorr(δv) writes (the Lagrangian multiplier p(x) has been multiplied
by 2 to simplify calculations):

Pcorr(δv, p) =
1

λ 2
i

∫
Ω

‖R(x)−T ◦φ ◦ expδv(x)‖2 dx

+
1

λ 2
x

∫
Ω

‖δv(x)‖2 dx−2
∫

Ω

p(x) ∇ ·δv(x)dx

Differentiating Pcorr(δv, p) with respect to p yields the constraint
∇ · δv = 0. To differentiate Pcorr(δv, p) with respect to δv, we lin-
earise the similarity criterion as in (Vercauteren et al, 2009):

‖R(x)−T ◦φ ◦ expδv(x)‖2 ≈ ‖R(x)−T ◦φ(x)+ J(x)T
δv(x)‖2

where J(x) is the symmetric gradient J(x) = (∇R(x)+∇(T ◦φ)(x))/2.
It follows the linear least square problem:

Pcorr(δv, p) =
1

λ 2
i

∫
Ω

‖R(x)−T ◦φ(x)+ J(x)T
δv(x)‖2dx

+
1

λ 2
x

∫
Ω

‖δv(x)‖2dx−2
∫

Ω

p(x) ∇ ·δv(x)dx

The optimal condition ∂δvPcorr(δv, p) = 0 thus writes:(
J(x)J(x)T +

λ 2
i

λ 2
x

Id
)

︸ ︷︷ ︸
D(x)

δv(x) =−J(x)
(

R(x)−T ◦φ(x)
)
−λ

2
i ∇p(x)

As the tensor D(x) is always invertible, we can calculate the optimal
divergence-free update velocity field:

δv∗(x) =−
(

R(x)−T ◦φ(x)
)

D(x)−1J(x)︸ ︷︷ ︸
δv(x)

−λ
2
i D(x)−1

∇p(x) (14)

The first term of the previous equation is exactly the logDemons up-
date velocity field δv (3).The pressure field p is calculated by solving
the Poisson equation under 0-Dirichlet boundary conditions that results
from the divergence of the previous equation:

∇ ·
(
λ

2
i D(x)−1

∇p(x)
)

= ∇ ·δv(x)

Because the tensor D(x) is updated at each iteration, the operator ∇ ·
(λ 2

i D−1∇) is not constant. The matrix of the related linear system must
therefore be built and pre-conditioned at each time step, which can
be computationally demanding if the domain Ω is large. Furthermore,
D(x) is computed at every voxel of the image domain Ω independently.
The resulting tensor field can therefore be noisy, likely yielding nu-
merical instabilities. To alleviate this limitation, D is smoothed using
Log-Euclidian techniques (Arsigny et al, 2006b): each component of
log(D) is smoothed with a Gaussian kernel Gλd

and the result is expo-
nentiated to get a smooth tensor field. In this paper, we fixed λ 2

d equal
to the strength σ2

f l of the fluid regularisation.

D Robustness of iLogDemons with Respect to the Slice
Thickness

During our experiments we also quantified the robustness of the iLog-
Demons with respect to image slice thickness on synthetic data. The
reference and the warped images of the whirl data sets were degraded
by artificially increasing the slice thickness along the z-axis. Every N
consecutive slices were grouped together and averaged to simulate par-
tial volume effect. In-plane resolution was preserved. The resulting im-
ages were resampled to get 1mm3-isotropic voxels. Four datasets were
generated with slice thicknesses spanning from 1mm to 10mm. The
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registration parameters were σ2
f l = 1, σ2

el = 1 and λx = 1. Results are
reported in Fig. 15.

Not surprisingly, increasing the slice thickness decreased the over-
all registration accuracy as less image information was available: RMSE
and DTF steadily increased. LogDemons yielded better image match-
ing (lower RMSE) but the recovered deformation fields were less ac-
curate than those estimated using iLogDemons (higher DTF). Incom-
pressibility constraints helped the algorithm to recover the incompress-
ible whirl. This experiment also confirmed that i2Logdemons did not
improve registration accuracy with respect to iLogDemons. Fig. 16 il-
lustrates these findings on a particular case. Far from image gradients,
the deformation estimated by logDemons were weak and erroneous
(arrow A). Even worse, near strong image gradients, the deformation
field can be completely wrong (arrow B). Thanks to the incompress-
ibility constraint, iLogDemons alleviated these pitfalls and recovered a
plausible through-plane motion (arrow C). These results motivate the
use of iLogDemons to estimate the motion of incompressible organs in
medical images.
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Fig. 15 RMSE and DTF with respect to the slice thickness. De-
spite higher RMSE, estimated deformation fields were systematically
more accurate using incompressible constraints (iLogDemons) than us-
ing logDemons. One can also see that constraining the update velocity
to be divergence-free (i2LogDemons) did not improve the results in
terms of DTF. Same conclusions for all the other whirl angles.

|Z|

Reference Whirl LogDemons iLogDemons
B

A
C

z

yx

Fig. 16 Streamlines of 3D whirl transformations (α0 = 60◦) recov-
ered from an image with 6mm-thick slices. Contrary to logDemons,
which failed to recover the whirl transformation in homogeneous re-
gions (A) and was misguided by strong gradients (B), iLogDemons
improved the recovery of the through-plane whirl deformations (C) de-
spite the lack of image information. Colours encode the amplitude of
the through-plane z-direction in mm.
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