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Abstract. Patients with repaired Tetralogy of Fallot commonly suffer
from chronic pulmonary valve regurgitations and extremely dilated right
ventricle (RV). To reduce risk factors, new pulmonary valves must be
re-implanted. However, establishing the best timing for re-intervention
is a clinical challenge because of the large variability in RV shape and in
pathology evolution. This study aims at quantifying the regional impacts
of growth and regurgitations upon the end-diastolic RV anatomy. The
ultimate goal is to determine, among clinical variables, predictors for the
shape in order to build a statistical model that predicts RV remodelling.
The proposed approach relies on a forward model based on currents and
LDDMM algorithm to estimate an unbiased template of 18 patients and
the deformations towards each individual shape. Cross-sectional multi-
variate analyses are carried out to assess the effects of body surface area,
tricuspid and transpulmonary valve regurgitations upon the RV shape.
The statistically significant deformation modes were found clinically rel-
evant. Canonical correlation analysis yielded a generative model that was
successfully tested on two new patients.

1 Introduction

Tetralogy of Fallot (ToF) is a severe congenital heart defect that requires surgical
repair early in infancy. Yet, pulmonary valves may be damaged by the surgery,
causing chronic regurgitations. As a result, the right ventricle (RV) dilates ex-
tremely, its shape is altered and the cardiac function is impaired: new valves must
be implanted in adulthood to reduce risk factors [1]. Understanding and quanti-
fying RV remodelling in repaired ToF patients is crucial for patient management
and therapy planning. However, high variability in pathology course and in RV
anatomy makes difficult the decision of optimal timing for re-intervention [1].



Contrary to the left ventricle, whose shape and deformations under patho-
logical conditions are well documented, RV anatomy is complex and can vary
tremendously among ToF patients. Several studies investigated possible correla-
tions between clinical parameters in ToF [1]. However, few works have quantified
the anatomical alterations of the RV and their evolution due to the disease [2,
3]. In [2], the authors measure the most striking differences in RV shape with
respect to normals, quantifying some features of the complex RV remodelling
observed in ToF. However, only one-dimensional indices are considered despite
the availability of 3D segmentations. In [3], the authors present a 4D Active
Appearance Model of the beating heart to segment RV in MRI. New indices
based on the shape modes are proposed to classify patients from normal. Yet,
the authors do not correlate their model with clinical features of ToF.

The clinical challenges raised by ToF encourage applying image-based shape
analysis techniques to model the RV anatomical alterations due to pathological
factors. These techniques generate a representative template of a population of
interest and assess how it deforms within this population [4–7]. Yet, correlating
shape with clinical variables require a rigourous framework: Biases may appear
if the template is not defined in a consistent way, which may yield drastic dif-
ferences in the statistical conclusions. Two strategies are available to create the
template. The backward approach consists in modelling the template as the av-
erage of the deformed observations plus some residuals [4, 5]. Such a template
can be computed efficiently but the model parameters, especially the residuals,
are more difficult to identify. The forward approach consists in modelling the ob-
servations as deformations of the template plus some residuals [6, 7]. Computing
the template is more complex but model parameters can be faithfully estimated
from images and clinical data.

In view of assisting the cardiologists in establishing the best time for re-
intervention, we aim at statistically predict the RV remodelling in ToF. As a
first step, we propose in this work to quantify the regional impacts of growth
and regurgitations upon the end-diastolic RV anatomy of a cohort of 18 young
ToF patients. The main deformation modes are estimated using the forward
approach and analysed through cross-sectional multivariate methods. We then
derive a generative model of RV remodelling and test it on two new patients.

2 Methods

The right ventricle (RV) of multiple patients is segmented from cine-MRI as de-
scribed in Sec. 3.1. To analyse this population of shapes, an unbiased template is
first built. This template serves as reference atlas to determine the deformations
towards each individual shape. Then, Principal Component Analysis (PCA) is
applied on these deformations to extract the main deformation modes. The im-
portance of each mode is statistically assessed with respect to child growth and
valvar regurgitation severity, yielding a generative model of RV remodelling. Fi-
nally, we investigate how this model can predict the evolution of shape with
respect to body surface area.



2.1 Unbiased Template of the Right Ventricle in Tetralogy of Fallot

The RV template is created using the forward strategy proposed by [7]. This
approach is particularly suited for our purposes as 1) it is non-parametric, shapes
are represented by currents; 2) model parameters are well-defined and can be
estimated from clinical data, thus enabling statistical analyses; 3) template and
deformations are computed simultaneously and consistently and 4) new patients
can be integrated in the study without re-estimating the template.

The RV surfaces T i, or shapes, are modelled as the sum of a diffeomorphic
deformation φi of the template T and a residual term εi standing for the shape
features that cannot be represented by the template (topology changes, acquisi-
tion artefacts, etc.): T i = φi.T + εi. Currents are used to represent the shapes,
the residuals and the deformations in the same common framework. They enable
the usual operations (mean, variance...) on shapes as they form a vector space.
Intuitively, currents can be seen as the flux of any vector field ω ∈ W across the
shapes. W is a vector space of infinite dimension generated by a Gaussian kernel
KW (x,y) = exp(−‖x − y‖2/λ2

W ) that defines an inner product in W (W is a
Reproducible Kernel Hilbert Space, RKHS). More precisely, a triangle centred
at x with normal α is represented by the Dirac delta current δα

x . Therefore, a

discrete mesh is encoded by the sum of the currents of its triangles T i =
∑

k δ
αi

k

xi
k

.

The residuals εi are modelled as a Gaussian distribution on the αi
k. The defor-

mation φi that registers the template T to the current T i is estimated using
the Large Deformation Diffeomorphic Mappings (LDDMM) framework [8]. φi

is parametrised by a smooth initial vector speed vi
0, which also belongs to a

Gaussian RKHS V with variance λ2
V . Moreover, this initial speed vector field is

completely defined by the moment vectors βi centred at the same point location
as the template moments: vi

0(x) =
∑

k KV (xk,x)βi
0(xk). Finally, the template

T and the deformations φi towards each patient are estimated by means of an
alternate two-step strategy, initialised with the mean current of the population.

2.2 Characterising Deformation Modes of RV Shapes in ToF

In this work we analyse the deformations φi only as we mainly focus on the
regional changes of the RV anatomy due to ToF. Principal Component Analysis
(PCA) is performed directly on the moments βi to extract the main deformation
modes. The elements of the covariance matrix Σ are given by Σij =< vi

0 −
v0,v

j
0 − v0 >V =

∑
xk,xl

(βi(xk) − β(xk))KV (xk,xl)(βj(xl) − β(xl)), xk being
the position of the kth Dirac delta current of T . Then, the moment vector γm of
the initial speed vector um

0 related to the mth deformation mode is given by γm =
β +

∑
i V

m[i](βi−β). In this equation, Vm is the mth eigenvector of Σ when the
eigenvalues are sorted in decreasing order. Finally, the RV shape of each patient
i is characterised by the shape vector si = {si

m}m=1..M computed from the M
first deformation modes, si

m =< vi
0,u

m
0 >V =

∑
xk,xl

βi(xk)KV (xk,xl)γm(xl).



2.3 Can We Predict the Shape from Clinical Parameters?

First, cross-sectional analysis of the impact of growth on RV shape was per-
formed. Multiple linear regression between the shape vectors si and body surface
area (BSA) was carried out to exhibit the effects of BSA on each deformation
mode. An optimal set of modes was selected by iteratively removing the modes
with lowest significance, until the p-value of the regression overall significance
stopped decreasing. Canonical Correlation Analysis (CCA) was then applied to
quantify the amount of variation of each mode when BSA varies. Denoting R
the overall correlation coefficient between BSA and shape vectors and ρ the cor-
relation vector relating BSA to each deformation mode, the moments µ of the
generative deformation Φ are µ = R

∑
k ρ[k]γk. Deforming the template T with

Φ enables quantifying the average RV remodelling observed in our population.
Second, we assessed the impact of tricuspid and transpulmonary regurgita-

tions on each deformation mode. As regurgitations were quantified by ordinal
indices and only 18 subjects were available, we choose to perform two inde-
pendent and component-by-component analyses to maximise statistical power.
Rank-based Kruskal-Wallis analysis of variance was applied. If an effect was
found for some deformation modes, post-hoc two-sample rank-based Wilconxon
tests were used to determine which levels differed.

All the statistical tests were carried out using the shape vectors si (Sec. 2.2).
The level of significance was set at p < 0.1 and multiple comparisons were
corrected using Bonferroni adjustment.

3 Experiments and Results

3.1 Data Collection

Subjects and Image Preparation We selected 18 young patients (8 males, mean
age ± SD = 15± 3) with repaired Tetralogy of Fallot (ToF). Body-surface area
(BSA) was reported for each patient (Dubois formula, mean ± SD = 1.53 ±
0.3). Steady-State Free Precession cine MRI of the heart were acquired with
a 1.5T MR scanner (Avanto, Siemens). Images were acquired in the short-axis
view covering entirely both ventricles (10-15 slices; isotropic in-plane resolution:
1.1x1.1mm to 1.7x1.7mm; slice thickness: 6-10mm; 25-40 phases). Images were
made isotropic through tricubic resampling.

Surface Meshes Preparation End-diastolic RV endocardium was segmented on
the MRI cardiac sequence by fitting an anatomically accurate geometrical model.
Its position, orientation and scale in the image was determined using minimal
user interaction. Then, local boundaries were estimated by training a proba-
bilistic boosting tree classifier with steerable features [9]. To reduce positioning
effects in the shape analysis, the RV meshes were rigidly registered to a represen-
tative patient of the dataset by using GMMReg6 [10]. The results were visually
inspected and remaining undesirable rotations were corrected manually (Fig. 1,
left panel).
6 http://code.google.com/p/gmmreg/



3.2 Statistical Shape Model of the Right Ventricles

Building the template T required setting two parameters (Sec. 2.1): λV , which
defines the “stiffness“ of the non-linear deformations (the higher is λV , the more
global are the transformations); and λW , which characterises the resolution of the
currents representation (low λW values enable analysing subtle shape features).
As we were mainly interested in the regional ToF alterations (dilation, valve
enlargement, regional bulging), these parameters were set to λW = λV = 15mm,
about the diameter of the RV outflow tract. Lower values would have been
inappropriate as the image slice thickness was approximately 10mm.

One iteration of the alternate minimisation was needed to reach convergence.
Yet, the resulting template T was well centred (mean over standard deviation
of the deformations was 0.8). The first 10 deformation modes were selected,
representing more than 90% of the total energy (Fig. 2).

Interestingly, the age of the closest patient to the template was 17 while
his BSA 1.76. Both indices were close to the observed mean, suggesting that in
our population, the mean shape was consistent with the mean BSA and age.
Furthermore, this patient only suffers from trace valvar regurgitations, which is
not surprising as no evident pathological bulging were visible in the template.

3.3 Statistical Model of RV Remodelling in ToF Patients

Patient growth was quantified by body surface area (BSA) index (correlation
with age in the data set: R2 > 0.5, p < 0.001). Table 1 reports the regression
coefficients al of the multiple linear regression between BSA and shape vectors s,
BSA = a0 +

∑10
l=1 als[l], the related t-values and the overall model significance.

The sign of the al relates to the direction of the deformation modes (negative
al meaning backwards deformations). Model reduction discarded all the non-
significant modes (Table 1). The remaining modes were found clinically pertinent
by an expert after visual inspection (Fig. 2). Mode 1 clearly represented the
overall RV dilation. Mode 2 seemed to model the dilation of the tricuspid annulus
and of the inflow tract. Mode 3, 6, 7 and 9 exhibited a dilation of a specific RV

Rigid alignment Non-linear registration to the template

Fig. 1. 3D RV meshes of 18 young ToF patients. Left panel: The meshes were rigidly
registered to a representative patient of the dataset. Observe the extreme variability in
shape (see companion video). Right panel: The same meshes registered to the template
using the non-linear deformations estimated during the template creation.
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Fig. 2. 10 first deformation modes extracted by PCA on a population of 18 patients
suffering from repaired Tetralogy of Fallot.

region: apex (mode 3), basal area under the tricuspid valve (mode 6), apical area
of the outflow tract (mode 7) and outflow tract (mode 9), reflecting possible
direct impact of regurgitations on the neighbouring tissues.

Canonical Correlation Analysis (CCA) provided a generative model of the
RV remodelling observed in our population. Overall correlation coefficient with
BSA was R = 0.87, suggesting a strong correlation between these deforma-
tion modes and growth. The correlation vector of the deformation modes was
ρ = {−0.56, 0.45,−0.35,−0.33,−0.33,−0.37}. When BSA increases by 0.86, each
deformation mode m varies by its related coefficient ρ[m]. The model was found
clinically realistic by an expert (Fig. 3). As BSA increased, RV volume increased,
RV free-wall and valves dilated, and septum was more concave. Indeed, dilation
of the valves reduces the remaining pulmonary obstructions, thus decreasing the
RV pressure. As a result, left-ventricle pushes the septum towards the right ven-
tricle, making it more concave. However, as regurgitations are still present, the
RV still dilates by pushing the RV free wall outwards.

3.4 Quantifying the Impact of Valvar Regurgitations on RV Shape

Colour Doppler ultrasound (sweep speeds: 50-100 mm/s) was used to quantify
tricuspid (TriReg) and transpulmonary valve (TPVReg) regurgitations. To as-
sess the effects of TPVReg, patients were grouped into two different groups:

Table 1. Linear regression coefficients al between shape modes and BSA. In bold the
significant coefficients (p < 0.1). After model reduction (second array), coefficients stay
unchanged, confirming the stability of the statistical tests.

Overall Significance a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

Coef. ×10−5

R2 = 0.84, p = 0.04
-2.9 6.4 -7.6 4.6 -1.0 -11.1 -11.9 7.0 -20.1 -15.4

t-values -3.28 2.64 -2.04 1.13 -0.19 -1.93 -1.92 0.84 -2.15 -1.43

Coef. ×10−5

R2 = 0.75, p = 0.006
-2.9 6.4 -7.6 -11.1 -11.9 -20.0

t-values -3.27 2.63 -2.03 -1.92 -1.92 -2.14
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Fig. 3. Mean RV remodelling observed in our population when body surface area (BSA,
in m2) increases. RV dimensions globally increase while valves dilate. Simultaneously,
RV free wall becomes rounder and septum more concave (see companion videos).

trace TPVReg and severe TPVReg. Kruskal-Wallis analysis revealed a signif-
icant effect on deformation mode 2 (p < 0.1), which was confirmed by visual
inspection: this mode exhibited an elongation of the RV outflow tract (Fig. 2).

Evaluation of TriReg classified the patients into 3 groups: none, trace or mild
tricuspid regurgitations. Kruskal-Wallis analysis showed a significant impact of
TriReg on three deformation modes: 3 (p < 0.05), 6 (p < 0.1) and 8 (p < 0.1).
However, pair-wise Wilconxon tests showed that only mode 3 had two significant
different levels (trace TriReg versus mild TriReg, p < 0.1). Visually, deforma-
tion mode 3 exhibited a deformation of the tricuspid annulus, from circular to
triangular-shape, and a dilation of the RV inflow tract.

Interestingly, two deformation modes involved in the statistical model of RV
growth were also related to the regurgitations. This may suggest possible cross-
effects between growth and regurgitations on these specific shape variations.

3.5 Validating the Generalisation of the Statistical Models

Generalising a statistical model of RV remodelling is crucial for patient man-
agement and therapy planning. We thus tested the robustness of our model
on two new patients with matched age (13 and 16). The template was regis-
tered to the patients and the related shape vectors s were computed. BSA were
calculated from the optimal linear model estimated in Sec. 3.3. Results success-
fully compared with measured values (patient 1: estimated BSA: 1.61, measured
BSA: 1.49; patient 2: estimated BSA: 1.29, measured BSA: 1.16). This suggests
that the deformation modes involved in the RV remodelling model could be gen-
eralised, constituting potential quantitative parameters of remodelling in ToF.

4 Discussion and Future Works

In this study we investigated the impact of growth and valvar regurgitations
upon the end-diastolic RV anatomy of patients with repaired ToF. End-diastolic
time point was chosen as it is the time when the effects of the pathology are
the most evident [1, 2]. Multivariate statistical analyses provided a generative
model of the observed RV remodelling. This model and the significant deforma-
tion modes were found clinically pertinent as they exhibited remarkably realistic



changes in RV anatomy. To design the model, the deformation modes and their
directions were statistically determined to limit the effects of PCA rotatability.
Furthermore, the effects of regurgitation severity were analysed on a component-
by-component basis to preserve the statistical power of the tests due to the or-
dinal nature of the data. The groups were not sufficiently populated to apply
more comprehensive statistics. Incorporating more patients is now required to
confirm these findings and avoid possible over-interpretations. Various types of
RV remodelling could be identified (aneurysmal, with stiff myocardium, etc.),
which may constitute new criteria for valve replacement decision. Future works
also include analysing the 4D cardiac motion. To the best of our knowledge, this
study constitutes a first attempt at correlating 3D shape parameters to clini-
cal measurements in ToF. These analyses may yield quantitative image-based
predictors about RV anatomy and remodelling in ToF.
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